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The rapid advancements in deep learning technologies, particularly in text-
to-speech (TTS)1 and voice conversion (VC)2, have revolutionized the generation 
of human-like natural speech. These technologies have found widespread 
applications, enhancing user experiences in various domains such as car 
navigation systems, e-book readers, and intelligent robotics. However, the 
flip side of these innovations is their potential misuse in the form of deepfake 
technologies3. Originally recognized for their ability to seamlessly swap faces 
in videos, deepfakes have evolved to include sophisticated audio manipulations, 
creating challenges in distinguishing between authentic and falsified ecordings. 
This progression has profound implications for social security and political 
stability.

One notable incident illustrating the potential danger of audio deepfakes 
involved an employee who was tricked into transferring a significant amount 
of money, amounting to USD 243.000, due to a fraudulent voice mimicking his 
superior’s4. This episode starkly highlights the emerging risks associated with 
deepfake technologies, where artificial intelligence (AI) can be exploited for 
malicious purposes, such as financial fraud and identity theft.

In response to these growing threats, the field of audio deepfake detection has 
emerged as a critical area of research5. This field aims to differentiate genuine 
utterances from falsified ones using machine learning techniques. Predominantly, 
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the research has been divided into two approaches: the pipeline method, which 
combines frontend feature extraction with backend classification, and the more 
recent end-to-end methods that optimize these processes directly on raw audio 
data. Despite significant advancements, the research remains fragmented and 
predominantly focused on protecting automatic speaker verification (ASV) 
systems6.

The urgency in addressing these threats is underscored by the ease of access 
to deepfake generation technologies and their rapidly improving sophistication. 
These technologies have the potential to be used for benign purposes, such as 
in the entertainment industry, but also for more nefarious activities, such as 
spreading misinformation, influencing political narratives, or compromising 
security systems.

Problem statement

This article addresses the critical need of distinguishing fake from real 
recordings by introducing new method of audio deepfake detection. I focus on 
identifying common discriminative audio features relevant to deepfake detection 
and the computational methodologies for developing effective, generalized 
automatic systems. I started by exploring microfeatures like Voicing Onset Time 
(VOT) and coarticulation7, examining their potential in distinguishing between 
authentic and synthesized speech. Finally, I delved into the potential of vocal 
emotion analysis (VEA) and sentiment analysis in enhancing deepfake detection. 
Through extensive experimentation on various datasets, I aimed to provide 
a balanced audio deepfake detection technology. The work seeks to contribute to 
the field of digital communication security in an era increasingly dominated by 
synthetic audio. By presenting a detailed and comprehensive analysis of audio 
deepfake detection techniques, it was aimed to pave the way for innovative and 
effective strategies to mitigate the risks posed by deepfakes, thereby ensuring 
the integrity and security of digital communications globally.

Related work

The domain of audio deepfake detection8 has experienced significant growth, 
driven by advancements in deepfake technologies, competitions, datasets, 
evaluation metrics, and detection methods. Audio deepfakes, essentially audio 

6 A.E. Rosenberg, Automatic speaker verification: A review, “Proceedings of the IEEE” 1976, 
no. 64(4), pp. 475–487.

7 A.S. Abramson, D.H. Whalen, Voice Onset Time (VOT) at 50: Theoretical and practical issues 
in measuring voicing distinctions, “Journal of phonetics” 2017, no. 63, pp. 75–86.

8 Z. Almutairi, H. Elgibreen, A review of modern audio deepfake detection methods: challenges 
and future directions, “Algorithms” 2022, no. 15(5), p. 155.
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recordings in which key attributes have been artificially manipulated using 
AI technologies, present a unique challenge due to their retention of perceived 
naturalness. Studies in this field have primarily focused on five types of deepfake 
audio: text-to-speech (TTS), voice conversion (VC), emotion fake, scene fake, 
and partially fake.
• Text-to-Speech (TTS). TTS9, also known as speech synthesis, aims to create 

intelligible and natural speech from any given text using machine learning 
models. Recent developments in deep neural networks have enabled TTS 
systems to generate increasingly realistic and human-like speech. TTS systems 
typically encompass text analysis and speech waveform generation modules, 
with two major methods in speech waveform generation being concatenative 
and statistical parametric TTS. The latter often involves an acoustic model 
and a vocoder. Recent advancements include end-to-end models like Variational 
Inference with adversarial learning for end-to-end Text-to Speech (VITS) and 
FastDiff-TTS, which produce high-quality audio.

• Voice Conversion (VC). VC10 focuses on digitally cloning a person’s voice 
to alter the timbre and prosody of a speaker’s speech to match that of another 
while keeping the content unchanged. VC systems process natural utterances 
from a given speaker, with three main technological approaches: statistical 
parametric, frequency warping, and unit-selection. Recent years have seen 
the proposal of end-to-end VC models aimed at mimicking a person’s voice 
characteristics.

• Emotion Fake. The technique known as Emotion Fake intricately alters 
the emotional undercurrents of spoken language11. This method intricately 
tweaks the perceived emotional expression within a speech sample without 
disturbing the consistency of the speaker’s identity or the verbal content itself. 
For example, an originally joyful message can be transformed to convey sadness, 
fundamentally shifting the listener’s perception while maintaining the message’s 
verbal integrity. The intricacies of vocal emotion can be complex, involving 
nuances such as tone, pitch, and rhythm, which this method manipulates. 
Techniques for achieving such emotional manipulation vary, including those that 
rely on parallel datasets where aligned pairs of different emotional utterances 
by the same speaker are available and those that operate on non-parallel 
datasets, which do not require direct pairing and thus offer a broader application 
potential.

• Scene Fake. Scene Fake12 is a sophisticated audio manipulation technique 
that transforms the environmental context, or “scene”, in which the original 

9 M.R. Hasanabadi, An overview of text-to-speech systems and media applications, “arXiv 
preprint arXiv:2310.14301” 2023.

10 K.B. Bhangale, M. Kothandaraman, Survey of deep learning paradigms for speech processing, 
“Wireless Personal Communications” 2022, no. 125(2), pp. 1913–1949.

11 A. Mittal, M. Dua, Automatic speaker verification systems and spoof detection techniques: 
review and analysis, “International Journal of Speech Technology” 2021, vol. 25, pp. 105–134.

12 J. Yi, C. Wang, J. Tao, Z. Tian, C. Fan, H. Ma, R. Fu, Scenefake: An initial dataset and 
benchmarks for scene fake audio detection, “ArXiv” 2022, vol. abs/2211.06073.
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speech was recorded. It utilizes advanced speech enhancement technologies to 
superimpose a different acoustic environment onto the original audio. This can 
involve adding background noise characteristics of different settings or altering 
the reverberation to match a distinct location, such as an open-air market 
or a crowded train station. The primary objective is to shift the listener’s 
perceived setting of the speech, which can have profound implications for the 
audio’s authenticity and integrity. Such alterations can lead to changes in 
the semantic interpretation of the speech, as the context in which words are 
spoken often influences their meaning.

• Partially Fake. This subset of deepfake audio manipulation is characterized by 
its targeted approach, focusing on the alteration of select portions of speech rather 
than the entirety of the audio13. The strategy involves splicing certain words 
or phrases within an utterance with either authentic or artificially synthesized 
audio segments that maintain the original speaker’s vocal characteristics. This 
form of tampering can be particularly deceptive as it preserves the overall sound 
and timbre of the speaker’s voice, making it difficult to discern the modifications. 
The resulting audio appears seamless and can mislead listeners or automated 
systems into misinterpreting the speaker’s true intentions or statements. Partial 
fakes may be employed in scenarios where only specific segments of speech 
need to be falsified to change the meaning or outcome of the audio recording.

In terms of detection methods, feature extraction is a critical module 
in pipeline detectors. The goal is to capture audio fake artifacts from speech 
signals to learn discriminative features. Previous studies14 have categorized these 
features into four types: short-term spectral, long-term spectral, prosodic, and 
deep features. Short- and long-term spectral features, largely reliant on digital 
signal processing algorithms, describe the acoustic correlates of voice timbre and 
long-range speech signal information, respectively. However, short-term spectral 
features have limitations in capturing the temporal characteristics of speech. 
In contrast, prosodic features, spanning over longer segments like phones and 
syllables, offer a broader perspective. Traditionally, many of these features 
were handcrafted, leading to biases due to the limitations of human-designed 
representations. To address these gaps, deep features extracted via deep neural 
network-based models have been increasingly employed.

This section sets the foundation for my study, which aims to build upon 
these existing methodologies and contribute novel insights to the field 
of audio deepfake detection. The characteristics and relationships of different 
features are listed in Fig. 1: RFCC15, ModSpec16, Global M17, SDC18, 

13 J. Yi, Y. Bai, J. Tao, H. Ma, Z. Tian, C. Wang, T. Wang, R. Fu, Half-truth: A partially fake 
audio detection dataset, “Proc. Of Interspeech” 2021.

14 J. Yi, C. Wang, J. Tao, X. Zhang, C.Y. Zhang, Y. Zhao, Audio Deepfake Detection: A Survey, 
“arXiv preprint arXiv:2308.14970” 2023.

15 M. Sahidullah, T. Kinnunen, C. Hanilci, A comparison of features for synthetic speech 
detection, “Proc. of INTER SPEECH” 2015.

16 Ibidem.
17 Ibidem.
18 Ibidem.
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FDLP19, CQTMGD20, LEAF21, LMS22, GD23, MGD24, BPD25, RLMS26, 
IF27, CEP28, LFCC29, IMFCC30, MFCC31, MFPC32, MWPC33, LPCC34, 
MGDCC35, Pitch Pattern36, CosPhase37, RPS38, LBP39, CQTgram40, CQCC41, 

19 Ibidem.
20 Ibidem.
21 N. Zeghidour, O. Teboul, F. Quitry, M. Tagliasacchi, Leaf: A learnable frontend for audio 

classification, “ICLR” 2021.
22 X. Xiao, X. Tian, S. Du, H. Xu, H. Li, Spoofing speech detection using high dimensional 
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23 Ibidem.
24 Ibidem.
25 Ibidem.
26 X. Tian, Z. Wu, X. Xiong, E.S. Chng, H. Li, Spoofing detection from a feature representation 

perspective, “2016 IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP)” 2016.

27 Ibidem.
28 L. Rabiner, B.H. Juang, Fundamentals of speech recognition, “Fundamentals of speech 

recognition” 1999.
29 M. Todisco, H. Delgado, K.A. Lee, M. Sahidullah, N.W.D. Evans, T.H. Kinnunen, J. Yamagishi, 

Integrated presentation attack detection and automatic speaker verification: Common features and 
gaussian back-end fusion, “Interspeech” 2018.

30 Ibidem.
31 L. Chen, W. Guo, L. Dai, Speaker verification against synthetic speech, “7th International 

Symposium on Chinese Spoken Language Processing” 2010, pp. 309–312.
32 S. Novoselov, A. Kozlov, G. Lavrentyeva, K. Simonchik, V. Shchemelinin, Stc anti-spoofing 

systems for the asvspoof 2015 challenge, “2016 IEEE International Conference on Acoustics, Speech 
and Signal Processing (ICASSP)” 2016.
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34 S. Chakroborty, A. Roy, G. Saha, Improved closed set text-independent speaker identification by 

combining mfcc with evidence from flipped filter banks, “World Academy of Science, Engineering and 
Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication 
Engineering” 2008, vol. 2, pp. 2554–2561.

35 Z. Wu, X. Xiong, E.S. Chng, H. Li, Synthetic speech detection using temporal modulation 
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36 Z. Wu, P.L. De Leon, C. Demiroglu, A. Khodabakhsh, S. King, Z.H. Ling, D. Saito, B. Stewart, 
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37 E.S.C. Zhizheng Wu, H. Li, Detecting converted speech and natural speech for anti-spoofing 
attack in speaker recognition, “Interspeech” 2012.

38 J. Sanchez, I. Saratxaga, I. Hernaez, E. Navas, D. Erro, T. Raitio, Toward a universal 
synthetic speech spoofing detection using phase information, “IEEE Transactions on Information 
Forensics & Security” 2010, vol. 10, no. 4, pp. 810–820.

39 F. Alegre, R. Vipperla, A. Amehraye, N.W.D. Evans, A new speaker verification spoofing 
countermeasure based on local binary patterns, “Interspeech” 2013.

40 X. Cheng, M. Xu, T.F. Zheng, Replay detection using cqt-based modified group delay feature 
and resnewt network in asvspoof 2019, “2019 Asia-Pacific Signal and Information Processing 
Association Annual Summit and Conference (APSIPA ASC)” 2019.

41 M. Todisco, H. Delgado, N. Evans, A new feature for automatic speaker verification 
antispoofing: Constant q cepstral coefficients, “Processings of Odyssey 2016” 2016.
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Fig. 1. The commonly employed features in prior research can generally be categorized  
into four groups: short-term spectral features, long-term spectral features, prosodic features,  

and deep features
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eCQCC42, CFCC43, CFCCIF44, F045, HuBERT46, Energy47, Pronounciation48, 
Learned FBCC49, ConvRBM50, nnAudio51, FastAudio52, TD-Fbanks53, 
SincNet54, Spoof55, Emotion56, Speaker57, Wav2vec58, XLS-R59, LPS60.

42 R.K. Das, J. Yang, H. Li, Assessing the scope of generalized countermeasures for anti-spoofing, 
“IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2020” 2020.
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New method of audio stream analysis for deep fake 
threat identification

This paper introduces a novel method for detecting whether a speech recording 
is authentic or synthetically generated using deepfake techniques. The proposed 
approach consists of two primary components: the Vocal Emotion Analysis (VEA) 
and the Deepfake Audio Identifier (DAI).

1. Vocal Emotion Analysis (VEA). The first component of the pipeline 
focuses on extracting a set of features, Fx, that represent the emotional content 
of the speech audio signal, x. Leveraging the advancements in deep-learning, the 
method utilize data-driven neural networks instead of traditional hand-crafted 
feature extraction methods. Specifically, I employ a 3D Convolutional Recurrent 
Neural Network (CRNN), as proposed in recent literature. This network classifies 
speech emotion into N possible categories, such as happiness, sadness, anger, etc.

The process begins with preprocessing the input signal, x, to create a log-mel 
spectrogram, Smel ∈ RMxK, via a Short Time Fourier Transform (STFT) in the 
mel-frequency domain, complemented by a logarithmic transformation. Next step 
is to compute the first and second discrete derivatives of Smel along the frequency 
axis, yielding ΔSmel and ΔΔSmel. These components are stacked together to form 
a 3D matrix X, which undergoes z-score normalization. This matrix then passes 
through a series of 3D convolutional layers, a linear layer, a Bidirectional Long 
Short-Term Memory (BLSTM), and an attention layer. A sequence of dense layers 
subsequently outputs a probability measure for each emotion class, from which 
the prediction Ex should be extracted. Using a transfer-learning approach, next 
step is to extract a feature vector Fx from the output of the final attention layer, 
which provides an utterance-level emotional representation.

2. Deepfake Audio Identifier (DAI). The second component of the pipeline 
is a binary classifier that takes the feature vector Fx as input and estimates 
the class y to which the input signal x belongs. This classifier is designed 
to distinguish between real and fake audio. Notably, any supervised classification 
method could be employed at this stage. However, given presented in the article 
focus on the deepfake discriminatory power of the selected semantic features,  
well-established classical classifiers were used. Conducted experiments 
demonstrated that a Random Forest Classifier effectively discriminates between 
real and fake audio with high accuracy.

The innovative aspect of the proposed method lies in its exploitation of the 
emotional content of speech as a discriminative factor. TTS deepfake algorithms, 
while achieving remarkable results in terms of speech naturalness, often fall short 
in accurately modeling the emotional properties of the human voice. This gap 
presents an opportunity for the adopted approach, where neural networks’ ability 
to create potent and adaptable embeddings is utilized. The feature vector Fx, 
derived from the emotional analysis of the speech, serves as a powerful input 
to the classifier trained specifically for deepfake detection.
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Results

Achieved study’s results are derived from extensive testing using a variety 
of datasets, each contributing to a comprehensive understanding of the 
effectiveness of the proposed method for deepfake speech detection. Multiple 
datasets were employed, including ASVspoof 2019, Cloud2019, and Interactive 
Emotional Dyadic Motion Capture (IEMOCAP), LJS and own voice dataset, 
totaling 133 hours of audio recordings. These datasets encompass both real 
and deepfake speech samples, crucial for training the Vocal Emotion Analysis 
(VEA) stage and testing the deepfake detection method.
• Pre-processing and Input Transformation. Uniformity across datasets 

was achieved through rigorous pre-processing. This involved mono conversion, 
downsampling to a standard frequency, Butterworth band-pass filtering, and 
normalization. Next step is to transform these pre-processed tracks using 
time-frequency transforms, creating a common length and computing STFTs 
to obtain log-mel spectrograms.

• Training Parameters. The training of the test implementation of the proposed 
method was two-fold. The first stage involved training the feature extractor 
for VEA using the IEMOCAP dataset, focusing on four emotional classes and 
employing the Adam optimizer. The second stage, training for Deepfake Audio 
Identifier (DAI), used the features extracted from each dataset. Next step was 
to create the balanced train set and performed a grid search to select optimal 
hyperparameters for the Random Forest classifier.

• Evaluation of Deepfake Audio Identifier (DAI). Achieved best-performing 
RF classifier used information gain as the quality criterion and had 280 learners. 
Three baseline systems using Receiver Operating Characteristic (ROC) 
curves were compared with this. The method significantly outperformed 
these, achieving an Area Under Curve (AUC) of 0.96, indicating superior 
discrimination capability against classic CNN-based methods. This confirmed 
that using VEA-trained architectures as feature extractors for DAI tasks 
enhances deepfake detection accuracy.

• Performance Across Datasets and Conditions. The balanced detection 
accuracy of the binary classifier was evaluated across various datasets and 
conditions (tab. 1, 2). Excellent performance for pristine signal samples and 
most deepfake generation algorithms was found, with a few exceptions like 
T15 or A1 from CDataset. The performance generally degraded with increased 
noise levels, indicating a tendency of the classifier to label noisy samples as 
authentic, raising false negatives. However, when trained with noise-augmented 
data, the proposed system showed resilience to noise in the test set.
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Table 1. Results (balanced accuracy) of the evaluation of the proposed system for different datasets 
and TTS algorithms using clean and augmented training sets. Selected results part 1

SNR [dB] Aug. LJS IEM OWN T10 T11 T12

∞ No 0.939 0.938 0.969 0.985 0.902 0.893

25 No 0.944 0.947 0.969 0.880 0.877 0.859

20 No 0.962 0.945 0.997 0.703 0,796 0.781

15 No 0.984 0.941 0.999 0.439 0.581 0.539

10 No 0.984 0.930 0.995 0.227 0.361 0.331

Yes 0.858 0.825 0.869 0.991 0.962 0.970

25 Yes 0.859 0.828 0.891 0.982 0.949 0.959

20 Yes 0.863 0.831 0.909 0.933 0.937 0.959

15 Yes 0.795 0.825 0.847 0.889 0.921 0.942

10 Yes 0.653 0.811 0.803 0.823 0.904 0.912

Table 2. Results (balanced accuracy) of the evaluation of the proposed system for different datasets 
and TTS algorithms using clean and augmented training sets. Selected results part 2

SNR [dB] Aug. T13 T14 T15 A1 A2 A3

∞ No 0.829 0.922 0.765 0.855 0.924 0.859

25 No 0.738 0.879 0.713 0.613 0.848 0.613

20 No 0.635 0.692 0.555 0.339 0,636 0.334

15 No 0.454 0.306 0.221 0.073 0.241 0.094

10 No 0.337 0.091 0.091 0.023 0.044 0.044

Yes 0.916 0.962 0.882 0.927 0.972 0.923

25 Yes 0.863 0.956 0.874 0.801 0.947 0.823

20 Yes 0.824 0.923 0.839 0.687 0.911 0.702

15 Yes 0.815 0.872 0.793 0.623 0.848 0.623

10 Yes 0.847 0.833 0.756 0.655 0.775 0.688

• Impact of Training Data Augmentation. Training data augmentation 
played a significant role in system performance under different Signal-to- 
-Noise Ratios (SNRs) (fig. 2). While the system trained on clean data performed 
better in noise-free conditions, its performance was significantly lower than 
the noise-augmented trained system in noisier environments. This trend was 
evident in the comparative analysis of ROC curves under varying SNR levels, 
highlighting the benefit of training with augmented data in real-world conditions 
where noise presence is inevitable (fig. 3).
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Fig. 2. Balanced accuracy scores for varied Signal-to-Noise Ratios (SNR)

Fig. 3. Receiver Operating Characteristic (ROC) trajectories for the suggested approach, 
employing both clean and noise-enhanced training datasets across various levels of artificially 

introduced SNR power

In conclusion, presented results demonstrate that the proposed method 
for deepfake speech detection, leveraging emotional embeddings and robust 
training strategies, is highly effective across a range of datasets and conditions. 
The method’s ability to maintain performance in the presence of noise, especially 
when trained on augmented data, underscores its practical applicability in diverse 
real-world scenarios.
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Conclusions

This paper introduced a pioneering method for audio stream analysis for deep 
fake threat identification. Most of the deep fakes are generated using synthetic 
speech, therefore I put effort into leveraging high-level semantic feature extraction 
with a focus on the emotional voice content of deepfake speech tracks generated 
by Text-to-Speech (TTS) algorithms. The proposed method’s effectiveness is 
rooted in its two-component system: Vocal Emotion Analysis (VEA) Network and 
Supervised Classifier for Deepfake Detection. The first component is an VEA 
network, trained on a dataset annotated for emotions expressed by speakers. 
This network serves as an emotional feature extractor. By employing a transfer 
learning approach, we successfully repurposed the network to create an embedding 
space. This space is significant for both its original purpose – VEA – and targeted 
application, audio deep fake identification. The second component is a supervised 
classifier that utilizes the extracted emotional features to discern between 
real and deepfake speech tracks. This classifier forms the core of the proposed 
detection system, interpreting emotional nuances to identify synthetic speech.

The proposed method was rigorously tested across several datasets, 
demonstrating its versatility and adaptability. Additionally, to enhance the 
robustness of the proposed method, data augmentation techniques were 
incorporated, specifically adding white noise to the used training data. This 
approach aimed to simulate more realistic and challenging auditory environments, 
further testing the resilience of the system against various noise levels. 
The performance results of the system validate the hypothesis that semantic 
features, particularly those related to emotional content, are highly effective in 
audio deepfake detection. The method’s ability to interpret and analyze emotional 
nuances in speech presents a novel approach in the landscape of synthetic 
speech detection. This approach not only advances the field technically but also 
opens up new avenues for understanding the subtleties of human speech and its 
replication in AI-generated audio.

In conclusion, the presented research results contributes significantly to the 
ongoing efforts to detect and combat the challenges posed by deepfake technologies. 
By focusing on emotional content as a discriminative feature, a unique perspective 
and a robust solution to identify synthetic speech was presented, a crucial step 
in safeguarding the authenticity and integrity of digital communication in an 
era increasingly dominated by sophisticated AI technologies.
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SUMMARY

The article introduces a new method for identifying deepfake threats in audio, focusing 
on detecting synthetic speech generated by text-to-speech algorithms. Central to the presented 
method are two elements: the Vocal Emotion Analysis (VEA) Network and the Supervised Classifier 
for Deepfake Detection. The VEA Network detects emotional nuances in speech, while the Classifier 
uses these features to differentiate between real and fake audio. This approach exploits the inability 
of deepfake algorithms to replicate the emotional complexity of human speech, adding a semantic 
layer to the detection process. The system’s effectiveness has been confirmed through tests on various 
datasets, including in challenging real-world conditions simulated with data augmentation, such as 
adding white noise. Results show consistent, high accuracy across different datasets and in noisy 
environments, particularly when trained with noise-augmented data. This method, leveraging 
voice’s emotions content and advanced machine learning, offers a robust defense against audio 
manipulation, enhancing the integrity of digital communications amidst the rise of synthetic media.

KEYWORDS: audio modification detection, voice analysis, fake audio detection




