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Abstract 

 

In this review paper, we focus our attention on presenting selected neural network architectures dedicated to the 

analysis of sequential data, in particular to support the diagnosis of Reinke's oedema and laryngeal polyps. The 

research discussed here is located in the area of clinical computer decision support systems (CDS) based on the 

use of artificial recurrent neural networks (RNNs) for speech signal analysis. RNNs are able to predict time series 

due to their memory and local recurrent connections. In the experimental part, Elman-Jordan artificial neural 

networks are used, whose characteristics are speed and accuracy in pattern learning allowing real-time decision-

making. In the review presented here, one important theme is the use of Bezier curves for preprocessing the speech 

signal, leading to data reduction and noise elimination. Elman-Jordan networks significantly speed up the learning 

process and show high classification accuracy in laryngopathy diagnosis. 
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1. Introduction 

In this review, we will focus on the different artificial neural network architectures used to analyze data sequences 

in the context of the diagnosis of Reinke's oedema and laryngeal polyps. In our discussion, we will refer to several 

key works that use recurrent neural networks (RNNs) and their modifications in the analysis of speech signals of 

patients with laryngopathy. In studies (Szkola, Pancerz, and Warchol, 2010a, 2010b, 2011a), the authors showed 

how combining an Elman neural network (Elman, 1993) with a Jordan neural network (Jordan, 1986) can speed 

up the learning process, which is crucial in real-time diagnoses. The combination of these networks retains the 

ability to distinguish between normal and pathological states, while improving learning efficiency. Work (Szkoła, 

Pancerz, and Warchoł, 2011b) has shown that preprocessing the speech signal using Bézier curve approximation 

can significantly reduce the amount of data needed for learning and remove noise from the original signal, 

improving the accuracy of health state classification. Despite some limitations, this method indicates directions 

for further research. It is worth briefly mentioning the currently popular techniques based on convolutional 

networks in our review. In the literature on the application of deep learning to medical diagnosis, review papers 



 

 
 

such as (Bakator, Radosav, 2018) indicate that CNN architectures are widely used in the analysis of medical 

images and acoustic signals. In particular, the application of deep learning in the analysis of speech signals for the 

diagnosis of laryngopathy shows promise results (Zaidi et al. 2011, Sfayyih, et al. 2023a, 2023b, Tanveer et. al. 

2023, Mehrish, 2023). The feature that distinguishes our research from convolutional networks is that the size of 

the input data does not need to be fixed and the data strings can be aggregated directly. 

The next parts of our review work will focus on: Computer-assisted clinical decision support for laryngopathy 

using RNNs (Szkola, Pancerz, and Warchol, 2010a, 2010b) – see Section 2.1 and 2.2. Improving the learning 

ability of recurrent neural networks in speech signal analysis (Szkoła, Pancerz, and Warchoł, 2011a) – see Section 

2.3. Bézier curve approximation in the laryngopathy classification process (Szkoła, Pancerz, and Warchoł, 2011b) 

– see Section 2.4. Our results and conclusions will be useful in the further development of AI-based diagnostic 

tools that can support real-time diagnosis of laryngeal diseases – see Section 2 and 3. 

2. Methodology - non-invasive detection of laryngeal disease 

In the work, we review our selected techniques for the non-invasive detection of laryngeal disease. Originally, 

statistical analysis was used for this purpose in medical centers and processing of the input data as speech signals 

into Fourier spectral form. We present our proprietary solutions, produced in the research group, which are 

focused, among other things, on the possibility of using them in real time. 

2.1 Computer Aided Clinical Decision Support for Laryngopathy Using Recurrent Neural Networks 

In the first approaches, a statistical method was used to deviate the laryngeal frequency, the o norm, the SDA 

parameter was determined. The problem was that this worked differently. The main issue was the use of Fourier 

analysis, which loses information about time in the context of spectral distribution. And from direct observation 

of the samples, it is clear that disturbances occur at random points along the length of the recorded sample. 

Therefore, the idea of using a different technique that can respond to specific perturbations in selected parts of the 

waveform emerged in subsequent studies see (Szkola, Pancerz, and Warchol, 2010a). This paper presents a new 

approach to the analysis of speech samples, in terms of anomaly detection, relative to control group samples, in 

the form of an Elman neural network. The most important conclusions reached after applying the neural network 

are as follows: Spectral analysis does not fulfil its role as an effective tool for detecting anomalies; In speech 

samples that may be indicative of a disease entity. This is due to several reasons: Patients' speech samples are 

strongly individual, meaning that no standard frequency distribution can be identified for classifying speech 

samples into healthy or pathological categories; Depending on the severity of the disease, the age of the patient, 

the gender, the disturbance of the speech samples can show significant differences, it is usually the case that some 

parts of the sample look healthy, comparable to the control group, and some places show significant deviations 

from the pattern of the whole signal. In the case of frequency analysis, it is not possible to tell if it is just one small 

disturbance or if it repeats cyclically, the whole spectral waveform is a kind of averaging of the frequency 

components of the whole waveform. This is a big problem, because a patient who will show a single instance of a 

disturbance, and a patient with more such instances, the sample analysis of both patients will show great similarity, 

which interferes with the diagnostic process. The use of Elman's recurrent neural network allows the analysis of 

information that was not available in statistical methods with spectral analysis.  The network learns each patient's 



 

 
 

phoneme articulation and is not sensitive to individual characteristics. The aim of Elman's recurrent neural network 

is to identify anomalies in a sequence of repeated samples containing phonemes. 

Due to the nature of the data, which contains many repeated value sequences, the learning of the network is 

efficient and the model produced for a given patient is able to indicate where the anomaly occurs, as well as its 

relevance to the sample as a whole. The neural network used has a slightly different architecture to typical RNN, 

or LSTM, GRU recurrent neural networks, whose sole purpose is to correctly indicate the next value, based on a 

finite (usually short) preceding sequence. Typical recurrent neural networks have no internal memory, in which to 

store the necessary data, their prediction is based on taking into account previously calculated weights and the 

current input value. LSTM, GRU neural networks use very simple tags that can be propagated over long distances, 

but this too is not sufficient to create an optimal data string model. In the case of Elman neural networks, the 

context layer exhibits features of signal feature clustering, with some similarity to the mechanism as we observe 

in Kohonen neural networks, which allows it to generalize the model much better while still being able to store 

long data strings. 

In each learning step, this internal representation, together with the hidden layer, processes new information, 

creating increasingly subtle relationships between neurons. 

Elman recurrent neural network used 

 

Figure 1. Elman network 

 

Based on the research carried out, it can be concluded that the use of a recurrent neural network, for the detection 

of anomalies, allows for more predictable results, and, at the same time, the speed of the network is satisfactory. 

Not without significance is also the possibility of easier adaptation of the network to new requirements, by 

changing the number of neurons in the contextual and hidden layers, as well as adjusting the number of learning 

steps. 

 

 



 

 
 

Experimental sample 

The table shows the results of the comparison of the two techniques, for the same speech samples for the control 

and pathological group (laryngeal polyp). 

Tab 1. Based on data from (Szkola, Pancerz, and Warchol, 2010a) 

Women from the control group Women with laryngeal polyp 

ID  SDA error NN - error ID  SDA - error NN - error 

WCG1  0.311  0.00059  WP1  0.084  0.0024  

WCG2  0.159  0.00032  WP2  0.138  0.0141  

WCG3  0.167  0.00068  WP3  0.147  0.0039  

WCG4  0.012  0.0003  WP4  0.84  0.00082  

WCG5  0.139  0.00072  WP5  0.2  0.0007  

WCG6  0.205  0.00041  WP6  0.333  0.0021  

WCG7  0.118  0.00073  WP7  0.169  0.0022  

WCG8  0.127  0.00065  WP8  0.219  0.0024  

 

We can clearly see that for both the control and pathological group, the SDA coefficient can return high (WCG1, 

WP4, WP6) as well as low values (WCG4, WP1) . In the case of the results obtained from the neural network, we 

see a much better separation of results, the control group containing an error practically an order of magnitude 

smaller than the pathological group. When using statistical methods, we cannot be sure which class the sample 

belongs to. 

2.2 Recurrent Neural Networks in Computerized Clinical Decision Support for Laryngopathy: An 

Experimental Study 

The paper (Szkoła, Pancerz, and Warchoł, 2010) introduces significant improvements to the Elman neural network, 

which was first used to analyze speech samples for anomaly detection, as outlined in the paper (Szkola, Pancerz, 

and Warchol, 2010a). Elman's and Jordan's neural networks, well known until now, were used disjointly for 

different tasks, in the main this was due to the nature of the data, and the ability to teach the chosen network. In 

the figure below, we have presented two classical neural networks, the Elman neural network and the Jordan neural 

network.: 

 

Figure 2. Elman neural network     Figure 3. Jordan neural network 

 



 

 
 

A characteristic feature of the Jordan neural network is feedback from the context layer to the output layer. In the 

case of the Elman network, feedback to the hidden layer is used. In this way, the Jordan network has a ,smaller 

contextual memory capacity and therefore a lower capacity for data generalization. An important advantage of the 

Jordan network is that it takes as input of the next iteration, the value directly available at the output of the previous 

learning iteration of the neural network, with the context value thus set. Dealing with the Elman neural network, 

the context layer is a kind of abstraction resulting from the connection to the hidden layer. Therefore It was 

therefore decided to exploit the advantages of both networks, and in this way the first Elman-Jordan neural network 

presented in the article (Szkoła, Pancerz, and Warchoł, 2010) was created (The article includes an erroneous 

drawing of the extended Elman-Jordan neural network, instead of the first version of this network). 

 

Figure 4. Elman-Jordan network 

Experimental sample 

For the new architecture of the recurrent neural network, tests were carried out, in terms of detecting anomalies in 

speech samples, on a slightly extended group of patients. From the available pool of speech samples, 100 samples 

were selected for each class. 90% of the samples were used as the training set, and 10% of the samples were used 

for model testing. The learning process continued until an accuracy of less than 0.001 was achieved. If the network 

exceeds 2,300 epochs without achieving an accuracy of less than 0.001, the learning process is stopped. 

In the following tables, n_Er is denoted as mean squared error, and n_Ep is denoted as the average number of 

epochs needed to achieve an error less than or equal to 0.001 

 

 

 

 

 

 



 

 
 

 

The following results were obtained from the simulations: 

Tab 2. Results for test datasets for Elman network 

Control group Pathological group 

ID n_Er n_Ep ID n_Er n_Ep 

wCG1 0.0163 109 wP1  0.1832 110 

wCG2   0.0196 114 wP2   0.3386 241 

wCG3 0.0228 95 wP3   0.0630 284 

wCG4   0.0196 87 wP4   0.0314 118 

wCG5   0.0400 91 wP5   0.0486 122 

wCG6   0.0237 91 wP6  0.2238 79 

wCG7   0.0223 90 wP7   0.2238 791 

wCG8   0.0163 125 wP8   0.0421 96 

wCG9   0.0190 157 wP9   0.0459 121 

wCG10   0.0189 93 wP10   0.1440 90 

 

Tab 3. Results for test datasets for Elman-Jordan network  

Control group Pathological group 

ID n_Er n_Ep ID n_Er n_Ep 

wCG1 0.0138 68 wP1   0.1480 53 

wCG2   0.0193 69 wP2   0.2184 65 

wCG3   0.0219 68 wP3   0.0551 100 

wCG4   0.0182 61 wP4   0.0306 69 

wCG5   0.0376 65 wP5   0.0416 54 

wCG6   0.0235 62 wP6   0.2237 92 

wCG7   0.0283 67 wP7   0.0844 66 

wCG8   0.0162 67 wP8   0.0364 87 

wCG9   0.0193 78 wP9   0.0374 65 

wCG10   0.0206 70 wP10   0.1214 71 

 

Based on the results obtained, it can be concluded that the combination of the Elman and Jordan neural networks 

into a single network has resulted in the new recurrent neural network showing even better performance than the 

usual Elman neural network. It is worth noting that the new network shows better class separation, for healthy 

samples and pathological samples, as well as a reduction in the learning time of the Elman-Jordan neural network. 

The behavior of the network is as predicted, as the modifications made mean that the new network has more 

information than the classic Elman neural network, in addition to the data from the hidden layer, we still have an 

exact copy of the output value, which is taken into account in the learning process at each subsequent epoch. More 

information allows faster convergence of the model for the same data as the Elman neural network. 

 

 



 

 
 

 

 

2.3 Improving the Learning Capacity of Recurrent Neural Networks - Experiments on the Speech 

Signals of Patients with Laryngopathies 

In the paper (Szkoła, Pancerz, and Warchoł, 2011a) further modifications to the Elman-Jordan neural network are 

presented. Compared to the first version of the Elman-Jordan neural network, a modification has been introduced 

with an additional output layer feedback. 

 

Figure 5. Extended Elman-Jordan network 

 

The additional feedback introduced improves the linearity of the learning process, and at the same time speeds up 

the whole process. The figure shows the difference in the learning process of a typical Elman neural network, an 

extended Elman-Jordan neural network. 

 

 

Figure 6. Comparison of the learning curve for the Elman network and the Extended Elman-Jordan network 



 

 
 

 

Relative to the Elman neural network, a significant acceleration of the learning process was achieved, with no 

deterioration in the quality of anomaly detection, relative to the Elman neural network or the first version of Elman-

Jordan. As indicated in the title of the article (Szkoła, Pancerz, and Warchoł, 2011a), the aim of the paper was to 

present an improvement of the Elaman-Jordan neural network presented earlier and the objective was achieved. 

Comparative trials were carried out on the datasets that were used to study the E-J neural network. The new 

network was named ‘modified Elman-Jordan’. The result achieved is significant, as it allows, with the same 

resources, to carry out analyses on larger sets, or for sets of similar size, it allows a reduction in simulation time.  

The paper (Szkoła, Pancerz, and Warchoł, 2010) presents a new approach to data analysis, by using two of the 

same Elman-Jordan neural networks, with the second network obtaining data derived from the data fed to the first 

neural network. 

 

Figure 7. The Blok diagram of the process of the experiment  

Ultimately, the decision is made by a rule-based expert system, based on the values obtained from both neural 

networks. This system can be called a hybrid system, as it contains elements of preprocessing, two neural networks 

and a decision-making system based on approximate methods. The study showed that such a system could be 

effective in distinguishing healthy from diseased samples, but failed to achieve satisfactory results against two 

pathological groups, i.e. laryngeal polyp and Reinke's sign. One significant problem, as often arises in sensory 

data acquisition, is the level of noise and interference. In the case of speech samples, for which even subtle changes 

in signal amplitude and frequency can be significant, even a small level of noise is an extremely damaging 

phenomenon. When recording analogue data and converting it to digital form, interference and noise cannot be 

avoided. Therefore, for sensitive signals, preprocessing techniques should be used to extract only useful 

information from the signal, and background components or noise are removed. There are many DSP techniques 

for cleaning up audio waveforms, from filters to gating and signal regeneration systems. Each of these techniques 

has advantages and disadvantages. Each technique should be selected according to the data, and in the case of data 

that are specific speech samples (only vowels repeated continuously with a similar intonation level), dedicated 

signal processing methods can be used. 

 

 

2.4 A Bezier Curve Approximation of the Speech Signal in the Classification Process of 

Laryngopathies 

In the paper (Szkoła, Pancerz, and Warchoł, 2011b) a technique for pre-regenerating speech signals using Bezier 

curves was proposed. Bezier curves are well-known for vector computer graphics, but can be successfully applied 

to other tasks. Bezier curves are derived from Bernstein polynomials, as shown below. 

 



 

 
 

 

Figure 8. Bernstein basis function for polynominal degree p = 1, 2, 3, 4  

The unique properties of Bezier curves applied to the regeneration of speech samples: Bezier curves are always 

smooth (the curve must not contain noise), Bezier curves are affine invariant; No loss of quality due to scaling; 

Possibility of signal compression due to point coding of the curve. 

This paper presents an algorithm for converting an audio sample into a sequence of points forming a set of 

connected Bezier curves in the form of so-called S-plines. The data processed in this way was used to train an 

Elman-Jordan neural network. On the basis of the tests carried out, it was noted that the results were not as good 

as for the modified Elaman-Jordan neural network. There may be several reasons for this, one of which may be an 

insufficiently good algorithm for converting audio waveforms into the form of Bezier curve control points. There 

is no deterministic algorithm that allows such an operation, the solution developed is not an approximation 

algorithm that examines the average distance of the Bezier curve points from the actual input waveform. This is a 

very simple approach, but no other methods have been found or developed in this area, so once a high quality 

conversion algorithm has been developed, the results that can be achieved should be much better.  

 

3. Conclusions 

 In the paper, different approaches to speech signal analysis using recurrent neural networks (RNNs) for 

the diagnosis of laryngopathy, including Reinke's oedema and laryngeal polyps, are presented. Among other 

things, the focus was on creating a combine of Elman's neural network with Jordan's, achieving a better learning 

ability of the neural network to distinguish between normal and disease states at the same level. The combination 

provides the opportunity for accelerated network learning and to achieve a level of real-time decision-making, 

what is important in clinical practice. The modification of this hybrid presented in this review offers the possibility 

of achieving target patterns even faster. In addition, one study used Bézier curve preprocessing of the speech signal 

to reduce the amount of data and eliminate noise from the signal. Despite the fact that the quality of the models 

with Bézier curve in distinguishing between normal and pathological categories is not fully satisfactory, the 

presented review summarizes the research thread pointing in the direction of further research. The presented review 

may provide guidance in the selection of appropriate methods for the development of tools for computer-assisted 

diagnosis of laryngeal diseases. 
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