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Abstract 

The main goal of basic research is to answer causal questions. Generally, only the statisti-
cal part of this process tends to proceed in a partially formal way and according to clearly 
defined rules. At the same time, causal relations are often treated informally or implicitly 
in a way that is prone to difficult-to-detect errors. This introduction aims to show psy-
chology researchers some of the great benefits of approaching causal issues using a for-
mal theory of causal inference. In this part, I discuss the non-obvious status and role of 
causal and statistical assumptions in causal inference. After covering, in a simple setting, 
the general shape of inference from causal assumptions, statistical assumptions, and data 
to causal effects, I outline, from a contemporary perspective, the limits of applicability of 
the general linear model. Then, I introduce the formal part of Pearl’s theory that relies 
on graphs. Using these tools, I show how one can analyze and interpret the results of an 
experiment on short-term memory search, and I discuss the back-door and front-door ad-
justments. To present the mathematical part of the theory in an accessible way without 
overly simplifying it, I illustrate some issues by using simulations written in R.
Keywords: causality,· causal inference, causal calculus, research methods, metatheory, sta-
tistical inference, Bayesian inference

The main goal of this introduction is to convince psychologists who conduct 
or rely on the results of scientific research that they should not ignore causal 
inference theory. This is because its theorems, deduced from axioms expressing 
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elementary intuitions about causality, are of great importance to the entire field 
of psychological methods.

I have tried to make this introduction accessible to readers with little math-
ematical training. However, I could not entirely avoid mathematics because 
the theory of causal inference that I describe here is mathematical, which makes 
the level of difficulty of what follows quite variable. My experiences in teaching 
the basics led me to appreciate the didactic usefulness of computer simulations. 
Nowadays, many psychologists can create and alter such simulations, and doing 
so facilitates familiarity with the essential concepts before mastering the techni-
cal definitions, which, for many, does not come quickly. This should also make it 
easier for readers not accustomed to manipulating expressions denoting proba-
bility distributions to gain some understanding of the mathematical part of this 
text and, consequently, to engage with the literature on the subject, where such 
expressions are common.

I rely on Pearl’s Structural Causal Model (SCM, see Pearl, 2000; Pearl et al., 
2016; Pearl & Mackenzie, 2021) and the associated calculus, i.e., the do-calculus. 
The most important alternative theory of similar status is Neyman and Rubin’s 
Potential Outcomes framework (Rubin, 2005), which I do not discuss because 
the axioms of one theory follow from the axioms of the other, and vice versa (Gal-
les & Pearl, 1998). Not only does Pearl’s version seem to be under more intensive 
development and it is arguably easier to use, but also – and more importantly 
for my purposes – it seems to be more readily applicable in psychology thanks to 
the fact that not everything in it needs to be defined using counterfactual notions.

The way I explain the basics is, I hope, mostly standard. Still, it differs 
somewhat from how Pearl’s theory is presented in the popular science “The Book 
of Why” (Pearl & Mackenzie, 2021), in “Causal Inference in Statistics: A Prim-
er” (Pearl et al., 2016), which is a comprehensive textbook for beginners or in-
termediate learners, or in the relatively challenging “Causality” (Pearl, 2000). 
I try to be consistently explicit about the fact that, by default, causal relations 
represented by graphs indicate theoretical possibilities. I repeatedly emphasize 
that, typically, most causal assumptions are not testable. I dedicate some space 
to the role of statistical assumptions and the statistical methods most commonly 
used by psychologists. I discuss examples of psychological research, including 
one in some detail. Last but not least, I also refer to the two most popular Polish 
handbooks on statistics and research methods written for psychologists. To min-
imize the risk of misunderstanding, I liberally use emphasis by writing words or 
phrases using italics. I would like to think that thanks to all this, what follows 
may be tailored to the needs of the intended readers.

“Correlation Is Not Causation”

Let’s begin by considering the correlation between yearly income (𝑋) and life 
satisfaction (𝑌). Unlike self-reported life satisfaction, actual life satisfaction is 
not directly observable, but at this point, for simplicity, I will ignore this problem. 
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We cannot demand that non-trivial empirical statements that appear as steps 
in scientific reasoning or as assumptions of scientific theories be certainly true 
since empirical statements are not mathematical statements. However, we should 
typically require such statements to be empirically or theoretically justified. Claim-
ing that there is a direct causal effect based on correlation alone is entirely unjus-
tified. It’s not surprising then that researchers widely view this mistake as serious 
as well as elementary. And yet, a closer analysis shows that it is far from obvious 
precisely when and in what sense correlation does not imply causation.

In the ongoing example, we have two types of assumptions. Some are related 
to the design of the study:

1.1 𝑋 is observed.
1.2 𝑌 is observed.

… and some are related to statistical analysis and its results:
1.3 𝑋 and 𝑌 are positively correlated. 

There is also the candidate conclusion:
1.4 𝑋 has a causal effect on 𝑌.
Given only premises 1.1–1.3, the conclusion (1.4) that 𝑋 influences 𝑌 is not jus-

tified, although this does not mean it is untrue. The observed statistical dependence 
(here, a correlation) may result, perhaps entirely, from the causal effect of some 
third variable on 𝑋 and 𝑌, or from the “reverse” influence of 𝑌 on 𝑋; assumptions 
1.1–1.3 do not exclude these two alternative causal explanations. Suppose we intro-
duced some theoretical or empirical arguments that are independent of the study 
and its results and that justify the causal conclusion. In that case, the conclusion 
would be justified based on these independent arguments, but it would still not be 
justified at all as a conclusion of the study. From the perspective of a critical reader, 
such a conclusion as a conclusion of the study would be pulled out of thin air.

Statistical inference is applied probability calculus, which is a theory of dis-
tributions, i.e., of relative frequencies of or subjective confidence in the occur-
rence of possible events or outcomes when the data-generating process is fixed. 
When we talk about causation, we must consider, within the same model, dif-
ferent possible data-generating processes, not just the probabilities of various 
events. Therefore, just as we cannot justify statistical claims without first in-
troducing statistical assumptions, justifying causal claims requires introducing 
causal assumptions.

As far as causality is concerned, in this case it is important that 𝑋 is ob-
served but not randomly assigned. However, this property cannot be expressed in 
the language of statistics because it has nothing to do with how often the possible 
values of 𝑋may occur. Such assumptions about the properties of study design are 
important because they may help eliminate alternative causal explanations of 
the observed statistical effects. The minimal logically correct version of the rea-
soning under consideration must then look something like this:

2.1 𝑌 does not have a causal effect on 𝑋.
2.2 𝑋 and 𝑌 do not have common causes.
2.3 and 𝑌 are correlated.

Therefore:
2.4 𝑋 has a causal effect on 𝑌.
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Assumption 2.3 is the only statistical assumption (it is also a conclusion from 
the data and the omitted statistical assumptions), while assumptions 2.1–2.2 are 
causal. Assumptions 2.1 and 2.2 will be justified when 𝑋 is randomly assigned, for 
instance. In such a case, no variable other than the randomization device or pro-
cess will have a causal effect on 𝑋, and this will make assumptions 2.1 and 2.2 true.

In reasoning 2.1–2.4, we implicitly rely on the meta-assumption to the effect 
that statistical dependence, unless it is merely a result of sampling error, has to 
have some causal or structural origin. In this sense, causation does follow from 
a nonzero correlation, but correlation alone is not enough to determine the direc-
tion of causality. Even when the observed correlation is an artifact, this artifact 
must also arise from the causal structure of the data-generating process. That is 
why the assumption that 𝑋 may influence 𝑌 does not have to appear in the cor-
rect version of the reasoning; introducing this quasi-assumption would perhaps 
increase readability, but, given the meta-assumption, it would be unnecessary. 
That is, as long as the expression “may cause” means that it may or may not, i.e., 
that we do not make a claim either way.

The meta-assumption regarding the nonexistence of “accidental” statistical 
dependencies in the population can perhaps be replaced by a weaker version like 
“a statistical dependence in the population may arise from invariant causal rela-
tions between variables, or it may be accidental.”2 In practice, it doesn’t seem to 
matter, as we can never be certain that a statistical effect is accidental in this sense.

Let’s then imagine that 𝑋was randomized. In that case, the assumptions re-
garding the absence of a direct causal effect of 𝑌 on 𝑋 and the absence of any com-
mon causes would be justified based on the assumption of randomization, which 
is a known property of study design. Simultaneously, none of the justified causal 
assumptions, which are precisely assumptions regarding the absence of certain 
causal effects, would be testable in this situation. Even in this simple example, 
we can then see that a causal model can be simultaneously justified, useful, and 
non-testable based on the results of the study it’s meant to describe.

Some Remarks on Linear Regression

One of my goals when writing this section was to clarify certain issues re-
lated to statistical models commonly used in psychology that a reader who may 

2 The definition of statistical dependence does not require it to result from any causal 
relation. Therefore, statistical dependence can be accidental in at least two senses: due 
to sampling error, it may only appear that the dependence exists in the distribution or 
the population, or the dependence may actually occur in the population but only due to 
some random coincidence, e.g., because the population is finite and it just so happens that 
the values of a particular variable do not have the same distribution for every value of 
some other variable(s). We can be faced with this latter possibility, however, only if we are 
concerned with a particular population at a particular moment in time rather than an in-
variant, abstract data-generating process.
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have learned about them from “Statystyczny drogowskaz” [A statistical signpost] 
(Bedyńska et al., 2012) or “Metodologia badań psychologicznych” [Methodology 
of psychology research] (Brzeziński, 2022), might be confused about. Since our 
first example involves correlation, the conclusion relies in part on the use of lin-
ear regression, which is a statistical model that has the following general form:

𝑌 =  𝛼0 + 𝛼1𝑋1 + … + 𝛼𝑛𝑋𝑛 + 𝜖

where 𝑌 is the dependent variable, 𝑋𝑖 are predictors or independent variables, 
𝛼𝑖 are regression coefficients, and 𝜖 is the regression error, which is assumed to 
have a normal distribution, with mean 0 and standard deviation 𝜎. Greek letters 
represent free parameters, i.e., quantities that are usually unknown but can, in 
principle, be estimated from data. The expression on the right-hand side, exclud-
ing 𝜖, is the systematic part describing the expected value (or mean) of the distri-
bution of 𝑌 as a function of the predictors.

I’m using contemporary terminology, according to which a regression mod-
el – whether linear or not – is any statistical model describing a conditional 
distribution. In this case, it is a model of the conditional distribution of 𝑌. This 
distribution, which we can denote concisely as 𝑝(𝑌 |𝑋1,…,𝑋𝑛), is defined as a func-
tion of the variables 𝑋𝑖 , and as far as this distribution is concerned, all the 𝑋𝑖 s 
are treated as known constants. ANOVA3 models are then also regression models 
because they describe (a property of) the distribution of the dependent variable 
as a function of some (nominal) variables.

The correlation coefficient mentioned earlier is equal to the slope of the re-
gression line if both the (only) predictor and the dependent variable have stand-
ard deviations of 1, which can be arranged by dividing the two variables by their 
respective standard deviations. If we subtract from the observed values of 𝑌 
the values implied by the systematic part of the fitted model, we obtain the re-
siduals; these resemble the regression errors, but since the model is only estimat-
ed – not known – they are not the same as regression errors.

Contrary to what the authors of the two mentioned handbooks seem to at 
least suggest, this regression is linear not because it can describe only straight 
lines or planes but because it is linear in the parameters. For example, the model 
𝑌 =  𝑋𝛼 + 𝜖 is nonlinear (in the parameters), but 𝑌 =  𝛼 sin2(𝑋)  + 𝜖, where sin2(𝑋) 
is just a transformed independent variable, is simultaneously curvilinear (with 
respect to 𝑋) and linear (in the parameters) because by denoting sin2(𝑋)  as 𝑍, 
we can equivalently represent this latter model as 𝑌 =  𝛼0 + 𝛼1𝑍1 + 𝜖, thus meet-
ing the requirements of the definition of linear regression.

In psychological research, the assumptions of linear regression are never 
jointly true because they cannot possibly be. The observable variables studied 
by psychologists are typically discrete and bounded from below and from above. 

3 Brzeziński (2022) maintains that ANOVA models are suitable for analyzing results 
from experimental studies, while regression models, in his opinion, are suitable for ana-
lyzing results from observational studies, which he refers to as studies “corresponding to 
the correlational model.”
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Even when an observed variable of interest to psychology is continuous, it is 
at least bounded from one side, e.g., reaction time is always positive. Regres-
sion errors cannot then have a normal distribution because every normal dis-
tribution is continuous and unbounded. No transformation will guarantee that 
the distribution of regression errors is normal even when the dependent variable 
is continuous. For such a transformation to be known, the actual distribution 
of the residuals would also have to be known, but we do not know much about 
the distributions of the observable continuous variables studied in psychology. 
Hence, testing if the distribution of residuals deviates from normality, which is 
a practice recommended in the two aforementioned handbooks, does not make 
much sense. This kind of test is not only useless as a normality test in psycholog-
ical research, but it is also not a good indicator of the extent to which violation 
of the normality assumption justifies using alternative methods. The interested 
reader can learn more about all this from contemporary handbooks on robust 
statistical methods (e.g., Wilcox, 2011), i.e., methods that were designed to work 
under conditions where statistical model assumptions are not true. Such meth-
ods are modern alternatives to the classical nonparametric methods that are rec-
ommended by the authors of the two aforementioned handbooks and that were 
invented before any theory of robust statistics was proposed.

Point estimates of regression coefficients are often obtained using the meth-
od of ordinary least squares (OLS). Importantly, OLS estimates of linear regres-
sion coefficients have a descriptive sense even when the assumptions of linear 
regression are f a l s e. This universal descriptive usefulness reflects the fact that 
OLS estimates of linear regression coefficients always correspond to the orthog-
onal projection of the dependent variable vector onto the linear plane spanned 
by the predictor vectors4. For instance, the OLS sample estimate of the intercept 
and slope is an unbiased estimate of the line that minimizes the mean square er-
ror. This is true regardless of whether the error distribution is normal (which it 
never is in psychology) and has constant variance (which it probably doesn’t) or 
whether the data are independent given the model (often, it cannot be known that 
they are; see, e.g., Greenland, 2022), or whether the systematic part of the true 
relationship is best described by a linear equation (it probably isn’t) or the linear 
(in the parameters) effects exist only “virtually” as “trends.” Therefore, one can 
always say that correlation represents the degree of linear covariation, although 
it is rarely, if ever, correct to say that correlation represents the degree of covar-
iation. Similarly, the sample mean is always an unbiased estimate of the mean 
of the distribution from which the sample was drawn because of the linearity of 
the expected value operator. Lack of bias means that the estimates obtained in 
a hypothetical infinite series of replications of the same sampling process should 
be equal, on average, to what is supposed to be estimated. So, in a sense, an un-
biased estimate estimates what it is supposed to.

4 If we also consider as a predictor the constant vector corresponding to the intercept 
term when this term is present in the model formula. An excellent introduction to linear 
models viewed geometrically can be found in Saville and Wood (2012).
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The Central Limit Theorem implies that, in a wide range of situations, 
the distribution of a weighted sum of random variables that do not necessarily 
have identical distributions will approach a normal distribution in the limit as 
the number of summed variables increases. OLS point estimates of linear regres-
sion coefficients are weighted sums of random variables. It follows that, regard-
less of whether the linear regression model is true, interval estimates (confidence 
intervals) and the corresponding significance levels will often be, at worst, more 
conservative (wider) than can be achieved using other methods. Since we almost 
always know in psychology that the statistical model is not true, interval esti-
mates can be interpreted only as approximate measures of uncertainty about 
the properties of a simplified or partial description of the modeled distribution5. 
In contrast to the often catastrophic consequences of false causal assumptions, 
such problems can be minimized by increasing the sample size or changing 
the analysis method.

One of the important reasons to care about the degree and nature of devia-
tions from the assumptions of the chosen statistical model rather than whether 
these assumptions are true – as they generally cannot be, and even if they are, 
there is little we can do to make sure they are true – is the efficiency of the esti-
mator, which is the degree to which point estimates vary (not necessarily around 
the true values!), on average, in hypothetical replications of the same sampling 
process. We want the variance of the point estimates to be as small as possible 
on average. Moreover, we want the estimates to vary around the true values, 
i.e., values corresponding to a simplified but well-defined description of the mod-
eled distribution. Finally, we want the associated uncertainty to be as small as 
possible. The frequent occurrence of substantial deviations from the statistical 
model assumptions means that robust methods should work better than OLS 
linear regression estimates in psychology in both respects6, as the latter kind of 
estimates are known to be, in a technical sense, the least robust (Field & Wilcox, 
2017; Wilcox, 2011).

The choice of a statistical method is a complex issue, and it is impossible to 
provide a simple algorithm that identifies the best solution in typical situations. 
Therefore, readers who primarily use linear regression or some of its many gen-
eralizations may be comforted by the fact that, with appropriate precautions 
(which I cannot elaborate on due to space constraints), they can often rely on 
such models. A fitted, false statistical model may be perfectly acceptable in that 
it can be used to derive justified and correct conclusions as long as this model is 
interpreted as only a part of a method for estimating a simplified or partial de-
scription of the true distribution.

This also applies to most situations where the scale of the dependent var-
iable might seem to disallow the use of a linear model. In the frequentist in-
terpretation, when we say that outcomes of a certain kind have a distribution, 

5 The second edition of “Statistical Rethinking,” covering both Bayesian inference 
and causal inference, is an excellent example of consistently applying this way of thinking 
about statistical models (McElreath, 2020).

6 However, this usually comes at the cost of some bias.
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we are assuming, perhaps implicitly, the existence of some theoretically repeat-
able sampling process. When the process is specified, certain conditions are met7, 
and we assign numbers to the possible outcomes, then we bring into existence 
a distribution with a well-defined mean. For example, the mean of a random 
sample of values, coded 0 as or 1, of a nominal variable like gender at birth is 
an unbiased estimate of the population mean of numbers 0 and 1 when these are 
assigned to the gender at birth of every individual in the population. Despite 
the original variable being nominal, this mean has an obvious interpretation: it 
is just the proportion of women (or men) in the population. The use of a linear 
model to describe the distribution of a nominal variable with more than two val-
ues is inconvenient (it can be done, e.g., by encoding each possible value using 
a separate binary indicator variable), but such variables occur relatively rarely 
in psychology as dependent variables.

How much one should worry about the scale being ordinal is a matter of de-
bate (see, e.g., Liddell & Kruschke, 2018; Paulewicz & Blaut, 2022). However, 
note that it is not possible to even articulate the “ordinal scale problem” without 
considering at least two distinct variables: one whose numerical values are sup-
posed to say something about the origin of the ordinal outcomes, and the ordinal 
variable itself, usually also assuming that the first variable causes the second. 
For example, the same differences in places on the podium interpreted as num-
bers 1, 2, and 3 will not correspond to the same differences in race completion 
times, which are the causes of the places on the podium. However, these are two 
different variables; as long as we are interested in the observed ordinal varia-
ble as such, e.g., the response on a Likert scale expressed as an integer, and not 
in its hypothetical unobserved source, e.g., the actual degree of endorsement, 
the problem of scale does not arise, and OLS regression coefficients are unbiased 
estimates of well-defined – although psychologically less interesting – quantita-
tive properties of a simplified description of the conditional distribution of such 
a variable.

The Causal Nature of Computer Simulations  
and the Notion of Intervention

It seems appropriate to introduce causal inference by discussing computer 
simulations because a computer is a programmable device, and programming 
is about controlling how it operates. In particular, through simulations, one can 
relatively easily illustrate – but not prove, as no simulation can serve as mathe-
matical proof – the meaning and validity of causal inference theorems.

Running the following R code creates a process in which the only qualitative 
causal relation between 𝑋 and 𝑌 is the causal effect of 𝑋 on 𝑌. For simplicity, all 

7 I added this qualification because not every distribution of numerical values has 
a well-defined mean. However, this issue is unrelated to the notion of measurement scale.
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effects are linear, and all “completely random” variables (I will soon give them 
a different name) have a standard normal distribution.

set.seed(1234)
n = 10000
U_X = rnorm(n)
U_Y = rnorm(n)
X = U_X
Y = 1 + 2 * X + U_Y

The first two instructions serve as the set-up: the set.seed(1234) instruction 
sets the random seed to the arbitrarily chosen number 1234, making the sim-
ulation process reproducible, and n is just a name for the number of generat-
ed samples. The rnorm(n) instruction generates (pseudo)random samples from 
the standard (i.e., with mean 0 and variance of 1) normal distribution (rnorm is 
short for “random normal”).

The equal sign here does not represent mathematical equality but rather 
the assignment operation. To evaluate this instruction, R first evaluates the ex-
pression on the right-hand side. For example, the text “10000” in the instruc-
tion n = 10000 is interpreted as the number 10000, and a representation of this 
number is stored in memory. The obtained value is then assigned to the variable 
on the left-hand side. What appears on the equal sign’s right-hand side is then 
the cause of the state or value of the variable on the left-hand side. The instruc-
tion U_X = rnorm(n) causes 𝑛 pseudorandom samples from a standard normal 
distribution to become the values of the variable 𝑈𝑋. The following instruction 
U_Y = rnorm(n) results in the generation of new and independent samples from 
a standard normal distribution, which then become the values of 𝑈𝑌. In the sim-
ulated process, 𝑌 does not directly or indirectly influence 𝑋 because the value of 
the expression describing how 𝑋 is generated depends neither directly nor indi-
rectly on 𝑌. It is also clear that 𝑋 and 𝑌 do not have common causes.

In causal inference, variables that in a given context are thought of as aris-
ing (here pseudo-) randomly or in an unspecified way are called exogenous, mean-
ing they originate from outside (of the model or the modeled process). Variables 
generated by the non-random part of the process are called endogenous, meaning 
they are generated inside (the model). By choosing what variables are endoge-
nous, a researcher selects the part of reality that is subject to causal analysis, 
so this choice is arbitrary and usually results from what the researcher is inter-
ested in and what unobservable theoretical constructs the researcher believes 
may exist.

According to the convention sometimes used in the literature, endogenous 
variables are also called modeled variables, and they are denoted by capital let-
ters, excluding the letter U; their corresponding exogenous sources are sometimes 
called unmodeled and are denoted by the letter U with an appropriate subscript. 
I will not henceforth refer to variables as exogenous or endogenous to empha-
size that this distinction is not about the variables themselves but rather about 
how they are viewed. Because, for each modeled variable 𝑉, its corresponding 
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unmodeled source 𝑈𝑉 represents all unmodeled causes of 𝑉, if 𝑉 has no modeled 
causes, like 𝑋 here, then 𝑈𝑉 represents all causes of 𝑉. Thus, the set of values of 
such a modeled variable can be identified without loss of generality with the set 
of values of its unmodeled source (here, 𝑋 =  𝑈𝑋).

Because we control the data-generating process, we can easily observe the ef-
fects of interventions by replacing certain expressions with constants. For exam-
ple, physically setting the value of 𝑋 to 44 corresponds to the following version 
of the process:

set.seed(1234)
n = 10000
U_X = rnorm(n)
U_Y = rnorm(n)
X = 44
Y = 1 + 2 * X + U_Y

If 𝑊 and 𝑉 are modeled variables or sets of modeled variables, then the ex-
pression 𝑝�𝑊 |𝑑𝑜(𝑉 =  𝑣) � denotes the interventional distribution generated by 
the process arising from the original one by replacing the sources of variability 
in 𝑉 with the constant (vector, if 𝑉 is a set) 𝑣. For instance, the above code gen-
erates samples from the interventional distribution 𝑝�𝑌|𝑑𝑜(𝑋 =  44) � . This distri-
bution represents the so-called total causal effect of the intervention. By looking 
at the code, we can immediately see that an intervention of the form 𝑑𝑜(𝑌 =  𝑦)  
cannot change the distribution of 𝑋, i.e., 𝑝�𝑋|𝑑𝑜(𝑌=  𝑦) � =  𝑝(𝑋)  for every 𝑦. That is 
what we mean when we say there is no causal effect 𝑌 of on 𝑋.

The formal language of do-calculus differs from the language of probability 
calculus only in the presence of the 𝑑𝑜 operator. Using this abstract operator, 
we can also define interventions that cannot really be performed in practice, such 
as hypothetical interventions that directly affect only blood pressure or gender. 
This way, it is possible to formulate causal questions that cannot be directly an-
swered by conducting a randomized study, yet it may still be possible to obtain 
justified answers to such questions using do-calculus when conditions permit.

Structure and Interpretation of Causal Graphs

Drawing a causal graph is equivalent to only saying which modeled varia-
bles do not directly cause which other modeled variables and which pairs of mod-
eled variables do not have any unmodeled common causes. Regardless of study 
design and despite the inherent difficulties of studying unobservable psycho-
logical response processes, namely the difficulties arising from the hard-to-pre-
dict, multidimensional intra- and interindividual variability of such processes, 
we can then always draw a true or at least well-justified causal graph represent-
ing the possible (i.e., not excluded) direct causal relations between the observed, 
the unobserved, and the imagined unobservable variables of interest. Moreover, 
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based on evidence of selective influence, dissociation, or interference (Sternberg, 
2001), we can sometimes legitimately infer the existence of distinct, qualitatively 
characterized latent structures, i.e., subsystems, modules, components, process-
es, or stages of the response process. Based on such patterns of results, we have 
reasons to believe, for example, that there are different types of memory or that 
there may be a bottleneck at the decision-making stage (Levy et al., 2006).

That is why the part of causal inference theory concerned with qualitative 
causal relations may be particularly useful in psychology. In Pearl’s theory, qual-
itative causal relations are represented using directed graphs, i.e., graphs in 
which every connection, or edge, between two distinct vertices or nodes has a di-
rection denoted by an arrowhead. For convenience, we also use arcs, i.e., two-
way connections which indicate the possible existence of an unmodeled common 
cause. Due to the complications they are associated with, I will not consider here 
any cyclic graphs, i.e., graphs for which it is possible to return to the same node 
by going in the direction of the arrows.

At worst, causal graphs will make it easy to see that, given what is known 
about the sampling process, too many causal relations cannot be excluded, and 
some or all causal quantities of interest simply cannot be estimated, no matter 
the method. Such a result may be disappointing, but it is worth knowing because 
it discourages the formulation of unfounded conclusions and prevents giving un-
due weight to unsupported causal claims made by others. If it turns out that cer-
tain causal quantities can be estimated, it will only remain to determine the gen-
eral form of the estimator (expressed in terms of unspecified distributions of 
observed variables) and find a good statistical approximation (usually a function 
of simplified or partial descriptions of the distributions of observed variables). 
In the simplest situations, this will only involve fitting some regression model.

The previously simulated process can be represented using the causal graph 
𝑋 →  𝑌. Unless stated otherwise, every arrow in a causal graph is interpreted as 
a theoretical possibility of the corresponding direct causal effect. By saying that 
a causal effect is direct, we do not mean that it is immediate: we only mean that it 
is not mediated by other modeled variables. Since, while maintaining the graph’s 
meaning, one can label every arrow and arc as “unknown”, marked edges do not 
need to be justified. Thus, every arrow or arc represents the lack of the corre-
sponding causal assumption. It is the missing edges that correspond to the actual 
causal assumptions, and it is the missing edges that call for some justification 
because it is the missing edges that have categorical statistical consequences and 
sometimes imply that certain causal quantities can be estimated.

Unmodeled variables are usually not marked because one can infer the ar-
rows that they emit. However, we must label unmodeled variables that may be 
statistically dependent. Except for spurious dependence resulting from condition-
ing on a collider, which I will discuss later, it follows from the meta-assumption 
that there is no correlation without causation that dependence between unmod-
eled variables is possible only when one such variable influences the other or 
when both have a common cause. Such dependence has important consequenc-
es, so we must mark it even when we do not mark other unmodeled variables. 
We do this using a bidirectional arc because dependence between two unmodeled 
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variables implies that the corresponding modeled variables may have an unmod-
eled common cause. Thus, the graph 𝑋 →  𝑌 is a simplified version of the graph 
𝑈𝑋 ⇢ 𝑋 →  𝑌 ⇠ 𝑈𝑌, where the variables 𝑈𝑋and 𝑈𝑌are assumed to be independent 
because no arc connects them (and no arc connects the variables 𝑋 and 𝑌 in 
the simplified graph).

The relations represented by a causal graph are qualitative in the sense that 
nothing is assumed about the quantitative properties of the process just by ac-
cepting the graph. This allows the construction of a true or well-justified graph 
describing an arbitrary psychological study. In particular, unlike typical SEM8 
models (Blalock, 2018; Bollen, 1989; Duncan, 2014; Wright, 1921), which are lin-
ear and do not allow for interactive effects, in qualitative causal models we allow 
both linear and nonlinear relationships. Apart from the independencies implied 
by the missing arcs, we also do not assume anything about the distributions of 
unmodeled variables. Finally, when a variable is (potentially) directly caused by 
more than one variable, we allow for interactive effects.

The conclusions based on a causal graph will be valid as long as no arrow 
or arc corresponding to an actual causal relation is missing. In particular, when 
there are more arrows or arcs than are necessary – meaning that not all corre-
spond to relations of real influence but no real causal relation is left unmarked 
on the graph – the conclusions will still be true, but perhaps the graph may have 
fewer testable properties, and it may allow for fewer causal inferences from data. 
The interpretation of arrows as theoretically possible direct causal relations also 
lets us include as modeled variables arbitrary theoretical constructs, i.e., un-
observable variables that may or may not exist, without making the resulting 
graph false if such a variable does not exist9.

Perhaps the most important part of the analysis of every causal graph is 
concerned with their paths, i.e., non-empty, finite sequences of adjacent arrows 
without repetitions, such that the arrows comprising the path do not have to 
go in only one direction10. The analysis of paths often comes down to making 
use of the properties of the chain 𝑋 →  𝑌 →  𝑍, the fork 𝑋 ←  𝑌 →  𝑍, and the collider 
𝑋 →  𝑌 ←  𝑍. Remembering the properties of these three structures greatly facil-
itates the use of the graphical part of the theory. Since paths look like graphs 
but are, by definition, only parts of some (perhaps unspecified) graphs, from now 
on the reader will need to pay attention to whether the causal structures under 
consideration are paths or graphs.

If 𝑋 and 𝑍 are connected by the chain 𝑋 →  𝑌 →  𝑍, then 𝑋 and 𝑍 may – but do 
not have to – be statistically dependent. If 𝑋 and 𝑍 are not connected by another 
collider-free path, then 𝑋 and 𝑍 must be independent in every stratum of 𝑌, i.e., in 
every subset of the population where only one specific value of 𝑌 naturally occurs 

8 I will refer to linear structural equation models in this way to distinguish them from 
more general structural models.

9 For example, one can adopt the convention that variables representing nonexistent 
theoretical constructs are, in fact, arbitrary constants.

10 The term “path” is not always defined as a sequence without repetitions and in 
general, a graph-theoretic definition may allow the sequence to be empty.
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or is merely observed: for every 𝑦, if we look at the subset of random samples such 
that 𝑌 =  𝑦, we will see no systematic statistical dependence between 𝑋 and 𝑍. In 
other words, according to this chain viewed as a graph, for every 𝑦, 𝑋 and 𝑍 are 
independent in the conditional distribution 𝑝(𝑋, 𝑍|𝑦) ; the same thing is expressed 
by the equation 𝑝(𝑍|𝑋, 𝑌)  =  𝑝(𝑍|𝑌)  or, more concisely, by the expression 𝑋 ⫫ 𝑍|𝑌. 
Finally, in each stratum of some descendant of 𝑌 in the graph of which this chain 
is a part, the observed statistical dependence between 𝑋 and 𝑍 may be weaker. 
The causal effect will not change because stratification is, by definition, selective 
observation and, as such, does not alter the way the process works: it only chang-
es how we view the outcomes of the process. To the extent that stratification on 
the descendant of 𝑌 causes the variability of 𝑌 to not be fully manifest in the data, 
the causal effect mediated by 𝑌 may also not be fully manifest, although it will 
remain unchanged.

All these properties of chains can be illustrated using simulations. For sim-
plicity, the effects will be linear, all intercepts will equal 0, all slopes will equal 1, 
and each unmodeled variable will have a standard normal distribution. When 
interpreted as a causal graph, the chain 𝑋→  𝑌→  𝑍, for instance, can be instanti-
ated as follows:

X = rnorm(n)
Y = rnorm(n) + X
Z = rnorm(n) + Y

To make the correspondence between the code and its graph easier to see, 
I removed the “bookkeeping” instructions (resetting the random seed and setting 
the number of simulated samples), I did not name the unmodeled variables, and 
I changed the order of the summed terms. Now we can see that when we statis-
tically control for 𝑌, the statistical effect of 𝑋 on 𝑍 is not statistically significant:

confint(lm(Z ˜ X + Y))
# 2.5% 97.5%
# (Intercept) -0.02 0.02
# X -0.04 0.01
# Y 0.98 1.02

The # sign is interpreted as the beginning of a comment and causes R to ig-
nore the text that appears on the same line after this sign. From now on, I will 
use comments to add the results of evaluations of instructions to the code and 
I will round the numbers to two decimal places. The lm function fits a linear mod-
el, and confint, by default, returns 95% confidence intervals for all regression 
coefficients. The 95% confidence interval for the slope of 𝑋 includes 0, meaning 
that the slope estimate is not significant at the 𝛼=  ,05 level. The statistical effect 
of 𝑌 on 𝑍 is consistent with the causal effect of 𝑌 on 𝑍, which is given by the slope 
of 1. Below, we can also see an example of something that should interest those 
psychologists who use mediation analysis, namely that statistically controlling 
a descendant of 𝑌, which can be interpreted as a perfectly valid (although not 
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“perfectly reliable”) measure of 𝑌, works quite differently than statistically con-
trolling 𝑌 itself:

V = rnorm(n) + Y
confint(lm(Z ˜ X + V))
# 2.5% 97.5%
# (Intercept) -0.03 0.02
# X 0.46 0.52
# V 0.48 0.52

As can be seen, the confidence interval around the effect of 𝑉 has nothing to 
do with the causal effect of 𝑌. Moreover, the statistical effect of 𝑋 remains signifi-
cant, which – without knowing the structure of the process – could be incorrectly 
interpreted as a reason to reject the assumption of complete mediation.

Statistically, the fork 𝑋 ←  𝑌→  𝑍 behaves the same as the chain, i.e., the only 
testable consequence of both paths as graphs is 𝑋 ⫫  𝑍|𝑌, and conditioning on a de-
scendant of 𝑌may make the observed dependence between 𝑋 and 𝑍weaker. These 
two paths are then observationally indistinguishable as graphs.

The collider behaves in an almost opposite and, at the same time, counterin-
tuitive manner, which is why the set of its properties is called Berkson’s paradox 
(Berkson, 1946). If 𝑋 and 𝑍 are two independent causes of 𝑌, then 𝑋 and 𝑍 are, of 
course, independent, but they may be dependent in some or all strata of 𝑌. For 
example, if we consider only the instances of two independent dice rolls, 𝑋 and 𝑍, 
for which the sum, 𝑌, is even, where the sum can be thought of as being caused 
by 𝑋 and 𝑍, then if 𝑋 is an even number, then 𝑍 must also be an even number. 
Thus, it will not be the case that 𝑋 ⫫  𝑍|𝑌. By looking through the strata of a var-
iable at the distribution of its actual causes, we may see – and we usually will – 
a systematically distorted dependence between the causes. However, the only 
categorical testable consequence of the graph 𝑋 →  𝑌 ←  𝑍 is 𝑋 ⫫  𝑍. At this point, 
the reader should be able to write code that generates samples from this kind of 
process to illustrate Berkson’s paradox. I encourage beginners to do this, as it is 
worth understanding the counterintuitive properties of this frequently occurring 
structure.

To use the part of the theory introduced so far, let’s consider the consequenc-
es of conditioning on a collider, called selection bias. Sampling in psychological 
studies is hardly ever random and usually involves collecting data from individ-
uals to whom the researcher has convenient access. If we denote as 𝑍 the set of 
variables that interest the researcher, and we denote as 𝑋 the set of variables 
such that, due to the sampling method, the samples tend to be specific in terms 
of the values of these variables, then for every pair of variables 𝑉 and 𝑊 in 𝑍, if 
𝑉 and 𝑊  influence some variable in 𝑋, the observed statistical dependence between 
𝑉 and 𝑊  will be systematically distorted because of the way the sampling process 
works.

As an example, consider a study on the relationship between gender at 
birth (𝐺) and general intelligence (𝐼). Because, according to current knowl-
edge, gender at birth is the result of an essentially random process, regressing 
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almost any variable 𝑌 (including 𝐼) on 𝐺 estimates the causal effect of 𝐺 on 𝑌, i.e., 
𝑝(𝑌|𝐺 =  𝑔)  =  𝑝�𝑌|𝑑𝑜(𝐺 =  𝑔) � . However, suppose the sampling process is such that 
psychology students have a greater chance of taking part in the study than would 
be the case if the sampling were random. In that case, there is a serious problem 
that must be addressed: both intelligence and gender certainly have a (strong) 
causal effect on whether someone becomes a psychology student. Because of this 
property of the sampling process, the observed statistical dependence between 
gender and intelligence will be systematically distorted.

As paths without a collider can “naturally,” i.e., without stratification, induce 
statistical dependence, they are called active; paths with a collider are called in-
active because they don’t have this property. Statistical dependencies resulting 
from Berkson’s paradox are called spurious, while those resulting from forks are 
sometimes called noncausal, but I prefer to avoid this term.

A causal graph has the same meaning as the corresponding list of so-called 
nonparametric, in the sense of abstract or unspecified, structural equations. 
These equations are called structural because, unlike ordinary symmetric math-
ematical equations, they represent, as functional relations, asymmetric deter-
ministic causal relations. For example, the graph 𝑋 →  𝑌 ←  𝑍 expresses the same 
assumptions as the following nonparametric structural model:

𝑋 =  𝑓𝑋(𝑈𝑋)
𝑍 =  𝑓𝑍(𝑈𝑧)
𝑌 =  𝑓𝑌(𝑋,𝑍,𝑈𝑌)

where, as explained earlier, we can assume that 𝑓𝑋(𝑈𝑋)  =  𝑈𝑋and 𝑓𝑧(𝑈𝑧)  =  𝑈𝑧. Both 
the graph 𝑋 →  𝑌 ←  𝑍 and the above structural model are two representations of 
causal assumptions: about the lack of a direct causal effect of 𝑋 on 𝑍, 𝑍 on 𝑋, 𝑌
on 𝑋, 𝑌 on 𝑍, and the assumption that unmodeled variables are all independent.

Every structural model can be interpreted as an abstract specification of 
a computer program since the equal sign in such models denotes an assignment 
operation, which can be performed either by Nature in general or by that spe-
cific part of Nature that is a computer. The presence of the structural equation 
𝑍 =  𝑓𝑧(𝑋,𝑌,𝑈𝑍), for instance, means that the values of 𝑍 are created independently 
of any variable outside its parent (or argument) set {𝑋,𝑌,𝑈𝑍}, and that 𝑍 may or 
may not depend on the variables that belong to this set11. About unmodeled var-
iables in nonparametric structural models, we only assume that they have some 
joint distribution which is unspecified apart from the assumed independencies.

We analyze the properties of paths and graphs that describe the process 
resulting from an intervention in the same way as before the intervention, but 
we must first remove all arrows entering the variables that are intervened on. 
In this way, within one model (family) we can consider different processes or ver-
sions of the same process, which we cannot do in probability calculus. The defi-
nition of an intervention as an operation on the graph involving the removal of 

11 The definition of mathematical function allows a function to ignore its arguments.
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arrows entering the variables subject to intervention corresponds to the structur-
al definition, which requires replacing the right-hand sides of the relevant struc-
tural equations, i.e., the parts specifying how the values of the variables arise, 
with constants. The structural definition, in turn, corresponds to how I simulate 
the effects of interventions here.

An intervention is thus understood as cutting off the variable(s) subject to 
the intervention from natural or previous sources of variability. If any property 
of the process could change in a way other than implied by the – not necessarily 
known – causal model, the effect of the intervention would be undefined. That is 
why an intervention in Pearl’s theory is, by definition, local, meaning that oth-
er structural functions are assumed not to change. Estimating a causal effect, 
therefore, involves estimating an effect of a theoretical and perhaps unattainable 
ideal of an intervention that is external and “surgical”, i.e., perfectly selective.

An Example of Using Causal Inference to Analyze  
and Interpret Data from a Psychological Experiment

All that has been said so far can be applied to arbitrary research designs, 
forms of statistical dependence, and target causal quantities as long as these 
quantities are specified at the level of a population of individuals or of a popula-
tion understood as hypothetical replications of the same kind of sampling process 
on the same individual.

Before discussing a typical sequence of steps in causal analysis, I must in-
troduce the definition of an important relation which can be understood as a for-
malization of the notion of blocking the flow of information. We say that a set of 
variables 𝑆 d-separates a path 𝑝 between variables 𝑋 and 𝑌 if 𝑝 contains a collider 
such that neither the collider nor any of its descendants is in 𝑆 (then 𝑝 is inac-
tive, and conditioning on 𝑆 cannot induce a spurious dependence between 𝑋 and 𝑌 
due to this path), or 𝑝 contains a chain or fork such that the middle variable is 
in 𝑆 (then conditioning on this element prevents the flow of information through 
𝑝, regardless of whether 𝑝 is active). The d-separation criterion can thus be un-
derstood in terms of the previously discussed properties of chains, forks, and 
colliders. If 𝑋 and 𝑌 are two non-empty and disjoint sets of variables, we say that 
𝑆 d-separates sets 𝑋 and 𝑌 if it d-separates every path between any two variables 
such that one is in 𝑋 and the other is in 𝑌.

I will now briefly describe some typical steps in causal analysis using Stern-
berg’s study on short-term memory search as an example (Sternberg, 1969). In 
this study, shortly after viewing randomly presented sets of stimuli they were 
supposed to memorize, participants classified target stimuli as new or old. 
The key randomized variables were the set size (𝑆𝑆) and whether the stimulus 
was old or new; the measures were reaction time (𝑅𝑇) and accuracy (𝐴𝐶𝐶). For 
simplicity, I will only discuss the condition where the target stimuli were new.

In one of the models, called the serial model, Sternberg assumed that 
the unobservable response process involves searching memory by comparing 
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the representation of the target, sequentially and in random order without rep-
etitions, with the representations of stimuli stored in memory, and each com-
parison takes on average the same amount of time (𝜇𝛵). For the condition with 
new test stimuli, these assumptions can be expressed by a structural model con-
taining the structural equation 𝑅𝑇 =  ∑  𝑇𝑖  + 𝑈𝑅𝑇 =  𝑆𝑆𝜇𝛵 + 𝜖𝛵 + 𝑈𝑅𝑇, where 𝑇𝑖 
is the time of the 𝑖 -th comparison, 𝜖𝛵 is the sum of the deviations of compari-
son times from the mean of the distribution of comparison times 𝜇𝛵, and 𝑈𝑅𝑇 is 
the total duration of all other stages of the process, such as encoding the target 
stimulus and generating the motor response. According to this model, the effect 
of set size on mean reaction time is linear, and the slope is equal to the mean 
comparison time because a new target stimulus requires all the elements stored 
in memory to be checked. Note that this model assumes the graph 𝑆𝑆 →  𝑅𝑇 ←  𝑇, 
which is quite optimistic in that many arrows and arcs are missing.

The first step in a causal analysis may involve dividing the modeled varia-
bles into those that are observed (𝑆𝑆, 𝑅𝑇 i 𝐴𝐶𝐶) and unobserved (𝑇).

The second step could be, for all pairs of modeled variables, drawing all 
the arrows and arcs that cannot be excluded or deemed negligible. To ensure that 
all pairs have been considered, we can list all the modeled variables according 
to temporal order, e.g., 𝑆𝑆1, 𝑇2, 𝑅𝑇3, 𝐴𝐶𝐶4; then, we can select the pairs (𝑖 ,𝑗) where 
𝑖 =  1, …, 𝑛-1 and 𝑗 =  𝑖 + 1, …, 𝑛, where 𝑛 is the number of variables, i.e., (𝑆𝑆1,𝑇2), 
(𝑆𝑆1,𝑅𝑇3)  (𝑆𝑆1,𝐴𝐶𝐶4), (𝑇2,𝑅𝑇3), (𝑇2,𝐴𝐶𝐶4), (𝑅𝑇3,𝐴𝐶𝐶4). Because this stage involves 
formulating theoretical arguments, the reader may disagree with what I am 
about to say and remove some of the edges I will mark on the graph. However, 
each such removal would require theoretical justification from the reader as by 
drawing arrows and arcs I will merely point out that something is not known.

The constructed graph will represent processes occurring during a single 
trial, so its application may require that the statistical analysis be conducted on 
non-aggregated data. If analyses were conducted on data averaged over trials, it 
would be necessary to consider some causal relations between trials that we could 
otherwise ignore. For example, correctness in trial 𝑡 may influence the response 
process in trial 𝑡 + 1 if participants can sometimes realize that the response was 
incorrect, which will be possible if, e.g., there is feedback. Mean reaction time and 
mean accuracy are deterministic functions of reaction times and accuracy in av-
eraged trials, so the possibility of such a causal effect would mean that we must 
mark the arrow 𝐴𝐶𝐶 →  𝑅𝑇, which, as we will see, we do not need to do if we ana-
lyze non-aggregated data.

It is often convenient to start with the arcs. Because 𝑆𝑆 is randomized, no 
“real” arrow can enter it, but 𝑇 should be connected by an arc with 𝑅𝑇 and 𝐴𝐶𝐶
as it is hard to argue against the possibility that the efficiency or ease of mem-
ory search depends on other factors that may affect performance, such as, e.g., 
momentary distractions. Finally, for obvious reasons, such as motivation, strat-
egy, learning, and fatigue, but also because of the aforementioned possible influ-
ence of the preceding response, 𝑅𝑇 and 𝐴𝐶𝐶 should also be connected by an arc. 
𝑆𝑆may perhaps directly cause every other modeled variable because, e.g., partic-
ipants may sometimes change how they perform the task depending on how dif-
ficult they perceive it to be. 𝑇 can, of course, affect 𝑅𝑇, and if there is external or 
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internal time pressure, it can also affect 𝐴𝐶𝐶. Note that 𝑅𝑇 and 𝐴𝐶𝐶 are two prop-
erties of the same reaction, with 𝐴𝐶𝐶 also being a property of the stimulus class 
(new or old), but I did not mark this variable on the graph because I only consider 
trials with new target stimuli. In particular, 𝑅𝑇 is not the same as search time, 
and 𝐴𝐶𝐶 is not the same as processing difficulty; 𝑅𝑇 and 𝐴𝐶𝐶 are only observed 
consequences of the state of these and other variables, with 𝑅𝑇 being determined 
by the computer running the task, therefore 𝑅𝑇 and 𝐴𝐶𝐶 cannot influence each 
other. Finally, due to the temporal order, these two variables cannot affect 𝑇. In 
this way, we obtain the graph shown in Figure 1.

The reader may disagree, but in my opinion the ontological status of the var-
iable 𝑇 is not obvious. For example, we do not know whether memory search in-
volves comparing discrete representations, or if it is, perhaps, something akin to 
a more “fuzzy” process of accumulating evidence. However, we can adopt a way 
of thinking about some or all latent variables (here only 𝑇) that is similar to how 
we think about the edges; by thinking about some or all latent variables as mere 
theoretical possibilities, we can confidently assume that this graph is true.

The third step may involve testing causal assumptions. Testable consequenc-
es of a causal graph are precisely the (often conditional) independencies between 
observed variables implied by d-separation. It is important to bear in mind that 
for almost every causal graph, there will exist different graphs that have same 
modeled variables and are statistically indistinguishable. We say that pairs of 
such graphs are statistically or observationally equivalent or belong to the same 
equivalence class.

Figure 1 

A graph representing theoretically possible causal relations between the set size 𝑆𝑆, latent 
comparison time 𝑇, reaction time 𝑅𝑇, and accuracy 𝐴𝐶𝐶 in the condition with new stimuli 
in a short-term memory search task.

𝑅𝑇

𝐴𝐶𝐶

𝑇
𝑆𝑆

Statistically indistinguishable are, among others, all qualitative models that 
have the same modeled variables, that have the same skeleton – variables con-
nected by an arrow or arc in one are also connected by an arrow or arc in the oth-
er – and that have the same V-shaped structures, i.e., structures where two direct 
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causes (i.e., parents) of the same variable (node) are not connected by an edge 
(Verma & Pearl, 2022). By changing the direction of any arrow in the graph, 
we create a statistically indistinguishable model, i.e., a model that cannot be dis-
tinguished by observing all modeled variables (including the latent ones!) from 
the original model, as long as we do not remove an existing V-shaped structure 
or create a new one.

We can now rephrase the observation regarding the correlation between life 
satisfaction and yearly income using the precise and general language of causal 
inference theory. Instead of saying, “The correlation between 𝑋 and 𝑌 does not 
imply that 𝑋 causes 𝑌 because this correlation may occur due to the existence of 
a common cause or due to the influence of 𝑌 on 𝑋,” we can now say more generally, 
“If 𝑋 and 𝑌 are the modeled variables, then for every distribution of 𝑋 and 𝑌 there 
exist processes that cannot be represented by the graph 𝑋 →  𝑌 and that can gener-
ate this distribution.” To show that inferring causation in a particular direction 
based solely on correlation is incorrect, it is sufficient, of course, to demonstrate 
one counterexample.

Returning to Sternberg’s experiment, in this case no set of observed vari-
ables d-separates any pair of observed variables, so this graph has no testable 
properties meaning that every possible distribution of three variables can be 
generated by some process described by this graph. However, to be justified or 
valid this graph does not have to be testable; instead, it has to formally express 
all the theoretically possible causal relations that need to be considered when 
interpreting results.

Although it represents speculative causal assumptions, Sternberg’s serial 
model is testable because there are possible patterns of results that are inconsist-
ent with this model. However, every possible pattern of results consistent with 
this model can be explained by assuming completely different memory search 
processes. For instance, as Townsend et al. (1983) demonstrated through a dif-
ferent kind of formal analysis, as far as the possible results of this kind of study 
are concerned, the serial model is empirically indistinguishable from some the-
oretically acceptable parallel models. Even without such formal analyses, it can 
be noticed that – as is often the case in psychology – the pattern of results is 
relatively simple and, at best, moderately surprising, whereas the research goal 
is ambitious.

When discussing the issue of testing causal assumptions, it may be worth 
mentioning some less obvious consequences of randomization. In the case of sto-
chastic processes, one cannot avoid the possibility of sampling error. It follows 
that expecting that truly12 randomly assigned groups will be the same on all di-
mensions other than group membership is as unwise as expecting that a truly 
random sample will have all the features of the population (i.e., that the sam-
ple itself, not the sampling process, will be “representative”), or that two truly 

12 One of the reviewers noted that randomization might fail to be successful, i.e., that 
there might be a need to check if it worked as intended. However, in such cases, the causal 
structure of the potentially flawed randomization process should also be represented on 
the graph.
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independently generated values will never be significantly correlated. Unless 
randomization is poorly done, the typically untestable assumption of independ-
ence of group membership status will be satisfied. As far as causally motivated 
statistical inference is concerned, this is all that matters because theoretical 
guarantees associated with statistical inference are properties of decision rules, 
i.e., they are asymptotic. 

There are situations in which statistical control of variables observed before 
the randomized intervention may be justified and useful. However, if truly ran-
domized groups differ significantly in terms of a variable, the values of which 
were determined by the data-generating process before randomization, it must 
be a result of sampling error. Introducing statistical corrections for this reason 
would be an example of relying on a decision rule based only on sampling error, 
i.e., it would be as helpful – asymptotically – as reading tea leaves. Statistical 
control of variables, the values of which were determined after the randomized 
intervention, may systematically distort the estimate of the total causal effect of 
the intervention, so it makes sense to do this only in special situations, such as 
in the context of mediation analysis when estimating the total causal effect is 
not the main goal.

The fourth and, in this case, the last step may be to determine which target 
causal quantities are identified and try to obtain good estimates of those that are. 
From the graph, it immediately follows that apart from the issues that may arise 
due to misspecification of a statistical model, regressing any observed variable 
other than 𝑆𝑆 on 𝑆𝑆 gives a correct estimate of the total causal effect of 𝑆𝑆 on that 
variable. At the same time, we see that “cleaning” the data by removing incor-
rect reactions may generate a spurious dependence between 𝑆𝑆 and 𝑅𝑇. This may 
happen for two reasons: 𝐴𝐶𝐶 is a collider of 𝑆𝑆 and 𝑇, as well as a collider of 𝑆𝑆 and 
every unmodeled cause of 𝑅𝑇 and 𝐴𝐶𝐶. This kind of data cleaning can then sys-
tematically distort how the causal effect of 𝑆𝑆 on 𝑅𝑇 manifests itself in the data. 
Moreover, a moment’s thought is all one needs to see that we cannot safely as-
sume that all correct reactions are generated by the process of interest because 
people are not robots performing simple tasks, and their reactions can be – and 
in an unknown proportion of trials certainly are –correct by mistake. Moreover, 
some or all correct responses may be generated by a process that is qualitatively 
the same as the process that generated some or all incorrect responses, but this 
common process may have different quantitative properties when it produces 
correct as opposed to incorrect responses, which may lead to systematically in-
correct causal conclusions when analyzing only the correct reactions.

As should by now be obvious, without a good theory to begin with little can 
be learned about the complex and unobservable response process. It seems that 
well-justified conclusions from this study come down to the claim that, within 
certain limits, increasing the set size leads to longer reaction times in a roughly 
linear way and also to a higher probability of error. If we examine more than one 
person on more than one occasion, we will also certainly learn that these effects 
are inter- and intra-individually variable. For example, to a degree that depends 
on the person, given enough data we will certainly observe that performance 
tends to improve with practice.
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A researcher willing to claim that more can be inferred from this kind of 
data would have to deal with the fact that, by using causal analysis, simulations 
can be created that illustrate alternative explanations of all the observed sta-
tistical effects. The only way to draw conclusions about the studied process that 
are stronger than those that a justified graph allows is to rely on a theory that 
implies sufficiently strong quantitative constraints. However, this requires hav-
ing good reasons to claim that the theory is approximately true as a description 
of the response process, which is usually a priori known to be multidimensional, 
complex, unobservable, non-stationary, and idiosyncratic.

The above remarks may sound too strong, but they follow from two important 
theorems, one of which has been proven only recently. Firstly, we know that do-cal-
culus is complete in the following sense: for any causal graph and disjoint sets of 
modeled variables 𝑋, 𝑌 and 𝑍 on this graph, where the set 𝑍may be empty, the in-
terventional distribution 𝑝�𝑌|𝑑𝑜(𝑋 =  𝑥) , 𝑍� is identified if and only if this fact can 
be established by using the three rules of do-calculus (see Shpitser & Pearl, 2008, 
where these authors also provide general identifiability conditions for counter-
factual quantities). Sometimes, additional causal quantities may be identified by 
introducing quantitative assumptions, such as linearity, additivity, homogeneity, 
or monotonicity. However, when little is known about the quantitative properties 
of the studied processes, as is typically the case in psychology, relying on such as-
sumptions will often be optimistic to the extent that borders on wishful thinking; 
strong causal conclusions will then be justified primarily due to these optimistic as-
sumptions and to a lesser extent, if at all, due to the study design, the results, and 
to what is known to be likely true about the process. Secondly, we have recently 
learned that the counterfactual level is, in a technical sense, irreducible to the in-
terventional level (Bareinboim et al., 2022), which, in turn, implies that certain 
questions about the quantitative properties of the data-generating process cannot 
be answered directly using randomization. This may perhaps mean that the quan-
titative part of a causal theory must be, to a certain degree, justified in a purely 
theoretical way, which, incidentally, does sometimes seem to happen in psychology 
(see, e.g., theories based on rational analysis in Chater & Oaksford, 1999).

Sternberg’s study can be viewed in yet another way by drawing the graph 
presented in Figure 2. Because the validity of causal conclusions does not de-
pend on the choice of modeled variables, for simplicity I have omitted response 
accuracy. I also have not marked any arcs because every path between any two 
observed variables, which here are only 𝑆𝑆 and 𝑅𝑇, passing through an arc would 
have to contain a collider and would thus be inactive. As far as we only care 
about the alternative causal explanations of the observed distribution 𝑝(𝑅𝑇|𝑆𝑆) , 
we could then safely assume that this graph is true if it were not for the fact that, 
also for simplicity, I have optimistically excluded the arrow 𝑇𝑇 →  𝑀, although it 
is certainly theoretically possible that a longer total memory search time could 
cause some memory information loss.

In psychological experiments, the goal is often to show that some latent psy-
chological variable (here 𝑀) influences another latent variable (here 𝑇𝑇), for ex-
ample, that mood affects memory. That is why graphs resembling the one in Fig-
ure 2 will necessarily appear, even if only implicitly, in many such experiments.
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Sternberg assumed that 𝑆𝑆 could influence the number of items in memo-
ry (𝑀), which is a latent variable, and that 𝑀 could influence 𝑅𝑇 through the total 
search time (𝑇𝑇), which is also a latent variable. Apart from the consequences of 
the known properties of study design (randomization and temporal order), there 
is no reason yet to accept the optimistic graph 𝑆𝑆→  𝑀 →  𝑇𝑇 → 𝑅𝑇 and thus exclude 
any of the paths 𝑆𝑆 →  𝑇𝑇 → 𝑅𝑇, 𝑆𝑆 →  𝑀 →  𝑅𝑇 and 𝑆𝑆 →  𝑅𝑇. So far, we have either 
exactly two categorical assumptions, i.e., the assumptions that 𝑀 exists and that 
𝑇𝑇 exists, or, if we want to entertain the very real possibility that not all theoret-
ical constructs actually exist, all we have is an expression of an intent to study 
a particular possibly nonexistent causal effect of a variable that may not exist on 
another variable that may also not exist.

The only thing that randomization of 𝑆𝑆 guarantees is that the statistical ef-
fect of 𝑆𝑆 on any other variable 𝑌 is due to some directed path going from 𝑆𝑆 to 𝑌. 
Like most measures used in psychology, 𝑅𝑇 can be under the systematic influence 
of many different factors, about which usually little is known (Borsboom, 2005; 
Millsap, 2012; Paulewicz & Blaut, 2022; Van Bork et al., 2022). Moreover, we can 
hardly ever safely assume that psychological interventions do not have any sig-
nificant unintended consequences. Therefore, we often cannot exclude some or 
all additional paths marked on the graph in Figure 2, even in relatively simple 
experiments conducted under relatively controlled conditions.

As is often the case, the structure of the graph makes it easier to come up 
with alternative explanations. For instance, larger sets of items to memorize (𝑆𝑆) 
could make participants react more slowly, partly because upon seeing a larger 
set they become discouraged, or because during the presentation of successive 
stimuli the probability or degree of loss of focus tends to increase. Such effects 
could be mediated by search time (𝑆𝑆 →  𝑇𝑇 → 𝑅𝑇), by encoding time, or by some-
thing else (𝑆𝑆 →  𝑀 →  𝑅𝑇, 𝑆𝑆 →  𝑅𝑇).

Figure 2 

A simplified (see explanation in the text) graph representing theoretically possible causal 
relations between the set size 𝑆𝑆, latent memory load 𝑀, latent total search time 𝑇𝑇, and 
reaction time 𝑅𝑇 in a short-term memory search task.

𝑅𝑇
𝑇𝑇𝑀

𝑆𝑆

The reader may have already wondered if it is worth trying to obtain evi-
dence of modeled variables being statistically independent and remove the of-
fending arrows or arcs based on such evidence. However, this requires accepting 
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statistical assumptions that will not be jointly true, and, moreover, it may be far 
from clear whether they are jointly as close to being true as may be necessary 
to demonstrate statistical independence in a given context. It is usually at least 
likely that the presence of statistical independence implies the absence of active 
paths between the independent variables. In typical situations, however, demon-
strating statistical independence involves showing that a point hypothesis is true, 
e.g., that the difference between means or the correlation is exactly 0; it does not 
suffice that a statistical test does not reject such a hypothesis. A useful alterna-
tive may be methods that rely on interval assumptions, but I will not write about 
them due to lack of space.

Confounding Paths and Ways of Dealing with Them

In psychology, the possibility of drawing justified causal conclusions tends 
to disappear when the cause of interest is not randomized. This also tends to 
happen when some variables are randomized, therefore the study is not simply 
observational, but it is observational with respect to the cause of interest. Al-
though temporal order may justify the exclusion of some arrows, especially in 
psychology, it is often impossible to exclude the existence of unobserved common 
causes or to justify the assumption that their role is negligible.

Variables that are common causes and simultaneously serve as alternative 
explanations or co-occurring sources of statistical effects, which are interpreted 
as measures of the target causal effect, are known as confounding variables. 
However, it is not the confounding variables themselves that are problematic; 
instead, it is the presence of active paths with a fork that provide alternative 
explanations of observed dependencies or distort the way the target causal ef-
fect manifests in these dependencies. Moreover, neither of the two main ways of 
dealing with such paths, namely, back-door and front-door adjustments, requires 
the confounding variable(s) to be observed. Therefore, it is often better to talk 
about confounding paths rather than confounding variables.

Let’s consider the graph in Figure 3

Figure 3 

A graph with one confounding path (𝑋 ←  𝑍 →  𝑌) and one confounding variable (𝑍) with 
respect to 𝑝�𝑌|𝑑𝑜(𝑋) � 

𝑌𝑋

𝑍
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… instantiated by the following process:

U_X = rnorm(n)
U_Y = rexp(n) - 1
U_Z = rbinom(n, size = 1, prob = 0.5)
Z = U_Z
X = U_X + 1 + 2 * Z
Y = U_Y + 3ˆZ + X (̂Z + 1)

In R, the ^ symbol represents exponentiation. The rbinom(n, size = 1, 
prob = 0.5) instruction generates 𝑛 pseudorandom samples with values 0 or 1 
from the distribution 𝑝(0)  =  𝑝(1)  =  0.5 . To illustrate the relative importance of 
statistical and causal assumptions in causal inference, this time the variable 𝑈𝑌

has a shifted exponential distribution (rexp(n) – 1); subtracting 1 ensures that 
this distribution has a mean of 0.

If we are interested in the effect 𝑝�𝑌|𝑑𝑜(𝑋) � rather than the joint effect 
𝑝�𝑌|𝑑𝑜(𝑋) ,𝑑𝑜(𝑍) � , we need to deal with the confounding path 𝑋← 𝑍→  𝑌. If we want-
ed to estimate the joint causal effect of 𝑋 and 𝑍 on 𝑌, regressing 𝑌 on 𝑋 and 𝑍 would 
be sufficient. Any regression of the form 𝑝(𝑌|𝑋,𝑍) estimates 𝑝�𝑌|𝑑𝑜(𝑋) ,𝑑𝑜(𝑍) � here, 
since including 𝑍 as a predictor blocks the only problematic path without induc-
ing any spurious dependencies between the observed variables13.

Let’s first estimate the mean of the distribution of 𝑌 in the situation 
𝑑𝑜(𝑋 =  0) , but only in the stratum 𝑍 =  0. To achieve this, we can fit a false linear 
regression model to the subset of samples where 𝑍 =  0. This statistical model is 
false because the distribution 𝑝(𝑌|𝑋,𝑍) is a (sometimes shifted) exponential dis-
tribution (family). Still, in this stratum the confounding effect of 𝑍 cannot mani-
fest because 𝑍 takes only one value. The statistical relationship between 𝑋 and 𝑌 
in the 𝑍 =  0 stratum may thus result only from the causal effect of 𝑋 on 𝑌 in that
stratum. So, even though the statistical model is false, the problem of confound-
ing disappears. In other words, up to the approximation by a statistical model, 
regressing 𝑌 on 𝑋 in the 𝑍 =  0 stratum says everything about the causal effect 
of 𝑋 on 𝑌 in that stratum because it estimates the distribution 𝑝(𝑌|𝑋,𝑍 =  0) , and 
𝑝(𝑌|𝑋 =  𝑥,𝑍 =  0)  =  𝑝�𝑌|𝑑𝑜(𝑋 =  𝑥) ,𝑍 =  0� . This is true for every 𝑥, but for simplicity 
I will focus only on the intervention 𝑑𝑜(𝑋 =  0) .

confint(lm(Y ˜ X, subset = Z == 0))
# 2.5% 97.5%
# (Intercept) 0.96 1.04
# X 0.96 1.02

13 The authors of the aforementioned handbooks on research methods and statistics 
for psychologists argue that a nonzero correlation between predictors, which is clearly 
present here, poses a significant problem when using linear regression, or maybe even 
that such a correlation is inconsistent with the assumptions of linear regression (it is not).
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From the simulation code, it follows that when we observe 𝑍 =  0 and force 
𝑑𝑜(𝑋 =  0) , R creates values of 𝑌 by calculating the value of the expression 
3𝑍 + 𝑋𝑍+1 + 𝑈𝑌, which equals 30 + 00+1 + 𝑈𝑌 =  1 + 𝑈𝑌, where 𝑈𝑌 has mean 0. The var-
iable 𝑌 then has an exponential distribution with a mean of 1.

Since, in each stratum of 𝑍, the statistical effect of 𝑋 on 𝑌 is equal to the causal 
effect of 𝑋 on 𝑌, and the intercept in the fitted linear regression model represents 
the mean of 𝑌when 𝑋=  0, the estimate of the intercept is an estimate of the stra-
tum-specific version of the target causal quantity. This agrees with the fact that 
the true mean of the interventional distribution 𝑝�𝑌|𝑑𝑜(𝑋 =  𝑥) ,𝑍 =  0� , which is 1, 
is within the corresponding 95-percent confidence interval.

We can do the same thing with the stratum 𝑍 =  1. Since predictors in lin-
ear regression can be arbitrary functions of independent variables as long as 
the set of all predictors is not collinear (in the case of two variables, collinearity 
is the same as a correlation of 1 or -1), to adequately describe the systematic part 
of the statistical relationship in the 𝑍 =  1 stratum, we only need to create a vari-
able equal to the square of 𝑋.

squareX = Xˆ2
confint(lm(Y ˜ squareX, subset = Z == 1))
# 2.5% 97.5%
# (Intercept) 2.91 3.02
# squareX 1.00 1.01

As is easy to verify, either by simulating the effects of the intervention or by 
calculating the exact theoretical value, the obtained interval estimate of the inter-
cept contains the true mean of the interventional distribution 𝑝�𝑌|𝑑𝑜(𝑋= 0) ,𝑍 =  1� , 
which is equal to 3. The expected value of 𝑌 in the situation 𝑑𝑜(𝑋 =  0)  is then 
sometimes 1 and sometimes 3, depending on which stratum of 𝑍 we are looking at. 
By multiplying 1 and 3 by the probabilities with which the two possible effects of 
𝑑𝑜(𝑋 =  0)  occur, i.e., by 𝑝(𝑍 =  0)  and 𝑝(𝑍 =  1)  respectively, we obtain the expected 
value of 𝑌when the intervention 𝑑𝑜(𝑋 =  0)  is forced on the population.

Generalizing this reasoning to the entire interventional distribution (not 
just the mean), arbitrary disjoint nonempty sets 𝑋 and 𝑌 of modeled discrete 
variables, and an arbitrary intervention 𝑑𝑜(𝑋 =  𝑥)  yields the back-door adjust-
ment. If there is more than one confounding path, it is necessary to block all of 
them simultaneously. A set of variables 𝑆 such that no descendant of (an element 
of the set) 𝑋 is in 𝑆, and 𝑆 d-separates all the paths between 𝑋 and 𝑌 that begin 
with an incoming arrow to (a variable in the set) 𝑋, is called a sufficient set (i.e., 
it is sufficient for estimating 𝑝�𝑌|𝑑𝑜(𝑋) � using the back-door adjustment). The ex-
istence of such a set allows the back-door adjustment to be applied similarly to 
the way it was just done, with the role of 𝑍 being played by all variables belonging 
to 𝑆 (by stratifying and summing or integrating over all of them):

𝑝�𝑌|𝑑𝑜(𝑋 =  𝑥) � =  ∑𝑠 𝑝�𝑌|𝑑𝑜(𝑋 =  𝑥) ,𝑆 =  𝑠 � 𝑝(𝑆 =  𝑠 ) 

=  ∑𝑠 𝑝�𝑌|𝑋 =  𝑥,𝑆 =  𝑠 � 𝑝(𝑆 =  𝑠 ) 
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The 𝑑𝑜 operator does not appear in the last expression. As we know, this is 
because, with respect to the causal effect on 𝑌, in every stratum of 𝑆 observing 𝑋
is statistically equivalent to intervening on 𝑋. This is guaranteed by the d-separa-
tion of all confounding paths by the variables in 𝑆. Since the last expression con-
tains only non-interventional quantities, the value of this expression can be esti-
mated based on the results of an observational study: 𝑝(𝑌|𝑋,𝑆)  can be estimated 
using regression, and 𝑝(𝑆)  can be estimated by fitting a parametric distribution. 
The obtained expression is a universal generic estimator of the total causal effect 
of 𝑋 on 𝑌 in any situation where a sufficient set exists, regardless of the quantita-
tive properties of the process. Note, however, that an integral will have to be used 
instead of a sum for every continuous variable in 𝑆.

This important generic estimator is called the back-door adjustment because 
the variables in a sufficient set block the “back entrances” to the variable(s) 
whose total causal effect we want to estimate. Variables controlled in this way 
do not have to be confounding variables, which is useful to know because not all 
confounding variables may be observed, or observing a blocking variable other 
than some confound may be less costly. Moreover, if a blocking variable is closer 
on the graph – in terms of the number of connecting arrows – to 𝑌 than the con-
founding variable, using such a variable to block the confounding path may im-
prove the precision of the estimate, provided that using this blocking variable 
makes the percentage of variance “explained” in 𝑌 greater.

The frequentist approach to statistical inference may not be particularly 
helpful when we want to obtain interval estimates of this kind of quantity be-
cause the theoretical sampling distribution of the estimator obtained by applying 
the back-door adjustment will often not be known. In many such situations, how-
ever, researchers familiar with Bayesian inference may be able to obtain a good 
estimate by replacing 𝑝(𝑆)  and 𝑝(𝑌|𝑋,𝑆) with samples from appropriate posterior 
distributions. One must be careful, however, to approximate well the statistical 
effects of variables in the chosen sufficient set. In particular, successfully block-
ing confounding paths in psychological studies will often pose a severe challenge 
because nodes on the confounding paths will often represent unobserved varia-
bles, and statistically controlling an outcome of measuring a blocking variable has 
different consequences than statistically controlling the blocking variable itself.

If the chosen regression model does not capture the statistical effect of 𝑆 on 𝑌
well, or if a measurement of a blocking variable is used instead of the blocking 
variable itself, residual dependencies, sometimes called residual confounding, 
may systematically distort the estimate of the causal effect of 𝑋 on 𝑌 (i.e., they 
can lead to asymptotic bias). For example, if the process is a fork 𝑋← 𝑍→  𝑌, 𝑍 has 
the standard normal distribution, and 𝑍01 is 𝑍 dichotomized according to the cri-
terion 𝑍 >  0, then 𝑋 ⫫ 𝑌|𝑍, but it is not true in general that 𝑋 ⫫ 𝑌|𝑍01. As is easy 
to illustrate through simulation, attempting to estimate the effect 𝑝�𝑌|𝑑𝑜(𝑋) � , 
which here is null, by applying the back-door adjustment using the regression 
𝑝(𝑌|𝑋,𝑍01) and an estimate of the distribution 𝑝(𝑍01) can lead to the erroneous 
conclusion that 𝑋 has a direct causal effect on 𝑌.

To check if the estimate derived earlier is correct, we can simulate the ef-
fects of the intervention and calculate the mean of 𝑌, not for some subset of data 
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where 𝑍 assumes only one particular value, but for the entire set of simulat-
ed values of 𝑌, i.e., for samples from the interventional distribution of interest 
𝑝�𝑌|𝑑𝑜(𝑋 =  0) � :

U_Y = rexp(n) - 1
U_Z = rbinom(n, size = 1, prob = 0.5)
Z = U_Z
X = 0
Y = U_Y + 3^Z + X^(Z + 1)
mean(Y)
# 2.00

For comparison, naively, if the goal is to estimate the total causal effect 
of 𝑋, fitting linear regression of 𝑌 on 𝑋, or on 𝑋2, or 𝑋 and 𝑋2, without accounting 
for the special causal role of 𝑍, gives 95% confidence intervals around the inter-
cept equal to [-1,61; -1,39], [0,79; 0,90], and [0,42; 0,5 7], respectively. In each case, 
the true interventional mean lies far outside the confidence intervals (if we meas-
ure the distance using the widths of the corresponding intervals). 

The back-door adjustment or something closely related could be used, for 
example, in studies on the relative influence of genes (𝐺) and parental traits or 
other properties of the family environment (𝐹) on adult child traits (𝐶). Due to 
temporal order, we can exclude the arrow 𝐹 ←  𝐶, so this kind of study can cer-
tainly be described by the graph14 𝐹→  𝐶+ 𝐹 ←  𝑋→  𝐶, as long as we let 𝑋 stand for 
all confounding variables, including genes. We cannot safely assume that 𝑋 =  𝐺, 
but we can potentially obtain results indicating that this assumption is a good 
approximation. If, for example, based on the results of a large-sample study, 
we find that the statistical relationship between 𝐹 and 𝐶 becomes much weaker 
and close to nonexistent when we correctly control for the statistical effect of 𝐺, 
the conclusion that the statistical dependence between 𝐹 and 𝐶 is due in large 
part if not entirely to the influence of 𝐺will be justified.

If we have reason to believe in the assumptions expressed by the graph in 
Figure 4, we can take advantage of the fact that 𝑋 blocks the only back-door path 
between 𝑀 and 𝑌.

Figure 4 

Conditions enabling the estimation of the total causal effect of 𝑋 on 𝑌 using the front-door 
adjustment

𝑋 𝑌
𝑀

14 The operation of adding graphs, which I introduced only for convenience, involves 
identifying vertices with the same names.
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In every such situation, 𝑝�𝑀|𝑑𝑜(𝑋) � can be estimated using regression, and 
𝑝�𝑌|𝑑𝑜(𝑀) � can be estimated using the back-door adjustment, with {𝑋} serving 
as a sufficient set. By appropriately combining the two estimates, we obtain 
the front-door adjustment. Unfortunately, it is not easy to give examples of stud-
ies in psychology where this adjustment could be applied, and it is especially 
hard to find good examples of this kind in basic research. In basic research in 
psychology, the mediator will often be latent, mediation will often be partial, 
the measurement model of the mediator will probably be speculative and ex-
tremely simplified, and it will usually not be possible to rule out that the causal 
effects of 𝑋 on 𝑀 or 𝑀 on 𝑌 are confounded (Rohrer et al., 2022). Therefore, read-
ers interested in the front-door adjustment are referred to “The Book of Why” 
(Pearl & Mackenzie, 2021) or even to “Causal Inference in Statistics: A Primer” 
(Pearl et al., 2016) as, at this point, they should be sufficiently prepared to con-
sult this excellent source.

Concluding Remarks

If correctly used, a theory of statistical inference can significantly lower 
the risk of drawing erroneous conclusions about distributions. A theory of causal 
inference plays a similar role at the theoretical analysis and interpretation stag-
es, enabling the formalization of an essential part of substantive interpretation 
and facilitating the identification of all types of plausible causal explanations. 
Unfortunately, psychologists still often try to provide answers to causal ques-
tions, relying primarily, if not entirely, on statistical model comparison methods. 
I must admit that I, too, have made this fundamental mistake, sometimes more 
than once in the same publication (see, e.g., Paulewicz et al., 2007). This is essen-
tially the same error of incorrectly accounting for the different status and role of 
causal and statistical assumptions, which I talked about at the very beginning, 
but beyond the familiar context of only two modeled variables, it is not as easy 
to detect.

The fewer arrows in the causal model, the simpler the corresponding statis-
tical model will usually be because models with fewer arrows tend to have fewer 
free parameters, potentially making them more testable. Moreover, conclusions 
drawn by relying on causal models with fewer edges tend to be more interest-
ing. This was apparent, for example, in the case of Sternberg’s serial model. It 
would then seem that for these reasons, just as Occam’s razor seems to dictate, 
in situations that raise doubts it may be better to remove arrows, arcs, or latent 
variables instead of leaving them. After all, simplicity and empirical testability, 
along with the generalizability of the associated statistical model, are qualities 
typically expected from theories or empirical hypotheses.

However, this approach serves to improve the predictive, not the explan-
atory, properties of a model. As the reader can now see by comparing using, 
e.g., the likelihood-ratio test, regressions 𝑝(𝑌|𝑋)  and 𝑝(𝑌|𝑋,𝑍)  fitted to the re-
sults of simulating statistically indistinguishable graphs 𝑋 →  𝑌 + 𝑋 ←  𝑍 →  𝑌 and 
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𝑋 →  𝑌 + 𝑋 →  𝑍 ←  𝑌, whether one statistical model fits better than the other is 
logically independent of which of them provides interpretable estimates. That is 
why, for example, adding predictors because they seem to be in some way related 
to the variables of interest and choosing a regression model based on statistical 
tests in the hope of obtaining more interpretable estimates is a practice based on 
misunderstanding that will sooner or later, but inevitably, lead to entirely mis-
leading conclusions (Cinelli et al., 2021).

The lack of a good theory can be sharply felt in psychometrics (see, e.g., Bors-
boom, 2005), which is the field concerned with how we can or should measure 
psychological latent variables. I may be able to write more about the causal-the-
oretic view of measurement of latent psychological variables in the next part of 
this introduction, but for now I would like to draw the reader’s attention to one 
issue. Justifying the conclusion that a certain set of test items is under the sys-
tematic influence of only one latent variable by the fact that some factor-analytic 
model fits well or doesn’t is not as productive an activity as it may perhaps seem 
to the many psychologists who appear to rely on this kind of reasoning routinely. 
The qualitative causal structure of every unidimensional factor-analytic model is 
not testable because the common factor in this generalized fork is, by definition, 
unobserved: every distribution of responses to test items can be generated by 
a process that has this structure, even if not every such distribution looks like it 
was generated by a linear process with this structure. The only testable part of 
these models is the assumptions about the linearity of effects and the normality 
of errors. However, the quantitative assumptions of the linearity of effects and 
normality of errors are introduced to simplify calculations or enable identifica-
tion. In psychological testing, these assumptions are a priori known to be far 
from the truth simply because the responses are discrete and bounded, not to 
mention that the number of response categories is typically small. What is then 
being assessed in this way is only the p r e d i c t i v e  performance of quantita-
tive assumptions that are clearly false, all the while assuming an untestable and 
usually, at best, only weakly theoretically justified qualitative causal structure. 
This pessimistic view already follows from the part of the theory presented so 
far, and the same can be learned from books on SEM models in which causality 
is taken seriously (e.g., Hoyle, 2012; Kline, 2015). That it is not even clear where 
to look for a satisfactory solution to the problem of systematic causes of error in 
the measurement of psychological latent variables can be learned from, among 
other sources, Millsap’s excellent book on measurement invariance (2012), as 
well as from my and Blaut’s modest contribution to this literature (Paulewicz 
& Blaut, 2022).

We know that do-calculus is complete, and no counterexamples showing that 
its axioms may be invalid have been found, at least to my knowledge. Moreo-
ver, the theory of causal inference is already developed enough that, for some 
important classes of problems, we know not only that this theory provides some 
solutions to these types of problems but also that it provides all possible solu-
tions. There exist already perfectly usable and more or less fully developed, or 
emerging before our eyes, parts of the theory concerning mediation (Pearl, 2012), 
missing observations (replacing outdated classical methods, the requirements 
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of which are so difficult to establish in practice that it is rarely known when 
they can be applied; see Mohan et al., 2013), integration of results of similar or 
only related observational or experimental studies (replacing as well as broaden-
ing the applicability of causally blind methods of meta-analysis; see Bareinboim 
& Pearl, 2016), ways of dealing with sample bias (Bareinboim et al., 2022), and 
other issues of critical importance to basic or applied research. The mathemat-
ical parts of research methodology in psychology, including the theory of how 
to plan and analyze research results and the theory of creating measurement 
instruments, assessing their measurement properties, and interpreting meas-
urement results, were until recently based only on probability calculus and sta-
tistical inference theory. However, the most important methodological problems 
are causal, and their statistical aspect is only of secondary importance. And as 
the examples I have discussed here clearly show, relying on intuition in situa-
tions to which the theorems of causal inference theory apply is as reasonable as 
neglecting the theorems of probability calculus or the principles of logic.
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