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A b s t r a c t

The aim of the article is to present time series decomposition as a method of measuring capital 
markets convergence. As an example, convergence of two different sets of markets are measured 
using this methodology. On the basis of this research, it has been established that time series 
decomposition of the market indices can prove or reject a hypothesis of moving indices in similar 
directions over a period of time.
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A b s t r a k t

Celem artykułu jest prezentacja dekompozycji szeregów czasowych jako metody pomiaru zbież-
ności rynków kapitałowych. Jako przykład zbieżność dwóch par rynków kapitałowych zmierzono 
z zastosowaniem tej metodologii. Na bazie tych badań stwierdzono, że dekompozycja szeregów 
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czasowych składających się z wartości indeksów cenowych rynków kapitałowych może służyć  
do potwierdzenia lub odrzucenia hipotez dotyczących poruszania się indeksów w podobnych kie-
runkach w badanych okresach czasu.

Introduction

In the capital markets there is said to be “convergence” between markets when 
investors regard the instruments traded in these separate markets as substitutes. 
Prices of these instruments will in turn show a tendency of moving in the same 
direction. As examples, we can show cases in which an increase in stock prices 
follows an increase in bond prices. Or, examples where stock prices on different 
international markets are moving in the same direction. According to another 
definition of “convergence”, it occurs when capital can move between markets 
which have no transactional barriers between them. In such instances, the price 
of risk (the reward which investors receive for taking this risk) on different 
markets is equal for the same kind of assets. The opposite term is “divergence” 
which describes the situation when the prices of similar instruments are moving 
in different directions. The objective of the study described in this article  
is to demonstrate how convergence can be measured using one of the quantitative 
methods – time series decomposition. The analysis of convergence is based on 
comparison of the value of the divergence factor calculated as a sum of the 
differences between extracted values of irregular component, for two time series. 

Analysis of literature on time series decomposition

Time series decomposition is used by economics and finance researchers  
to examine different phenomena that can be described by time series. Examples 
presented by authors (Cooraj, 2008; Enders, 2003) include such time series as 
sales and/or profits of companies, production facilities outputs, various indices 
(such as retail or consumer prices indices). The application of the method  
to measuring stock markets convergence is a novelty and has not been noticed 
in the existing literature. 

Research methodology

A time series is a series of figures or values recorded over time. There  
are several components of a time series which it may be necessary to identify:

– a trend;
– seasonal variations or fluctuations;
– cyclical variations;
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– non-recurring, random variations. These may be caused by unforeseen 
circumstances, such as political events (e.g. elections, change in the government 
etc.), a war or technological changes.

The trend is the underlying long-term movement over time in the values  
of the data recorded. Basically, there are three types of trend: a downward 
trend, an upward trend and a static trend, where there is no clear movement 
up or down along the time series.

Seasonal variations are short term fluctuations in recorded values, due 
to different circumstances which affect results at different times of year  
(or of a few-years periods), on different days of the week or at different times  
of day. “Seasonal” is a term which may appear to refer to the seasons of the 
year but its meaning in time series analysis is somewhat broader (the seasons 
in question don’t have to cover the actual seasons of the year and may be shorter 
or longer, however it is safe to assume that in case of most of stock of exchange 
indices movements seasons correspond to certain seasons of the year – e.g. stock 
indices usually go up in May and December etc.)

Cyclical variations usually refer to the variations of the frequency higher than 
1 year. As an example, we can bring the data on employment using quarterly 
data. For stock exchanges indices such variations are hard to identify and are 
not meaningful within the long timespan selected for research. Therefore, from 
now on, we will exclude any reference to this component.

In practice, a time series could incorporate all three components. For efficient 
decomposition, the three components have to be isolated. We can begin the process 
of isolating each feature by summarizing the components of a time series by 
equation 1 (Hamilton, 1994; Valkanov, 2003):

 Y = T + S + I (1)

(we have excluded the cyclical component)
where:

Y – the actual time series,
T – the trend series,
S – the seasonal component,
I – the irregular (random) component. 

The alternative method is to use the multiplicative model whereby each 
actual figure is expressed as a proportion of the trend. Sometimes this method 
is called the proportional model. This model summarises a time series as  
Y = T ∙ S ∙ I. Please note that the trend component will be the same whichever 
model is used but the values of the seasonal and residual components will vary 
according to the model being applied. For the purpose of our study we will use 
the additive model described previously. 
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The first step of the time series decomposition is isolating the trend. There 
are three principal methods of finding a trend. The trend line can be drawn by 
eye on a graph in such a way that it appears to lie evenly between the recorded 
points, that is, a line of best fit drawn by eye. Alternatively, a statistical technique 
known as linear regression by the least squares’ method can be used to calculate 
a line of best fit. However, the most frequently used method is a technique known 
as moving averages. This method attempts to remove seasonal variations from 
actual data by a process of averaging in order to produce trend values. The 
methods described above are useful for finding a linear trend. There are also 
different types of trend such as polynomial, logarithmic or exponential, for which 
different methods of decomposition are used such as exponential smoothing or 
other, but their usage is outside of the scope of this study.

A simple moving average is an average of the results of a fixed number  
of periods. Since it is an average of several time periods it is related to the mid-
point of the overall period. In order to calculate the simple moving average,  
we can use the formula 2 (Frątczak, 2015; Frątczak & Korczyński, 2013):

 𝑋𝑋𝑡𝑡 = 1
2𝑞𝑞 + 1 ∑ 𝑥𝑥𝑡𝑡+𝑟𝑟,

𝑞𝑞

𝑟𝑟=−𝑞𝑞
      (t = q + 1, q + 2, …, n – q) (2)

where:
Xt – moving average,
xi – next value from time series,
q – a natural number, representing fixed, odd number of periods, divided 

by 2 and rounded down, 
t – moving average counter, 

The formula presented above concerns a case when moving averages are taken 
of the results in an odd number of time periods, and the average is related to the 
mid-point of the overall period. If a moving average were taken of the results in 
an even number of time periods, the basic technique would be the same, but the 
mid-point of the overall period would not relate to a single period. The trend line 
average figures need to relate to a particular time period, otherwise, seasonal 
variations cannot be calculated. To overcome this difficulty, we take a moving 
average of the moving average (we repeat the process). For measuring capital 
market convergence periods equal to calendar months have been taken.

Once a trend has been established, by whatever method, we can find the 
seasonal variations. The additive model for time series analysis is Y = T + S + I.  
We can therefore write Y – T = S + I. In other words, if we deduct the trend 
series from the actual series, we will be left with the seasonal and irregular 
(residual) components of the time series.

In order to identify the irregular (residual) component, we have to calculate 
the average values of the sums of S and I components for every month of the 
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cycle (we assume that the full cycle lasts 12 calendar months). Then we have 
to deduct from the sums the seasonal component alone. In order to calculate 
the seasonal component alone, first we calculate the sums of the S + I values 
for every calendar month over the whole period and divide by the number  
of the cycles in the whole period (years in the period examined) to arrive at 
the average value for each month. One more step is necessary in case the sum  
of the calculated seasonal component does not total to zero. We divide the excess 
by the number of months in the cycle and deduct the result from the sums  
of S and I components for each month of the cycle to arrive at adjusted seasonal 
component. After deduction of the values of the adjusted seasonal component 
from the S + I values, we are left with the irregular (residual) component alone. 
(Cooraj, 2008; Enders, 2003). Time series decomposition can be used for making 
forecasts (Peck & Devore, 2012; Jóźwiak & Podgórski, 2000). These can be 
made as follows:

– trend line is found by calculating the moving averages and the trend line 
values are plotted on the graph;

– the trend line is extended so that readings for points in time outside of time 
covered by the original data can be taken. This method is known as extrapolation;

– the readings found using the extrapolated trend line are adjusted by the 
average seasonal variation applicable to the future period. 

Alternatively, time series decomposition can be used for measuring the 
convergence of two (or more) time series. For such exercise we use the irregular 
component alone. A good example can be measuring the convergence of capital 
markets stock price indices. In order to compare the irregular component for 
different stock exchanges we need to standardize these values first (deduct 
the arithmetic mean and divide by the standard deviation). As the movements 
of the irregular component of the stock price indices is a measure of reaction  
of the stock exchanges to various political or macroeconomic events, we can 
assume that these are also a measure of the stock markets convergence for the 
different markets. In order to measure the convergence of capital markets the 
values of standardized irregular component need to be compared in months where 
this component is higher than 1 or lower than -1 and the difference in the pairs 
of the component values for the stock exchanges selected need to be computed. 
Then the sum of the absolute values of the differences needs to be calculated 
and compared between selected pairs (or sets in case we compare more than  
2 time series). As a result, we can determine that the sets with larger value 
of the sum of the differences are less convergent than the sets with a smaller 
value of the sum of the differences, so we can call the sum of the differences  
a divergence factor. The formula for the divergence factor is as follows 3:

 D = ∑|𝑑𝑑𝑛𝑛|
𝑛𝑛

1
  (3)
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where:
D – divergence factor,
n – number of months where the values of standardized irregular 

component is higher than 1 or lower than -1,
|𝑑𝑑𝑛𝑛|  – the absolute value of the n-th difference between the 2 markets’ 

irregular components in cases described above.

Description of the research results

To illustrate the usage of this technique, the convergence of 2 capital markets 
has been measured (in 2 examples). Selected pairs of capital markets were 
NYSE market and BSE market in India and NYSE market and SSE market 

Table 1
Sums of the differences between NYSE/BSE and NYSE/SSE irregular components of the indices 

and the convergence factors

Month
Diff BSE/

NYSE Month
Diff BSE/

NYSE Month
Diff SSE/

NYSE Month
Diff SSE/

NYSE
08.2007 1.1291 05.2010 0.1537 08.2007 2.3091 03.2010 1.0592
09.2007 1.3802 06.2010 1.772 09.2007 1.6536 05.2010 0.2759
10.2007 0.2823 08.2010 1.5631 10.2007 1.958 06.2010 0.2893
11.2007 2.4587 09.2010 1.2008 12.2007 2.047 08.2010 1.5631
12.2007 3.9615 10.2010 1.4286 03.2008 0.3793 01.2011 1.1154
01.2008 1.1083 12.2010 1.1605 05.2008 1.9195 02.2011 1.4633
02.2008 1.1561 01.2011 1.1154 06.2008 1.2432 04.2011 1.1337
03.2008 1.0363 02.2011 1.4633 07.2008 1.269 08.2011 1.006
05.2008 1.9195 04.2011 1.1337 08.2008 2.3829 09.2011 2.5914
06.2008 2.3351 08.2011 1.006 09.2008 1.3338 02.2012 1.2615
07.2008 1.269 09.2011 1.466 10.2008 0.0623 05.2012 1.6724
08.2008 1.041 11.2011 1.3488 11.2008 0.9775 04.2014 1.0669
09.2008 1.3338 12.2011 1.8556 12.2008 0.338 05.2014 1.1288
10.2008 0.4343 02.2012 0.2315 01.2009 1.7977 04.2015 2.6079
11.2008 0.1931 05.2012 0.276 02.2009 3.1237 05.2015 3.2402
12.2008 0.0709 07.2012 1.1511 03.2009 2.3345 06.2015 2.4254
01.2009 0.1298 01.2013 1.0914 04.2009 1.4855 08.2015 1.0914
02.2009 1.2003 07.2013 1.0034 07.2009 1.8391 09.2015 0.196
03.2009 0.6034 08.2013 1.6257 09.2009 1.2947 01.2016 0.2649
04.2009 0.2497 02.2015 1.293 06.2016 0.0716
05.2009 1.0877 09.2015 1.1619 55.273
09.2009 1.2947 01.2016 1.0095
03.2010 1.0592 02.2016 0.2029

52.448

Source: own computation on the basis of data from WFE website.
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in China and a period between July 2007 and April 2016 has been chosen.  
The indices selected were NYSE Composite (for the NYSE market), S&P BSE 500  
(for the Indian market) and SSE Composite (for the Chinese market).  
The irregular components for these markets in these periods have been isolated 
and standardized. The differences between the irregular components for the 
markets concerned (in case the standardized irregular component is higher 
than 1 or lower than -1) and their sums are presented in Table 1. The irregular 
components for these markets are presented in Figures 1 and 2. 

The interpretation of the research results

Calculated divergence factor amounts to 52,448 for NYSE/BSE pair and 55,273 
for NYSE/SSE pair, so the factor is bigger for the NYSE/SSE pair than for the 
NYSE/BSE pair. Therefore, BSE is more convergent with NYSE than SSE in 
the period examined (the bigger the divergence factor, the lower the convergence).

Conclusions

This paper tried to shed light on time series decomposition which can be used 
for the measuring and comparison of the extent of the convergence of two or more 
time series (by using the divergence factors). A practical application of this method 
has been demonstrated using the example of time series consisting of the values 
of various selected stock market indices. Using the examples of the pairs of stock 
market indices (NYSE vs BSE and NYSE vs SSE) their convergence has been 
measured and compared using this method. The final conclusion was that NYSE 
in the period examined is more convergent with BSE than with SSE, since the 
divergence factor NYSE-BSE is lower than the divergence factor NYSE-SSE.

The empirical model developed above can be improved and extended  
in multiple ways. First of all, a larger dataset could be used to check whether the 
conclusions reached here remain valid or not. Second, alternative models might 
be used (instead of time series analysis) to study the long-run dynamics of price 
formation. It is worth to note that convergence (or divergence) can be measured 
using other quantitative methods, such as calculation of the correlation coefficients 
or one-way analysis of variance (one-way ANOVA). What cannot be provided 
by the alternative methods is the measurement of the impact of unexpected 
events on the data described by given time series (e.g. the impact of political  
or macroeconomic events on the capital market indices). These extensions are 
left for the future research.

Translated by the Author
Proofreading by Robert Patterson
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