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ABSTRACT

Aim
This study has two main aims – to present the statistical power of a test and to discuss the 
main problems in analyses of a test’s power with the use of a new-old tool. The applied tool 
is new because it marks a recent addition to a researcher’s standard toolbox, but it is old 
because has been long recognized in statistics. The technical aspects of a power analysis 
in relation to the p-value were also discussed. 

Hypotheses
The power analysis and statistical significance are concepts that originate from two dif-
ferent approaches to null hypothesis statistical testing (NHST). The lack of conformity 
between different approaches to the NHST paradigm creates problems in the interpreta-
tion of test results. 

Conclusions
The required sample size can be determined in a power analysis, but the results of a pow-
er test are not easy to interpret. There are no clear rules for interpreting a statistically 
non-significant result in a high-powered test or a significant result in a low-powered test. 
A test’s power does not confirm the statistically significant result, nor does it disprove the 
null hypothesis when the result is not statistically significant. 
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In quantitative research, the number of observations (sample size) is regarded 
as a standard concern. Despite the above, the size of a population sample had 
been largely disregarded by researchers for many years. The size of a popula-
tion sample consisted of as many people as could be solicited for a study. This 
attitude changed with the onset of the replication crisis (Ioannidis, 2005) which 
raised concerns about the credibility of research findings disseminated in the 
literature. 

Science is based on replication. If the results of an original research study 
cannot be replicated, such findings are likely to be artifacts or overestimations. 
This was the case with the facial feedback hypothesis (Strack, Martin, Stepper, 
1988) which postulated that subjects experienced a subjective increase in happi-
ness when they stretched zygomaticus muscles in the pen-in-mouth test. This hy-
pothesis was based on research results that could not be replicated (Wagenmak-
ers et al. 2016). Similar observations were made in a study which investigated 
the cognitive ability of subjects who were asked to read text printed in a disfluent 
font. The original study demonstrated that students made fewer errors when 
presented with text printed in a hard-to-read font. However, the results of this 
experiment could not be replicated either (Meyer et al., 2015; Sirota et al., 2020). 
This is not the only study where the original findings were more promising than 
their replicates (cf. Klein et al., 2014).

It is generally believed that a negligent attitude towards sample size was one 
of the causes of the replication crisis. According to some researchers, the power 
analysis can offer a solution to this problem (Cumming, 2011; Murphy, Myors 
and Wolach, 2014). The power analysis is not a new concept, but it has gained 
popularity only in recent years, and it continues to generate new problems and 
challenges. Statistical significance and a test’ power have been and will be used 
simultaneously to interpret the results. This article deals with a  test’ power, 
its implications in statistical analyses, and the interpretation of significant and 
non-significant results in tests with low or high power. 

DEFINITIONS OF STATISTICAL POWER

The new tool can generate problems due to absence of a cohesive definition of 
a test’s statistical power. Various definitions have been proposed in the litera-
ture. According to the authors of this concept, the power of a test is the ability to 
avoid type II errors (Neyman, 1977). Other authors, in particular in medical re-
search, have argued that a high-powered test decreases the probability of a false 
negative result. In turn, Cohen (1988, p. 1) defined a test’s power as the proba-
bility of obtaining a statistically significant result. 

The first definition is based on the concepts developed by Neyman and Pear-
son, and readers who are unfamiliar with this approach risk interpreting igno-
tum per ignotum (the unknown by the more unknown). The second definition 
draws an analogy between a statistical test and a medical test, but it offers an 
intuitive explanation for readers who are not well versed in statistics. The third 
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definition is clearly worded, but it has a flaw that is difficult to eliminate (Mayo, 
2018, p. 324). This definition prevents a correct interpretation of research re-
sults. Revisiting statistical hypothesis testing in psychology sheds light on this 
flaw and its consequences, and it will be discussed in detail in the next section. 
These concepts will be reviewed to provide the reader with a better understand-
ing of the role played by power analysis in the existing set of statistical tech-
niques. 

Statistical power and statistical significance

Let us begin by making a simple observation that a scientist conducting empiri-
cal research has to expect variation in the results of the experiment. This implies 
that even a correctly built model containing several variables cannot be used to 
construct the deterministic equation in the form of y = f(x) that is known from 
chemistry or physics. A psychologist cannot claim that each person who experi-
ences frustration will eventually become aggressive.

Psychologists rely on the null hypothesis significance testing (NHST) proce-
dure to analyze their results (Wolski, 2017, Jarmakowska-Kostrzanowska, 2016; 
Gigerenzer, 2004). The NHST concept has evolved from two distinct approaches: 
Fisher’s approach and the frequentist approach developed by Neyman and Pear-
son. Each approach proposes its own concepts and, more importantly, methods 
of interpreting the results. Despite many differences, both approaches concede 
that hypotheses are not verified by directly viewing data in a spreadsheet, but by 
transforming data with the use of a test statistic. Since data are random, the re-
sults of a test statistic are also random. The probability distribution of the results 
has to be inferred to draw conclusions about the underlying population. Certain 
assumptions regarding the tested hypotheses have to be made. If we assume that 
the null hypothesis is true and there is no relationship between the variables, 
the distribution of the test statistic is known. For example, Student’s t-test has 
n-1 degrees of freedom on the assumption that there are no differences between 
groups (n is the number of observations). 

The one sample t-test will be used in this article for the purpose of simplicity. 
This test is typically applied to determine whether the sample mean is consistent 
with the theoretical value, for example, whether systolic pressure meets the ideal 
value of 120 Hg. 

In Figure 1 (p. 180), the curves presented in both panels represent the Stu-
dent’s t-distribution for a population of n = 50 when the null hypothesis is true. 
The curves differ in the way t-distribution is interpreted in the discussed statisti-
cal approaches. The t-distribution in Neyman’s approach is presented on the left, 
and the t-distribution in Fisher’s approach is presented on the right. In the first 
approach, where the alternative hypothesis is regarded as the opposite of the null 
hypothesis, a researcher preexperimentally sets the cutoff point of errors when 
he/she thinks that he/she discovers some effect, whereas in reality it does not 
exists. This is known as a type I error, where a true null hypothesis postulating 
the absence of a relationship is incorrectly rejected. 



180 LILIANNA JARMAKOWSKA-KOSTRZANOWSKA

The error rate should not exceed 5%, and the critical value of the test statis-
tic is marked with a dashed line. For n = 50 observations, the critical value of the 
test statistic is rounded off to 1.68. When this value is higher, the null hypothesis 
is rejected in favor of the alternative hypothesis. In itself, the value of the test 
statistic (represented by the black dot) is not important, what is important is 
whether the test statistic is localized in the gray-shaded area. This is why Ney-
man’s approach is referred to as the fixed-alpha approach (Huberty, 1993). The 
probability of a type I error is not presented on the right side of Figure 1 because 
this concept does not exist in Fisher’s approach. In this case, the value of the 
test statistic (represented by the black dot) plays a very important role because 
it is used to calculate the p-value, i.e. the area to the right of the black dot. If the 
gray-shaded area accounts for less than 5% of the area under the curve, the value 
of the test statistic is statistically significant. For this reason, Fisher’s approach 
is referred to as the p-value approach (Huberty, 1993). 

The choice of a specific approach does not play a role until the value of the 
test statistic is calculated. From the user’s point of view, these approaches are 
indistinguishable: they rely on the same test statistics, similar terminology and 
reference values of statistical tools2.

The reason why researchers tend to interpret Fisher’s significance level as 
Neyman’s type I error (Hubbard and Bayarri, 2003) becomes apparent when both 
t-distribution curves are overlaid. The question that remains to be answered is 

2  The significance level in Fisher’s approach and a type I error in Neyman’s approach 
both equal 5% .

Figure 1. Test statistic and t-distribution in the 
frequentist approach and Fisher’s approach.

Note: The frequentist approach is presented on the left. The probability of a type I error is deter-
mined before the analysis, and it marks the region where the test statistic is rejected (gray area 
under the curve marked with a dashed line), regardless of location of the black dot representing the 
obtained value. Fisher’s approach is presented on the right. The position of the test statistic (black 
dot) is important because it is used to calculate the p-value. Source: own elaboration.
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whether a similar error can be made the other way around based on Cohen’s ar-
gument that a type II error is inversely related to the significance level. 

Let us go back to the left panel in Figure 1. A type II error (and the pow-
er of a statistical test) is an important element of Neyman-Pearson’s approach. 
A type II error occurs when the researcher incorrectly assumes that there is no 
effect whereas it exists in the population and incorrectly rejects the true alterna-
tive hypothesis. This is a key concept in Neyman’s approach, but it is not repre-
sented by any elements in Figure 1. So how is a type II error calculated? A curve 
illustrating the probability of t-distribution, which corresponds to the true alter-
native hypothesis, is also missing in Figure 1. 

Every test statistic has two distributions, one of which applies when the null 
hypothesis is true, and other – when the alternative hypothesis is true. To plot 
a curve for the second distribution, a noncentrality parameter has to be intro-
duced to the probability distribution. Researchers who rely solely on the NHST 
paradigm are not familiar with concepts such as the noncentrality parameter, 
type II error or the power of a statistical test. The noncentrality parameter does 
not have to be introduced to a probability distribution curve for testing the null 
hypothesis. 

The noncentrality parameter is a value that determines the shape of the 
entire curve (Kelley, 2013), and it is dependent on other values, including the 
number of observations and the value postulated by the alternative hypothe-
sis. The number of observations is a  parameter with a  specific value, where-
as the alternative hypothesis in NHST is usually non-specific (e.g. H1: μ ≠ 0 or 
H1: μ > μ1 or H1: μ1 ≠ μ2). As a result, a single curve is unlikely to represent the 
entire range of values that meet the statement of inequality in the alternative 
hypothesis. Therefore, the proposed parameter should have a specific form, for 
example H1: μ = 0.2 or H1: μ1 – μ2 = 0.5. The second curve, known as the t-distri-
bution curve for the true alternative hypothesis, can be plotted only when the 
noncentrality parameter is a specific value. The use of a specific value of a de-
sired parameter, referred to as a point value in mathematical terminology, has 
important implications in a power analysis. The researcher is faced with the task 
of selecting the appropriate value from the entire range of possible values. 

In the discussed example, let us examine Figure 2 on the assumption that 
H1: μ = 0.5 (an arbitrarily selected value). Figure 2 (p. 182) is a typical graphic 
representation of the relationships between classical statistical concepts – type I 
and II errors – and the relationship between power and a type II error. Type I (α) 
and type II (β) errors are not bound by a simple arithmetic dependence. Both 
fields are calculated based on different curves, and they are not summed up to 
a specific value. These fields are located on both sides of the critical value of the 
test statistic, and they are bound by a negative relationship. The higher the beta 
error, the lower the alpha error, and the higher the alpha error, the lower the 
beta error.

A simple arithmetic mapping exists between power and a type II error be-
cause it occupies an area under the same curve. This dependence represents 
power = 1 – beta. The larger the field corresponding to a type II error, the lower 
the power of a statistical test.
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The reason why the conflicting terminology in both statistical approaches 
(as indicated in Cohen’s definition of power) is technically feasible should be 
explained. Let us examine the right side of the dashed line. The values of the 
test statistic which lead to the rejection of the null hypothesis in Neyman’s ap-
proach, but are regarded as statistically significant in Fisher’s approach, are 
distributed on the horizontal axis. The curve located above these values contains 
a field denoting the probability of a result within this range of values. Therefore, 
Neyman’s power represents the probability of a statistically significant result in 
Fisher’s approach, which is consistent with Cohen’s definition of power (1988, 
p. 1). Therefore, the two approaches can be easily conflated by overlapping the 
curves which illustrate the concepts in each approach. 

Technical aspects could be disregarded – the term “significance” was also 
used by Neyman, although in his own sense. However, power and statistical 
significance are concepts that belong to different approaches. The power of a sta-
tistical test is a frequentist concept that has been developed by Neyman. It rests 
on the assumption that if a given effect exists decisions are made in a large per-
centage of experiments, but not in a single study. In turn, Fisher’s p-value does 
not require a high number of replications of the same experiment. In this case, 
a researcher decides whether to disprove null hypothesis based on the results 
of a single experiment. It could be argued that philosophical disputes should be 
left to philosophers, but the philosophical perspective is exactly what generates 
problems in the interpretation of data, for example in decisions on whether a sig-
nificant result in a high-powered test validates the alternative hypothesis. 

Conditional power

Cohen’s definition of power cited at the beginning of the article has yet another 
flaw. In Figure 1 (p. 180), the curve corresponding to type II errors cannot be 

Figure 2. The relationship between a type I error (alpha) and a type II error (beta)
Note: Distribution of the test statistic when the null hypothesis is true (first from the left) and when 
the alternative hypothesis is true (when H1: μ = 0.5; first from the right). Source: own elaboration.
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plotted without a clearly stated alternative hypothesis. In the analyzed example, 
H1: μ = 0.5. If other values were adopted, for example H1: μ = 0.2 or H1: μ = 0.7, 
the curve would have a different shape (refer to Figure 3).

Let us return to Figure 2. The researcher can control a test’s power by shift-
ing the dashed line to the left or right, which increases or decreases the value of 
a type I error. The above implies that a test’s power is also influenced by sample 
size. Therefore, power is not a property of in a statistical test itself. A test can 
have a power of 30% or 99%, depending on the number of times the researcher 
is willing to make a mistake by rejecting a true null hypothesis (probability of 
type I errors) and a true alternative hypothesis (probability of type II errors), as 
well as the size the sample and the value of the searched parameter proposed 
in the alternative hypothesis. A test has a power of 80% under highly specific 
circumstances. Cohen’s definition does not account for the conditional power of 
a specific data set.

Power analysis – significance of analysis

The number of observations, type I and type II errors, and the value postulat-
ed by the alternative hypothesis form a system of four equations with four un-
knowns. In a power analysis, the fourth variable is estimated when the values of 
the remaining three variables are known. These calculations can be performed 
with the use of free G*Power or SPSS (version 27 and higher) software tools. 

Figure 3. Changes in the shape of t-distribution curves for a true al-
ternative hypothesis with different location parameters

Note. Increasing values of parameter μ influence the distribution of the test statistic for a true al-
ternative hypothesis. The above affects not only the shape, but also the location of the distribution 
curve. Source: own elaboration.
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Let us return to Figure 2. A type II error is represented by the area under 
the distribution curve on the left side of the dashed line. This area should be as 
small as possible. To move this area to the right, the researcher controls the fac-
tors that influence the noncentrality parameter, i.e. the number of observations, 
the probability of a type I error or the value of the parameter proposed in the 
alternative hypothesis.

Effect size

The effect size is the last concept that should be explained in this discussion. In 
a power analysis, effect size replaces the direct value of the examined parame-
ter. An elaborate scientific definition of effect size was proposed by Kelley and 
Preacher (Kelley and Preacher, 2012). For the needs of this article, effect will be 
defined as a phenomenon or a relationship, and size will be defined as a measure 
of that phenomenon’s magnitude. 

A  clearly formulated alternative hypothesis is a  hypothesis that assigns 
a specific value to the expected effect size. For example, the standardized differ-
ence between two means (Cohen’s d) equals 0.5, and Pearson’s correlation coeffi-
cient (r) equals 0.7. The researcher has to select the appropriate effect size, which 
is not an easy task. Various methods have been proposed for selecting the effect 
size. Therefore, the researcher has to make an educated guess about the opti-
mal effect size in a given population based on the available data. This decision 
has important implications when interpreting the results because the effect size 
has both theoretical (calculated in the power analysis) and practical (calculated 
based on empirical data in the experiment) relevance. 

Standard threshold values of type I and type II errors in a power analysis

To calculate sample size (n) in a power analysis, the remaining three values have 
to be determined: effect size (which generates the previously discussed prob-
lems), type I error and type II error. By default, the probability of a type I error is 
5%. In psychological research, a test is conventionally set to achieve 80% power – 
as Cohen advises (Cohen, 1988). The above implies that if a given effect exists, 
a type II error will reach 20%. In other words, the researcher will make an error 
in 20% of the cases. In one of five cases, the researcher will reject a true alterna-
tive hypothesis postulating that a given effect exists in the population, and will 
incorrectly assume that the effect equals zero. 

Underpowered and overpowered studies 

Taking a point value of .80 as a desired power of a  test, studies fall into two 
categories – those with a power of less than 80% and those with a power higher 
than 80%. The first category of studies are underpowered, which implies that 
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the study has insufficient power to detect a given effect size. An underpowered 
study can be compared to a microscope which has a near focus for observing large 
objects. The microscope can be used to view a 15 cm-long earthworm, but not 
a roundworm with a length of several millimeters. 

If the conventional standard is 80% power, to what extent can a study’s pow-
er be reduced without significantly compromising the magnitude of the effect 
size? A study with 78% power is nearly as effective as a study with 80% power3. If 
a given phenomenon exists, the probability that it will be discovered is relatively 
high in both studies. However, a study with 50% power is as effective as tossing 
a coin. Thus, it is difficult to clearly set an interval around 80% of acceptable 
values. 

Studies with a  power much lower than 80% are seriously underpowered. 
Overpowered tests with a power much higher than 80% occupy the other end of 
the spectrum.

If the replication crisis was caused by studies that lacked sufficient power to 
detect the analyzed phenomenon, what risks are carried by studies with a power 
significantly higher than 80%? The power of a statistical test can be increased by 
analyzing a larger sample, but not all psychological studies involve online ques-
tionnaires. Research studies can adversely impact the tested subjects’ well-being, 
which is an ethical cost, but they can be also fraught with financial and logistic 
problems (transport of equipment). If research costs can be minimized, a study’s 
power should be maintained at 80%, and this threshold should not be exceeded. 
However, excessive power is not a problem of a statistical nature. 

INTERPRETATION OF RESULTS:  
STATISTICAL SIGNIFICANCE AND STATISTICAL POWER

For many years, statistical significance was the only tool for determining wheth-
er the null hypothesis is true or false. Power analysis is a relatively new addition 
to a statistician’s toolbox. Does additional information about a test’s power en-
able the researcher to infer the truth about the null hypothesis or the alternative 
hypothesis? If a test has 80% power and the result is statistically significant, 
the null hypothesis is highly likely to be false. By the same token, a statistically 
non-significant result in a high-powered test implies that the null hypothesis is 
true. Four scenarios can be analyzed in this case. 

Statistical significance and low statistical power

Common sense dictates that low-powered tests should produce only statistically 
non-significant results (in other words, the value of the test statistic should fall 

3  To paraphrase Cohen (Cohen, 1990), “surely, God loves 81% as much as 79%”.
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within a range that supports the null hypothesis). Such tests do not have suf-
ficient power to detect the analyzed phenomenon. However, in some cases, the 
value of the test statistic falls within a range that rejects the null hypothesis, and 
the p-value exceeds the .05 threshold. The above suggests that even a low-pow-
ered test can pick up on an effect that is present. How do we interpret a statisti-
cally significant result in a low-powered test? This question can be rephrased as 
follows: why is the null hypothesis rejected in a low-powered test? 

The following example can be analyzed to answer the above questions. For 
a Student’s t-test with power 80% and Cohen’s d of 0.1, the size of the studied 
population has to exceed n = 787. If the size of the sample is reduced to n = 50 for 
reasons of time, the test’s power is reduced to 10% (Figure 4).

The distribution curve is marked with a thin line when the null hypothesis 
is true. According to the discussed principles, a distribution is controlled by the 
noncentrality parameter when the alternative hypothesis is true. In turn, the 
noncentrality parameter corresponds to the effect size and the sample size. In 
this case, the effect size is 0.1, and the sample is small (n = 50). Therefore, when 
the alternative hypothesis is true, the entire distribution curve for the probable 
values of the test statistic is situated in the proximity (thick line) of the curve 
corresponding to the true alternative hypothesis. 

The dashed line represents the critical value of the test statistic, in this 
case 2.10 (read from the t-distribution table). In most part, the area under both 
curves is located on the left side of the dashed line, which implies that the value 
of the test statistic is less than 2.10 in most cases. However, the optimal curve 

Figure 4. Distribution of the test statistic for a true null hypothe-
sis and a true alternative hypothesis in a low-powered test.

Note: The distribution of the test statistic is marked with a thin line when the null hypothesis pos-
tulating the absence of an effect is true. The distribution curve is marked with a thick line when the 
alternative hypothesis postulating an effect size of 0.1  is true. The value of the test statistic which 
marks the beginning of the set of critical values is marked with a dashed line. Source: own elaboration.
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is difficult to select because both curves are located close to each other. The val-
ues typical of a null hypothesis are nearly as probable as the values typical of 
an alternative hypothesis. However, in some cases, the value of the test statistic 
moves to the right side of the dashed line. In both cases (true null hypothesis or 
true alternative hypothesis), these values will be less typical because they are 
located farther away from both distribution curves. In both cases, this location 
requires a test statistic with a high value. 

Which factors contribute to a high value of the test statistic? A large test 
statistic denotes a high difference between mean values and smaller variation 
in results. However, the observed distribution is not caused by real-world dif-
ferences between population means, but by variation in the results (sampling 
error). Therefore, a result is statistically significant because the effect size has 
been overestimated. Even if the researcher is right and the study reveals an ef-
fect size, rarely encountered values also can exceed the .05 threshold. However, 
researchers who consider only results that have reached statistical significance 
have to deal with a problematic side-effect known as the “winner’s curse” (Gel-
man, 2019)4. The result is statistically significant and can be published, but over-
estimation of the effect size can lead to a biased view on the phenomenon. The 
winner’s curse is thus difficult to reverse. Initially promising results cannot be 
replicated. The decline effect, namely a decrease in effects over time, is one of the 
most interesting explanations of this phenomenon. The winner’s curse affects not 
only the research team, but all those who base their knowledge on the results 
of overestimated studies or research alone. This is because they look at the phe-
nomenon through distorted lenses.

Statistical significance and high (excessive) statistical power

A statistically significant outcome in a high-powered test is a dream come true for 
every scientist. Why? Because such a result indicates that the analyzed variables 
are bound by a relationship and the statistical test is capable of picking up on an 
effect size. The researcher might think that he/she can rely on the high power of 
a statistical test to assume that the alternative hypothesis was validated. 

We will attempt to find a flaw in the assumption that a significant result 
validates the alternative hypothesis simply because the study has high pow-
er. The first counterargument is that from a purely scientific point of view, no 
single study is capable of proving the research hypothesis. The study should 

4  The power posing research conducted by Carney et al. (2010) is an example of 
a study that was probably biased due to the winner’s curse phenomenon. The authors 
argued that people can boost self-confidence simply by assuming a powerful superhero 
posture every day (cf. Ranehill et al., 2015). Science is no longer confined to the academia, 
and many people without a scientific background are promoting the results of research 
studies. For example, a popular fitness trainer has been encouraging her clients to adopt 
power pose in their daily training to feel and behave more assertively (Lewandowska, 
2018).
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be replicated to determine whether a  similar result can be obtained. Howev-
er, this argument does not address the essence of a power analysis. Let us re-
turn to the moment before the study, when the researcher has to come up with 
the anticipated effect size to calculate the required sample size. In this case, 
a vague alternative hypothesis (e.g. H1: μ ≠ 0) is replaced by a specific hypoth-
esis (e.g. H1: μ = 0.1). So what is actually confirmed by a significant result in 
a high-powered test? The absence of equality in the original alternative hypoth-
esis or the exact value of the effect size that was used in the power analysis to 
calculate the population sample? This question can be rephrased as follows: does 
a significant result in a high-powered test confirm that the effect size in a popu-
lation is exactly as planned in the power analysis? Or does it merely indicate that 
an effect, even if infinitesimal (in this case μ = 0.1), exists? This is an important 
question with no simple answer.

Let us analyze a different scenario, where a significant result is obtained 
in a study whose power considerably exceeds 80%, for example 95% or 99%. Ac-
cording to the adopted 80% benchmark of properly powered study, such a study 
is clearly overpowered. How do we interpret statistical significance in an over-
powered study? To answer this question, we need to take a closer look at the 
relationship between p-value and sample size. Such a relationship does not exist 
when the null hypothesis is true, but it is strong when the alternative hypothe-
sis is true. If the variables in the studied population are not correlated, p-value 
and effect size are independent, and an increase in population size does not af-
fect p-value. The result will not be even less significant if a larger population is 
studied. However, when a correlation exists between variables in the examined 
population, the significance of all, even trivial, effects increases with sample size. 
The fact that sample size tends to be larger in high-powered tests raises con-
cerns about overpowered studies (Utts, 2005; Brzeziński, 1997, p. 337). We will 
demonstrate that this is not a statistical paradox, but a problem in interpreting 
statistical significance in a high-powered test.

Figure 5 clearly explains why statistical significance increases with sample 
size. Let us assume that the researcher is expecting a small effect size. Figure 5 
is similar to Figure 3, but it differs in sample size. The number of observations 
increases, the location and shape of distribution curves change, and the curves 
move apart. An increase in sample size does not change the effect size in the an-
alyzed population, and the researcher still expects that Cohen’s d will equal 0.5. 

When sample size changes, the distribution of the test statistic for the alter-
native hypothesis will also change by moving away from the distribution for the 
null hypothesis. 

Distribution curves shift every time a size effect is detected in the popula-
tion, which implies that the real value of this parameter is non-zero.

It appears that the structure of classical statistical tests is the root cause of 
the described problem, i.e. a test’s statistical significance increases with a rise in 
sample size. Meanwhile, the distribution of the test statistic is changed by both 
an increase in sample size and an increase in effect size. 

The concerns associated with large samples and overpowered studies can be 
rationally justified only when statistical significance is equated with practical 
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significance. Researchers who adopt this interpretation (Goodman, 2008) will 
also have reservations about large samples. In studies with large samples, it is 
the effect size (not affected by the sample size) that is useful to assess the impor-
tance of the phenomenon.

Otherwise, collecting a large sample might be regarded as a bad solution. 

Statistical non-significance and low statistical power

The previous section demonstrated that low statistical power hinders the inter-
pretation of a statistically significant result. However, a statistically non-signif-
icant result does not resolve the researcher’s dilemma. If a study has low power, 
for example 20%, then 80% of the results will fall within the region of acceptance 
of the null hypothesis.

Figure 3 indicates that in a low-powered test, distribution curves are located 
close to one another when the null hypothesis and the alternative hypothesis are 
true. In some cases, the distance between curves is too small to infer whether the 
result is statistically significant because the null hypothesis is true and the test 
has insufficient power to identify an effect. The introduction of a large enough 
sample would overturn the argument that the result would be statistically sig-
nificant if more people were studied. 

Such results have two flaws. Firstly, statistically non-significant results are 
not published, which leads to the file drawer problem. The replication crisis is 

Figure 5. Gradual shift of noncentral distribution to the right 
despite a fixed size effect of Cohen’s d equal to 0.5

Note: An increase in sample size affects the distribution of the test statistic both when the null hy-
pothesis and the null hypothesis are true. The distribution becomes narrower for a true null hypoth-
esis, but its location does not change. The distribution for the alternative hypothesis changes in both 
shape and location solely due to the change in sample size which affects the noncentrality parameter. 
This phenomenon is responsible for the illusion that all effects (even the most trivial) are significant. 
Source: own elaboration.
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associated not only with the effects of low-powered tests, but also with a skewed 
picture of the phenomenon. The majority of published results are statistically 
significant, whereas findings that do not cross the 5% significance threshold are 
not disseminated. The above applies to statistically non-significant results in 
both low-powered and high-powered tests. 

The second problem is that some studies are doomed to have low statistical 
power and generate statistically non-significant results. In some scientific dis-
ciplines, observations are difficult to get (animal studies, studies of rare diseas-
es), and the anticipated effect size is small. The researcher is at risk of obtain-
ing a non-informative and statistically non-significant result or making a biased 
overestimate (winner’s curse). When a large population cannot be examined (be-
cause it physically does not exist), the researcher can rely on the effect size or 
non-classical statistical methods, such as Bayesian inference. 

Statistical non-significance and high statistical power

The fourth scenario combines a non-significant result (e.g. p = .32) with high sta-
tistical power (e.g. 90%). The researcher adopts the following line of reasoning: 
the study has high statistical power; therefore, it can detect the anticipated effect. 
The result is non-significant; therefore, the null hypothesis postulating the ab-
sence of an effect must be true. Thus, the conclusions that follow from statistical 
non-significance would be validated by the study’s high statistical power.

The power of a statistical test can be easily confused with the sensitivity of 
a medical test. However, a statistical test is governed by different principles than 
a medical test. To fully understand the implications of a non-significant result, 
we have to go back to the moment when the researcher estimates the effect size for 
a power analysis. The researcher can never be certain that the effect size has been 
estimated correctly for a given population. It can be overestimated and assume 
a too high value. Let us assume that the effect size is 0.57 seconds. This value is 
unknown to the researcher. The researcher expects the effect size to be 1 second. 
In a power analysis, instead of including more subjects in the study, the researcher 
will decrease the size of the studied population to match the overestimated effect 
size. In other words, while looking for a splinter, the study has sufficient resolu-
tion to identify a wooden beam. The above will increase the probability of a type 
II error; the test will no longer have 80% power, and the third scenario will apply.

SUMMARY

The replication crisis is an ongoing methodological crisis that affects all fields 
of science. The power analysis was introduced to overcome these problems. The 
popularity of the power analysis is also on the rise because researchers are in-
creasingly often expected to justify the size of the collected samples in published 
articles. A  correctly performed power analysis has to be conducted before the 
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study (Nakagawa, Foster, 2004). Sample size must be considered when interpret-
ing the significance of the results. However, statistical significance and power 
analysis are two separate problems. Statistical significance measures the extent 
to which the data fit the null hypothesis (Wasserstein, Lazar, 2016). In turn, the 
power analysis is conducted to control the probability of making a type II error 
in the long-term perspective (Neyman, 1977). The power analysis belongs to the 
frequentist paradigm. In the long-term, the researcher can only control the in-
correct rejection of a true alternative hypothesis; therefore, he or she is unable 
to determine whether the result is erroneous.

Significant or non-significant results are difficult to interpret in studies with 
small or large effect sizes. Four scenarios were analyzed in this article, but none 
of them provides unambiguous instructions for interpreting the results. Similar-
ly to interpretations of statistical significance based on the probability of a type I 
error (Hubbard and Bayarri, 2003), the formulation of conclusions about the 
truth of a null hypothesis based on the p-value and the probability of a type II 
error is yet another attempt to integrate incompatible statistical approaches.
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