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Abstract 

In the paper, yet  weekly known, Cosserats’ original four concepts as follow: the four-time  unification of rigid 

body dynamics, statics of flexible rods, statics of elastic surfaces and 3D deformable body dynamics; the intrinsic 

formulation based on the local, von Helmholtz symmetry group of monodromy; the invariance  under the  

Euclidean group. The concept of a set of low-dimensional branes immersed into Euclidean space are revalorized 

and explained in terms of the modern gauge field theory and the extended strings theory. Additionally, some useful 

mathematical tools that connect  the continuum mechanics and the classical field theory (for instance, the 

convective coordinates, von Mises’ “Motorrechnung”, the Grassmann extensions, Euclidean invariance, etc.)  are 

involved in the historical explanation that how the ideas were developing themself.   

KEYWORDS: finite: Cosserats continuum, Darboux curvature vector, moving frame, Frenet trihedron, intrinsic 

coordinates, four-time operators, gauge symmetry flux conservation, gauge potentials, Mauer-Cartan structure 

equations, von Helmholtz  symmetry group, Euclidean group of transformations, weak principle of momentum 

and angular momentum conservation, Euler laws of dynamics, Cauchy first and second laws.  

 

1.  Interrelations between mechanics backgrounds and old and modern physics 

This paper is devoted to explanation of a few yet unknown facts concerning understanding in 

continuum mechanics the Cosserats idea of “intrinsic description”. In the paper we discuss 

unknown aspects of three COSSERATS’ papers; Sur la théorie de l’elasticite, (1896) and  Théorie 
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des corps déformables, (1909) ; Note sur la théorie de l’action euclidienne (1909).  Cosserat 

Brothers, not related with any university, are unknown scientists, even in France. Older one, 

François Cosserat (1852–1914) was a civil engineer which  a professional career has been 

related with  railways building,  firstly at the Nord and then the East of France. Eugène Cosserat 

(1866–1931), younger brother by 14 years, was a professional astronomer with a career spent 

almost entirely in Toulouse in the south–west of France. From 1896 till the death of François 

in 1914, the Cosserats published together no less than 21 works in the field of theoretical 

mechanics. The outstanding scientists like WILSON, 1913; JAUMANN, 1918; SCHAEFER, 1914; 

ZHOUNG-HENG, 1983; POMMARET, 1997; MAUGIN, 2014; DELL’ISOLA et al., 2015; NEFF, 2019; 

have made many efforts to approach for full understanding of the Cosserats contribution to the 

physics of continuum.   

 In the paper, we develop only yet unknown facts and aspects from the Cosserats. We are 

basing only on three Cosserats’ papers [COSSERAT E. AND F. 1896; COSSERAT E. AND F. 1967B; 

COSSERAT E. AND F. 1909], where these facts were proposed and developed. First, we are 

turning attention on the pioneering Cosserats’ concept of many-time physical objects (p-brane) 

which are immersed “twice” into a many-dimensional Euclidean space of reference [BADUR J. 

1991].  For Cosserats the peripatetic motion means nothing else then difference between two 

arbitrary immersions – the first immersion is motion-less one and second is governed by a 

motion described by any group of local symmetry. This approach to modeling of any physical 

changes, proposed by Cosserats more than a one century ago, in the contemporary physics is 

dominating and fundamental. Efforts of modern field theory must be simply called as looking 

for a proper gauge symmetry [CHAICHIAN, NELIPA 1984; POMMARIET 1989; MEISSNER 2013].  

This fact, that modern gauge theories have their roots within the Cosserats continuum is a little 

recognizable. Shortly speaking, the mathematical models of mechanical continuum, being the 

patterns for the string and p-branes theory, are still important and should be replaced in the 

sector of correct physical theories.  

 

2. The symmetry group of monodromy motion – a source of intrinsic formulation 

 The intrinsic formulation of continuum mechanics has many historical sources, one, 

mostly important, coming from von Helmholtz’s old concept concerning a hidden (additional) 

local symmetry group of motion [HELMHOLTZ 1868; BADUR, OCHRYMIUK, KOWALCZYK, 

DUDDA, ZIÓŁKOWSKI 2022]. This symmetry, frequently called the local (intrinsic) symmetry, 
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usually leads to additional degrees of freedom and additional geometric nonlinearity. The 

concept of local symmetry itself is a way of introducing into description hidden parameters that 

cannot appear within the framework of global symmetry and the classical Lagrange or Euler 

description of continua.  

 This new possibility for mathematical modeling comes mainly from the fact that the 

intrinsic formulation needs to postulate some local symmetry which is described within a 

framework of a continuous Lie group theory. The Lie algebra generated by this intrinsic 

symmetry should be a base where an observer is located now. This observer cannot measure 

the classical elements known from Euclidean geometry; therefore, a new type of continuum 

geometry would be developed. Such a continuum geometry, compatible with the space-time 

arena, was firstly developed by DARBOUX 1890 and next by CARTAN 1935 (see also: 

[EPSTEIN,  DE LEON 1998; HEHL, OBUKHOV 2007;  EL NASCHIE 2016]). However, only in 

Cosserats’ monograph from 1909, von Helmholtz’s concept of intrinsic group of symmetry has 

finally been stated completely and applied to continua of different dimensions (0D, 1D, 2D, 

3D). In very short time, between 1909-1936, owing to efforts such scientists like Poincaré, 

Appel, Roy,  Cartan, Sudria, the method of intrinsic formulation has diffused into whole field 

theory, especially to electrodynamics and gravitation. Unfortunately, every of these 

developments run independently, losing a main Cosserats' idea concerning a four-time 

unification. Therefore, in this report we undertake a problem of revalorization of the common 

description of zero-, one-, two- and three-dimensional continua.    

 Since both a rigid body and a thin flexible beam have no-restricted freedom of translation 

and rotation in space, in 1868, von Helmholtz [HELMHOLTZ 1868], after mathematical works of 

Klein and Lie, solving the problem of monodromy motion has introduced a local group of 

symmetry  ℋ(𝑥, 𝑡) = 𝑇(3) ⊲ 𝑆𝑂(3). It is a semi-simple multiplication of translation group 

𝑇(3) with orthogonal group of rotation 𝑆𝑂(3). It was first time in the gauge field theory where 

the local gauging group was introduced to describe intrinsic properties of continuum motion.   

 Let    𝕄 = 𝕄(𝜃𝛼) be an element of group  ℋ(𝑥, 𝑡) in  a special representation having a 

form of 4 × 4  matrixes and six group parameters, written originally as:  

𝜃𝛽 ≡ {𝑢
′, 𝑣′, 𝑤′, 𝜆𝑥, 𝜆𝑦, 𝜆𝑧}. These parameters are physically interpreted by the Cosserats as 

three displacement components and three components of the (Finger) rotation vector – both 

referred to the rotating frame reper.  Indices:  𝛽, 𝛾 = 1,2,3,4,5,6  go through indices the Lie 

https://scholar.google.com/citations?user=CEdp_sgAAAAJ&hl=en&oi=sra
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algebra base.  Due to semi-simple multiplication of abelian translation group  𝑇(3) and the 

nonabelian rotation group 𝑆𝑂(3)  elements of the  ℋ  take the form of matrices: 

𝕄(𝜃𝛼) = (
1 𝑢(𝜃𝛽)

0 𝑅(𝜃𝛾)
)
4×4

  ,         𝜃𝛽 = 𝜃1, 𝜃2, 𝜃3  ;   𝜃𝛾 = 𝜃4, 𝜃5, 𝜃6                    (1)  

The unit element  𝕀 = 𝕄|𝜃𝛼=0  does not change the fixed frame, but arbitrary element  

𝕄 ∈ ℋ for finite value of   𝜃𝛽 remove the placement by   𝑢(𝜃𝛽) = 𝜃1, 𝜃2, 𝜃3   and rotates the 

frame by  𝑅(𝜃𝛾)  

𝑅(𝜃𝛾) = (
1 0 0
0 1 0
0 0 1

) +
sin 𝜃

𝜃
 (

0 −𝜃6   𝜃5
  𝜃6 0 −𝜃4
−𝜃5   𝜃4 0

) +
1 − cos 𝜃

(𝜃)2
 (
𝜃4𝜃4 𝜃4𝜃5 𝜃4𝜃6
𝜃5𝜃4 𝜃5𝜃5 𝜃5𝜃6
𝜃6𝜃4 𝜃6𝜃5 𝜃6𝜃6

)  (2) 

where the group parameters  𝜃𝛾  have the interpretation as the Finger rotation vector (𝜆𝑥, 𝜆𝑦, 𝜆𝑧 

– in the Cosserats monography [43]) and 𝜃2 = 𝜃4
2 + 𝜃5

2 + 𝜃6
2 is the length of rotation vector. 

If we take an element   𝕄  near of unit 𝕀  (for determine of linear Cosserats elasticity) then 𝕄  

is a linear function of group parameters  𝜃𝛽 easy visualized within lie algebra matrices  𝒯𝛽 as:  

 𝕄(𝜃𝛽) = 𝕀 + (

0
0
0
0

 

  𝜃1
  0
−𝜃6
  𝜃5

 

  𝜃2
  𝜃6
  0
−𝜃4

 

  𝜃3
−𝜃5
  𝜃4
  0

 ) = 𝕀 + 𝜃𝛽𝒯𝛽    ,        𝛽 = 1,2,3,4,5,6                       (3) 

where six bases of Lie algebra   𝒯𝛽  are easily anticipated to be:  

 𝒯1 = (

0
0
0
0

1
0
0
0

0
0
0
0

0
0
0
0

)   ;   𝒯2 = (

0
0
0
0

0
0
0
0

1
0
0
0

0
0
0
0

)  ;     𝒯3 = (

0
0
0
0

0
0
0
0

0
0
0
0

1
0
0
0

)                                          (4)   

𝒯4 = (

0
0
0
0

0
0
0
0

 0
 0
  0
−1

0
0
1
0

)  ;     𝒯5 = (

0
0
0
0

0
0
0
1

0
0
0
0

0
−1
0
0

)  ;  𝒯6 = (

0
0
0
0

0
0
−1
0

 0
1
 0
 0

0
0
0
0

)                                     (5) 

The six bases have intrinsic Lie metrics (so-called the structure constants) related with the 

commutation relations:  

[𝒯𝛼, 𝒯𝛽] ≡ 𝒯𝛼𝒯𝛽 − 𝒯𝛽𝒯𝛼 = 𝐶𝛼𝛽
𝛾
𝒯𝛾    ;   𝛼, 𝛽, 𝛾 = 1,2,3,4,5,6  

where   [𝒯𝛼 , 𝒯𝛽] = 0 for  𝛼, 𝛽 = 1,2,3  and [𝒯𝛼, 𝒯𝛽] = [𝒯𝛽 , 𝒯𝛼] =∈𝛼𝛽
𝛾
𝒯𝛾 ,  for  𝛼, 𝛾 = 1,2,3;   𝛽 =

4,5,6   as well as  [𝒯𝛽 , 𝒯𝛾] =∈𝛽𝛾
𝛿 𝒯𝛿     for 𝛽, 𝛾, 𝛿 = 4,5,6. The structure constants 𝐶𝛼𝛽

𝛾
 are given 
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by a completely skew-symmetric Ricci object [BADUR 1993A].  Next, having group element 

one and 4-time  space-time manifold parametrized by the coordinates 𝜚𝑏 one can introduce the 

covariant-like differentiation within the moving frame  (lie algebra intrinsic space) by the 

Utyama procedure of minimal replacement [KLUGE 1969; HEHL 1973]:   𝜕𝑏 → 𝒟𝑏 = 𝕀𝜕𝑏 −𝒜𝑏, 

where  𝒜 = 𝒜𝑏(𝜚𝑏) = 𝒜𝛽𝑏 𝒯𝛽(𝜚𝑏)  is a so-called compensating potential which play the 

similar role to the Christoffel coefficients within a curvilinear coordinates system.  

If we take any intrinsic coordinate frame, say  ℝ′ ,  then the “covariant derivative” of it 

must be equal to zero from the definition:  

𝒟𝑏ℝ
′ = (𝕀𝜕𝑏 −𝒜𝑏)ℝ

′ = (𝕀𝜕𝑏 −𝒜𝑏) 𝕄ℝ = [(𝜕𝑏𝕄)𝕄
−1 −𝒜𝑏]ℝ

′ = 0          (6) 

From above it follows that we have the compensating connection – called the “pure gauge 

potential” in the gauge field theory clearly defined to be: 

𝒜𝑏 = (𝜕𝑏𝕄)𝕄
−1 = 𝜉𝑏𝒯1 + 𝜂𝑏𝒯2 + 𝜁𝑏𝒯3 + 𝑝𝑏𝒯4 + 𝑞𝑏𝒯5 + 𝑟𝑏𝒯6                       (7) 

The Cosserats call these objects as measures of “geometric velocities” [BASSET 1895; 

COSSERAT E. AND F. 1907; COSSERAT E. AND F. 1909A]. It is a name borrowed from the 

dynamics of a rigid body [POISSON 1831; LAME, CLAPEYRON 1833]. It best reflects the meaning 

of the Cosserats concept of “four-time mechanics”. In the literature we have found no trace of 

understanding of this simple fact. In the convected coordinate system 𝜚𝑏, the index 𝑏 = 𝑡, 𝑠, 𝛼, 𝑖  

means four different cases: rigid body, flexible rods, shells and 3D+time body, therefore the 

definition (7) is very universal.  Notice that from eq. (7) it follows only one correct definition 

of the Cosserats velocities and strain measures. It, unfortunately, means, for a lot of outstanding 

authors, that process of looking still new formulations of the Cosserats measures of strain and 

their energetically coupled stresses should be finished at now.  

Also, from definition eq (7) it follows the integrability conditions, in the fiber bundle 

geometry commonly written as:  

(𝒟𝑏𝒟𝑐 − 𝒟𝑐𝒟𝑏)ℝ
′ = ℱ𝑏𝑐

𝛽
 𝒯𝛽 = 𝜕[𝑏𝜕𝑐]ℝ

′ = 0                                           (8) 

The new objects   ℱ𝑏𝑐
𝛽

   is called „the two-form of curvature” in differential geometry or 

“the strength field” with the gauge field theory. This condition, reduced only to space, 𝑏 = 𝑖 =

𝑥, 𝑦, 𝑧,  has been discovered by the Cosserats in 1896 [COSSERAT E. AND F. 1896, §36 eq.A]. 

Notice that  ℱ𝑖𝑗
𝛽

 , due to screw-symmetry possesses only:  
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ℱ12
𝛽
, ℱ13

𝛽
, ℱ23

𝛽
= 0      ,    𝛽 = 1,2,3,4,5,6                                                 (9)  

independent components with six values within the Lie algebra.  It gives 3x6=18 integrability 

conditions – the same quality as the Cosserats obtained.  

From eq. (8) it follows explicitly that:  

ℱ𝑏𝑐
𝛽
 𝒯𝛽 = [−𝜕𝑏𝒜𝑐

𝛽
+ 𝜕𝑐𝒜𝑏

𝛽
+ 𝐶𝛼𝛾

𝛽
𝒜𝑏
𝛼𝒜𝑐

𝛾
]𝒯𝛽 = 0                                   (10) 

These are time-space integrability conditions [LEHMANN 1964; FERRARESE 1976; BADUR 

1993B] which are developed due to the Rankine concept of inertia anisotropy [RANKINE 1851]. 

The in extenso form of the Cosserats compatibility conditions has been shown in [BADUR, YANG 

1989; STUMPF, BADUR 1990].1  

Remark 1.  Up to Cosserats the continuum mechanics has been developing within the 

frame of the Cauchy paradigm of the first and second Cauchy laws, where stress tensor was 

taken to be symmetric and deformation measure was interpreted geometrically as a “change of 

metric tensor”. Since, due to the Cosserats, the first time in the science of deformable material 

continuum appears the curvature measure   𝑝𝑏 , 𝑞𝑏 , 𝑟𝑏   a reader needs more physical intuition. 

One, well known, example of intrinsic description of moving frame is the Frenet trihedron  (fig. 

1). It is located on a material line in a point  M  that has three coordinates 𝑥, 𝑦, 𝑧 and one intrinsic 

coordiante  𝑠  (𝜚1 in the Cosserats denotations) [FRENET 1847]. Any changes in the physical 

state of this line can by described as the changes with   𝑥, 𝑦, 𝑧  coordinates, but in this case the 

changes with coordinate  𝑠  are more physically realistic.    

 
1  Anisotropic inertia and its generalization have been analyzed by Prof. S. Forest  et al. [FOREST, CAILLETAUD, 

SIEVERT 1997; FOREST, SIEVERT 2003] and Brocato and Capriz [BROCATO, CAPRIZ 2001]. Also A.C. Eringen and 

Suhubi has complemented the theory by introducing micro-inertia and renamed it subsequently “micropolar 

theory” [ERINGEN, SUHUBI 1964]. 
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Fig. 1. The Frenet trihedron on the one-dimensional physical line immersed in the 

Euclidean space. 

A smooth curve  𝑥 = 𝑥(𝑠) = 𝑥𝑖𝑒𝑖   describes the center of a material rod having a finite 

small cross-section [10]. Intrinsic coordinate  𝑠  has the meaning of length of the rod.  We can 

identify all successive derivatives of 𝑥(𝑠)  with respect to  𝑠 with vector fields on the curve as: 

𝛿 = 𝜕𝑠𝑥 = 𝛿𝑑1
′   and 𝛼 = 𝜕𝑠𝛿 = 𝜕𝑠𝑠𝑥 = 𝜅𝑑2

′ .  One typically refers to these vector fields as the 

velocity and acceleration of the curve, even when s does not play the role of time, such as when 

it represents arc length. Additionally, one calls the curvature of the curve  𝑥(𝑠)  and a unit 

vector field   𝑑2
′    along 𝑥(𝑠)  that gives its direction, and which one calls the principal normal 

vector field for the curve.  With  𝑠  coordinate is related three unite orthogonal, binormal vector   

𝑑3
′ = 𝑑1

′ × 𝑑2
′   that  complete the right-handed, orthonormal triad called the Frenet frame field 

along the curve. 

One then finds that the Frenet frame change from point to point that give the equations of 

the moving frame along a line 𝑥(𝑠):  

𝜕𝑠𝑑1
′ = 𝜅𝑑2

′ − 𝜆𝑑3
′    ;  𝜕𝑠𝑑2

′ = −𝜅𝑑1
′ + 𝜏𝑑3

′ ;     𝜕𝑠𝑑3
′ = 𝜆𝑑1

′ − 𝜏𝑑2
′                     (11) 

Here, 𝜅(𝑠) is the line curvature, other parameter  𝜏(𝑠)  is referred to as the torsion of the curve. 

It vanishes if the curve lies in the plane of  𝑑1
′ (𝑠) and  𝑑2

′ (𝑠) (viz., the osculating plane to the 

curve), which will then be the same plane for all 𝑠.  Parameter  𝜆(𝑠)  amounts to a rate of 

rotation about the principal normal  𝑑2
′ (𝑠); i.e., in the plane of the tangent and binormal. That 

can be written shortly as: 

𝜕𝑠𝑑𝑎
′ = 𝒜𝑎𝑏 (𝑠)𝑑𝑏

′ = ℓ𝑠 × 𝑑𝑎
′    , 𝑎, 𝑏 = 1,2,3                                (12) 
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where one has two independent notations. The first is a group algebra matrixes notation 𝒜𝑎𝑏 (𝑠)  

and second the Poisson-Frenet vector notation  ℓ𝑠 = 𝜏𝑑1
′ + 𝜆𝑑2

′ + 𝜅𝑑3
′ . In above: 

𝒜𝑎𝑏 (𝑠) = (
0 𝜅 −𝜆
−𝜅 0 𝜏
𝜆 −𝜏 0

) = 𝜏𝓉1 + 𝜆𝓉2 + 𝜅𝓉3                                (13) 

Here appears three matrices  

𝓉1 = (
0 0 0
0 0 1
0 −1 0

)  ;  𝓉2 = (
0 0 −1
0 0 0
1 0 0

)   ;  𝓉3 = (
0 1 0
−1 0 0
0 0 0

)                   (14) 

which are the Lie algebra matrices of  𝑆𝑂(3) rotation group. If the motion of orthogonal Frenet 

frame  𝑑𝑗
′  are described by the rotation 𝑑𝑗

′ = 𝑅𝑗𝑖𝑑𝑖  of a fixed cartesian frame 𝑑𝑖  , 𝑖 = 𝑥, 𝑦, 𝑧 

then it is simply to prove that three parameters 𝜏, 𝜆, 𝜅  depends on the rotation derivatives as:  

𝜕𝑠𝑑𝑎
′ = 𝒜𝑎𝑏 (𝑠)𝑑𝑏

′ = 𝜕𝑠(𝑅𝑎𝑖)𝑑𝑖 = 𝜕𝑠(𝑅𝑎𝑖)(𝑅𝑖𝑏)
−1𝑑𝑏

′ .  If we consider not only rotation but also 

displacement of the Frenet frame then, using group description one must exchange group  of  

𝑆𝑂(3)  into  𝑇(3) ⊲ 𝑆𝑂(3) and  3x3 matrices algebra (14) into 4x4 algebra (eqs.4,5).  

Let us note, that the von Helmholtz group action was a subject of von Mises researchers 

[MISES 1924] who has introduced the Motorrechnung  tool for general mechanics in which one 

resign from 4 × 4 representation and turns into 6 × 6  representation of Lie algebra. This motor-

calculus can be also conformable for the Cosserats continuum description [SCHAEFER 1967A, 

1967B; KESSEL 1970]. The equivalence of both: the group description and the Motorrechnung  

has been shown in [STUMPF, BADUR 1990; BADUR, POVSTIENKO 1998]. 

 

3. How to get continuum of particles? 

There is a long tradition in practical using of continuum solid and fluid mechanics. It 

starts from numerous efforts of  Torricelli,  Galilee, Boscovich, to exchange a system of  𝑁  

interacting molecules into a concept of deformable continuum [EHLERS ET ALL 2003; 

PAPENFUSS, FOREST 2006]. The first period of doing that was a concept of introducing to the 

Newton law of motion:   𝜌𝑎 = 𝑓 + 𝑓𝑖𝑛𝑡   an additional, summary effect of finite molecules 

spherical interaction in a form of vis impressa  force:  

𝑓𝑖𝑛𝑡 =∑𝑓𝑛→𝑚

⬚

𝑛,𝑚

= div(p) = div(𝑝𝛿𝑖𝑗𝑒𝑖⨂𝑒𝑗) = grad 𝑝                           (15) 
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where,  𝑛,𝑚 = 1,2,3…𝑁 and  𝑖, 𝑗 = 𝑥, 𝑦, 𝑧.  Finally, owing to Pascal, the notion of continuum 

pressure has been introduced to continuum approach, where the pressure was imagined as a 

spherical pressure tensor  p  who is gluing together body molecules, and a divergence of it 

represents the sum of forces of mutual interactions.2 Then, in 1743, Alexis Clairaut  by using 

balance of three forces: pressure (internal stresses)  𝑓𝑖𝑛𝑡, d’Alembert  acceleration force 𝑓𝑐𝑜𝑟 

and Coriolis centrifugal force  𝑓𝑐𝑒𝑛 written to be:  𝑓𝑖𝑛𝑡 + 𝑓𝑐𝑜𝑟 + 𝑓𝑐𝑒𝑛 = 0  was able to calculate 

the flattening of the globe, treated as a spinning drop of liquid magma, became obvious to 

everyone that the continuum approach must use a stress tensor [LAGRANGE 1762; CAUCHY 

1823]. 

For English researchers, the Pascal prototype was important, so they use the "tensor of 

pressure" and in all Anglo-Saxon literature it appears with the letter  p . It was different on the 

Continent, what was based on the tradition of Galilee, who studied stretched bodies. Here, 

finally, Augustine Cauchy in 1823 [CAUCHY 1823], decided to introduce “a tension tensor t”  

and it’s divergence  div ( t ). 

The problem of stress tensor symmetry did not exist in the days of Euler and Lagrange. 

Euler introduced the velocity gradient (𝑙 = grad 𝑣, 1751) and Lagrange introduced the 

deformation gradient ( 𝐹 = Grad 𝑥, 1761).  Both of these asymmetric objects suggested some 

kind of stress asymmetry, but both Euler and Lagrange thinking about 3D modelling, have 

advocated symmetrical measures of deformation – in 1781 Euler introduced a six-component 

rate deformation tensor:   2𝑑 = 𝑙 + 𝑙𝑇   and similarly Lagrange in 1787 introduced a symmetric 

deformation tensor: 2𝜀 = 𝐹 + 𝐹𝑇 [BADUR 2021].  It was LAME AND CLAPEYRON 1833, and 

RANKINE 1851 (see history LAMÉ  1852) among the pioneers who developed the invariants in 

constitutive relations for the symmetric approach.   

Yet in XVIII- century Bonnet and de Buat have talked about stress tensor symmetry, but 

it was not until Navier, when he established the Navier equations for fluids and the Navier 

equations for solids, that he introduced the angular momentum condition into his Molecular 

 
2  The notion of deformable body has played an important role in the development of the classical field theory 

[TRUESDELL 1953; TRUESDELL, TOUPIN 1960]. Unfortunately, not Boscovich’s but Fresnel’s continuum model of 

light must be considered as one of the precursors of the nowadays theory of elasticity, on an equal stand with Euler, 

Lagrange, Du Buat, Navier, Poisson, Cauchy and other French scientist belonging to the period of First French 

Revolution.  Unfortunately, the Frensel concept of continuum physics cannot be accepted any more since it is 

made under the influence of wrong Newtonian ideas, that only discrete systems of points were still considered. 

Continuous punctual systems which are simply placed within space-time, appeared in European science with the 

conception of MacCullagh, which is not sufficient to provide its full power to a model of luminous waves 

propagation. A similar model of ‘‘couples’’ due to Poinsot have, according to proposition of von Helmholtz, 

origins in magnetism of polar bodies [BADUR 2021].   
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Dynamics. This kind of continuum, both fluid and solid, satisfied angular momentum equally 

because it used a symmetrical stress tensor. This solution, justified by Navier's Molecular 

Dynamics, was accepted by Cauchy, Poisson, Lamé, Duhamel, Coriolis, Clapeyron, Poncelet, 

Liouville, Arago, Barré de Saint-Venant, and others [BADUR 2022]. 

But in 1852, Ferdinand Reech, the unrecognized French creator of thermodynamics, once 

again analysed the assumptions of Navier's Molecular Dynamics and came to the conclusion 

that asymmetrical stress parts and coupled stresses must be involved in the angular momentum 

balance [REECH 1852].  This statement was repeated by Reech's pupil [ANDRADE 1898]. New 

arguments for stress tensor asymmetry and the existence of coupled stresses were presented by 

PIOLA 1833, 1848; FRENET 1847; MACCULLAGH 1839; THOMSON AND TAIT 1883. 

Next WALDEMAR VOIGT (1887) studying elastic properties of crystals left open the 

possibility that there might be internal couple-stresses that acted on the molecules of the lattice. 

Nowadays we known that Voigt was basically correct in his postulate. For instance, an 

austenite-martensite phase transformation will induce couple stresses due to appearance of non-

symmetric Bain deformations. Such internal couple stresses would then induce an asymmetry 

in the Cauchy stress tensor. Standing on the experimental data, Pierre Duhem in 1893, 

postulated the existence of couple stresses [DUHEM 1893]. Nevertheless, Duhem having the 

best knowledge on the Cauchy continuum, was the first who adopted the laws of 

thermodynamics  in the frame of solid and fluid continuum [DUHEM 1901, 1904]. 

Let us emphasize that the research tools and the idea for the description in the mobile 

frame, Cosserats took from Lagrange’s and Poisson's mechanics of the material rigid body 

[LAGRANGE 1762; POISSON 1833]. There are different roots then the conventional one in 

Newtonian mechanics.  The Cosserats stood on the shoulders of giants, but none of them were 

Newton. The concepts of Newtonian mechanics are not taken into account at all – Isaak Newton 

is systematically removed from the Continent – since his model of gravitation was conceptually 

wrong. The Cosserats adhere to the paradigm of Lazar Carnot [CARNOT 1793] that the 

Newtonian mechanics is unfounded and is an accidental fabrication. 

Cosserats have accepted, therefore, only the French mathematical tools, borrowed from 

Lagrange and Poisson mechanics of material point and mechanics of rigid body.  They also 

borrowed the Pascal-Marsenne propositions relative to the notion of  “interaction force”, that 

were applied with the principle of solidification [‘‘rigidification’’- due to Reech] of the 

manifold of material particles. Cosserats have anticipated the possibility of a constitutive 
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relation between the “objective geometrical effort” and the “geometrical moving frame 

deformation” such the relation was hypothetically first established in a new form of 

“generalized Hooke’s law” [COSSERAT E. AND  F. 1909A, 1909B] (hyper-elastic material).   

The picture of continuum has changed in Cosserats minds - in place of the material point, 

they called a material trihedron, which is obtained by completing the notion of material point 

by the addition of three rectangular directions that issue from that point. A continuous medium 

is then generated by a moving material trihedron. Moreover, it is obvious that the more complex 

models that are proposed by the molecular theories can give rise to corresponding models for 

continuous media. It was the line of reasoning a numerous researchers like: KADIĆ AND EDELEN 

1983; EDELEN AND LAGOUDAS 1988; STEINMANN AND STEIN 1997; BROCATO AND CAPRIZ 

2001;  CAPRITZ 2010; VARDOULAKIS 2019.  

 

4. Cosserats solution 

The above historical facts are true but cannot be treated as a main motivation for Cosserats 

work. It is a great mistake that in the literature related to Cosserats is attributed the main goal 

of establishing Eulerian equations of momentum and angular momentum balance in the 

Newtonian-like form :  𝜌𝑎 = 𝑓 + 𝑓𝑖𝑛𝑡  and  :  𝐼𝜖 = 𝑚 +𝑚𝑖𝑛𝑡  where 𝑎, 𝜖   are translational and 

rotational acceleration. The notions of “momentum” and “moment of momentum” are non-

present in the whole Cosserats papers and in the French mechanics.  Cosserats develop quite 

different line of reasoning being supported on the principle of least action. Only in one place: 

the last chapter of [COSSERAT E. AND  F. 1909A], they are able to obtain from variational of the 

action the following six Cauchy equation of continuum motion in the Euler description:3    

𝜌𝑣̇ = div 𝜎 + 𝜌𝑏       ;    𝐼𝜔̇ = div 𝜇 + 𝜎× + 𝜌𝑐                                      (16) 

These six equations, which are some kind  of extensions of Euler's rigid body mechanics 

onto the continuum case, contain the internal translational interactions of particles:  𝑓𝑖𝑛𝑡 = div 𝜎   

(see eq. 15), and the rotational interactions of the particles:  𝑚𝑖𝑛𝑡 = div 𝜇 + 𝜎× .  

 
3  According to Clifford Truesdell rediscoveries, precisely speaking, one should think about “first and second 
laws of Euler mechanics” (rigid body science)  not about “the first and second Cauchy laws” (deformable 
continuum science). We agree that the Cosserats approach is totally anti-Newtonian and it is a subtle 
unification of Euler mechanics laws with the Cauchy mechanics laws [TRUESDELL 1960].    
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In equation (16), 𝜌, 𝐼  are the mass density and the mass inertia tensor, respectively;  𝜎 =

𝜎𝑖𝑗𝑒𝑖⨂𝑒𝑗 , 𝜇 = 𝜇𝑖𝑗𝑒𝑖⨂𝑒𝑗  are Cauchy-like, an asymmetrical stress tensor and a couple-stress 

tensor. Next, 𝜎× = 𝜖 ∙ 𝜎  is an axial vector of  𝜎  and  𝑏, 𝑐  - are specific body force and body 

couple vectors. If someone asks  about existence of  𝑐  couples then Cosserats response is that 

the problem of existence of  𝑏  “force” is much more greater. In the work of the Cosserats, the 

equations of momentum balance and angular momentum balance are derived via a variational 

approach at the end of the work [COSSERAT E. AND   F. 1909A, in paragraph §73] as a proof that 

the "intrinsic" approach in Euler's description can be simply connected with the natural 

description. Notice, that the momentum flux and angular momentum flux tensors  𝜎, 𝜇  are 

originally denoted by the Cosserats with the letters  𝑝 = 𝑝𝑖𝑗𝑒𝑖⨂𝑒𝑗  and  𝑞 = 𝑞𝑖𝑗𝑒𝑖⨂𝑒𝑗  (𝑖, 𝑗 =

𝑥, 𝑦, 𝑧)  [a natural Euler base indices]. 

Moreover, the angular momentum equations and angular momentum (16) in the “natural 

approach” do not appear in the Cosserats monograph [COSSERAT E. AND   F. 1909A] in the main 

role, they are shown only as the existence of a relationship between the "intrinsic" approach 

and the "natural" approach, so it cannot be said that they were the main goal of their efforts. If 

the Cosserats had preferred the "natural Euler description approach," they would have 

introduced appropriate Eulerian deformation measures in addition to measures of momentum 

streams and angular momentum.  Equations (16) appeared only in the later works of HELLINGER 

1914; JAUMANN 1918 and SIGNORINI 1943 as a generalization of the first and second Cauchy 

laws.  

Remark 2.  Let us note, that originally the first and second Cauchy laws (eq. 16) have 

been written for statics in the natural Euler description approach as: 0 = div 𝜎 + 𝜌𝑏 ;  𝜎× = 0. 

In the literature there are a few attempts to find analogous equations for the natural Lagrangean 

description.   

Giusseppe Grioli was the first who has rewritten the static version of  eq.16 in the Sudria 

vector form to be [GRIOLI 1960, eq. 7, 9]:  

𝜕𝑖𝜑𝑖 − 𝑓 = 0   ;    𝜕𝑖𝜓𝑖 + 𝑒𝑖 × 𝜑𝑖 +𝑚 = 0             𝑖 = 𝑥, 𝑦, 𝑧                                 (17) 

where Eulerian stresses vectors are simply defined as:  𝜑𝑖 = 𝜎𝑖𝑗𝑒𝑗  and  𝜓𝑖 = 𝜇𝑖𝑗𝑒𝑗 . Grioli 

was not able to show any relations between his Eulerian vectors  𝜑𝑖, 𝜓𝑖  and  the Sudria vectors 

ℰ𝑏 and   ℳ𝑏 , respectively (in the moving frame).  Therefore, he also was not able to find 

Lagrangean stresses and deformation vectors. Nevertheless, removing any physical 
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argumentation, Grioli, by simple using an analogy with the Cauchy continua (𝑡 = ℐ−1𝐹𝑆𝐹−1), 

has proposed two stresses tensors Φ,Ψ as an analog of the second Piola-Kirchhoff [GRIOLI  

1960, eqs SKIBA 1874; LANGE 1885]: 

𝜎𝑖𝑗 = ℐ
−1𝑥𝑖,𝑟𝑥𝑗,𝑠Φ𝑟𝑠   ;    𝜇𝑖𝑗 = ℐ−1𝑥𝑖,𝑟𝑥𝑗,𝑠Ψ𝑟𝑠                                           (18) 

where   𝜕𝑟 = 𝜕/𝜕𝑦𝑟 are the Lagrangean coordinates,  𝐹 = 𝑥𝑖,𝑟𝑒𝑖⨂𝑒𝑟,  ℐ = |det 𝐹|.  Then having 

defined  Φ = Φ𝑟𝑠𝑒𝑟⨂𝑒𝑠  and Ψ = Ψ𝑟𝑠𝑒𝑟⨂𝑒𝑠  Grioli has proposed the first and second Cauchy 

laws written within the Lagrangean description as [GRIOLI 1960, eqs KIRCHHOFF 1876, 1877, 

1883; DARBOUX 1890]:  

Div (𝐹Φ) + 𝑓0 = 0    ;               Div(𝐹Ψ) + [𝐹Φ𝐹
𝑇]× +𝑚0 = 0                         (19) 

Axial vector of  [𝐹Φ𝐹𝑇]×  by SIGNORINI 1943 and FERRARESE 1959 where written as 

“one index” notation: [𝐹Φ𝐹𝑇]× = [𝑥𝑟+1,𝑝𝑥𝑟+2,𝑞 − 𝑥𝑟+1,𝑞𝑥𝑟+2,𝑝]Φ𝑝𝑞𝑒𝑟 .  From this time, the 

pull-back transformation (eq.18) and the operation of taking the axial vector [𝐹Φ𝐹𝑇]×  written 

firstly by Grioli in the form analogous  to elaborated the Cauchy laws (eq.19) are used within 

the natural Lagrangean description [TOUPIN 1962; ERINGEN, SUHUBI 1964; KAFADAR, ERINGEN  

1971; STEINMANN, STEIN 1997]. Also, an analog of the first Piola-Kirchhoff tensor for the 

couple- stresses was proposed by Grioli [GRIOLI 1960, eq. BASSET 1894] to be: Λ = 𝐹Ψ . 

Remark 3. Notice also, that by using some “dimensional” arguments, Grioli has proposed 

serious modification of the Cosserats energy Lagrangean  𝑊  in which, originally, only first 

derivatives of displacement and rotations have appeared. It led to a serious difference with the 

Cosserats original assumptions which say that if the rotation measures of deformation are equal 

to zero then also couple stresses must be zero:  𝜇𝑖𝑗, Ψ𝑟𝑠 = 0 . Grioli has shown that the couple 

stresses are also the function of second displacement derivative   𝑢𝑖,𝑟𝑠 [GRIOLI 1960, eq.57], 

therefore his reasoning has been changed a thinking about possible form of  𝑊.  Staring from 

1960 the materials with  𝑊 = 𝑊(𝑢𝑖,𝑟;  𝑢𝑖,𝑟𝑠;  𝜙𝑖,𝑟) are called in the literature the polar 

continuum [TRUESDELL, TOUPIN 1960; MINDLIN, TRIESTEN 1962; BESSAN 1963; FERRARESE 

1971; STEINMANN, STEIN 1997; MAUGIN 1998].  

However, for historical precision, due to Clifford Truesdell’s efforts, the date of birth of 

a polar continuum is the year 1686, when Jakob Bernoulli introduced angular momentum as a 

postulate, independent of balance of momentum [TRUESDELL 1960]. It means, that one of the 

essential features of polar continua is that the stress tensor is not necessarily symmetric, and the 

balance of angular momentum equation has to be modified accordingly. Owing to Grioli’s 
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discovery, we find, that models in which the stress tensor is not symmetric can be regarded as 

polar-continua. Resuming, in addition of the Cosserats, Grioli asserts, that the non-symmetry 

of the stress tensor appears also if higher order deformation gradients are included in the 

specific energy, instead of only the first order gradients. The so-called “material nonlinearities” 

have nothing to do with the origins on non-symmetry [BESDO 1974].  

Remark 4.  Note that the writing of the first and second Cauchy laws in the Euler and 

Lagrange descriptions as well as in the intrinsic approach and simultaneous definitions of stress 

tensors (Cauchy, first Piola-Kirchhoff, second Piola-Kirchhoff, rotated second Piola-Kirchhoff, 

etc.)  does not mean that we are known which measures of deformation corresponds to them. 

In such a situation Grioli asks - what are the proper measures of deformation [GRIOLI 1968].  

Grioli has proposed to consider such measures as: 

𝐸 =
1

2
(𝐹𝑇𝐹 − 1)   ;    𝜈 = 𝐹𝑇𝑅   ;   𝜈𝑖 = 𝐹𝑇𝜕𝑖(𝑅) = 𝐹𝑇𝑅,𝑖     𝑖 = 1,2,3                    (20) 

There are   6+9+27 measures that have no strict relations with the Cosserats measures. 

Especially, 𝜈𝑖  is not consistent with the Cosserats.  But if one defines a tensor   Ζ𝑖 =
1

2
𝑅−1𝑅,𝑖 , 

which is strictly rotational dependent, then the   𝜈𝑖 = 2𝜈Ζ𝑖 .  Next having  𝜈  and  Ζ𝑖  as the 

basic measures Grioli has proposed the constitutive relations: 

𝜂 = −
𝜕𝑊

𝜕𝜈
       ;     𝜏𝑖 = −

𝜕𝑊

𝜕Ζ𝑖
                                                          (21) 

According to Grioli, stresses tensors   𝜂  and  𝜏𝑖   are related with the first Piola-Kirchhoff 

measures: 𝐹Φ  and Λ = 𝐹Ψ  (see, eq.18).  If one defines:  𝐹Φ = 𝑅𝜂  and   Λ = 𝐹Ψ =

−
1

2
𝜖𝑖𝑗𝑘𝑅𝑟𝑗

𝜕𝑊

𝜕Ζ𝑖𝑘,𝑠
𝑒𝑟⨂𝑒𝑠  then the first and second Cauchy laws (eq.19) can be expressed via 

responsible strain measures   𝜂  and   𝜏𝑖  and, finally, a road to complete description within the 

frame of “natural Lagrangean description” becomes open. This difficult subject was discussed 

and developed by numerous researchers like:  TOUPIN 1962; BESSAN 1963; KOITER 1964; 

MINDLIN 1964; KAFADAR AND ERINGEN 1971; STOJANOVIĆ 1972; STAZI 1976. What is 

interesting, in the plates and shells theories a way for discovery of Lagrangean measures of 

deformation is quite different and independent than in 3D. We should follow the concepts of 

KIRCHHOFF 1850; LANGE 1885; ZERNA 1950; REISSNER AND WAN 1968; REISSNER 1972.  
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5. Intrinsic approach 

The intrinsic description that is using the concept of a mobile reper  was the main goal of 

the Cosserats work. This description has been collected into one unified model mechanics of 

rigid body (0D), mechanics of deformable strings (1D), mechanics of deformable plates and 

shells (2D) and, what was great novelty, mechanics of 3D bodes.  Unfortunately, this novelty 

was not developed on the ground of 3D bodies, after 1909, it was further cultivated and 

gradually became forgotten. 

 

Fig. 2. Cosserats’ concept of a moving frame (1896). 

Recall, the intrinsic description involves the introduction of a moving frame of reference 

where an observer moves and rotates according to the deformation he is supposed to measure. 

We have two ways of describing the continuum – the first one, the most exploited, is the 

description called of intrinsic Lagrangean - where the mobile reper is "pushed and rotated" by 

an element of the local Helmholtz symmetry group:   𝕄 ∈ ℋ(𝑥, 𝑡) = 𝑇(3) ⊲ 𝑆𝑂(3).    and the 

one, little-known "intrinsic Eulerian" where the mobile reper is "pushed and rotated" by means 

of the inverse element  𝕄−1.  Both of these descriptions are used by the Cosserats, although the 

mobile reper description from the Eulerian view is limited by the Cosserats to 3D bodies only. 

The Lagrangean intrinsic approach, hereinafter referred to as “intrinsic”, uses two repers;  

the first one is  moving reper   ℝ′ = {𝑥′, 𝑑𝑥
′ , 𝑑𝑦

′ , 𝑑𝑧
′ }𝑇   to which we refer the description of the 

body deformation in relation to the second, output, fixed, reper  ℝ = {𝑥0, 𝑑𝑥, 𝑑𝑦, 𝑑𝑧}
𝑇: 
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ℝ′ = {

𝑥′

𝑑1
′

𝑑2
′

𝑑3
′

} = (
1 𝑢
0 𝑅

){

𝑥0
𝑑1
𝑑2
𝑑3

} = 𝕄ℝ                                                     (22) 

The elements of the Helmholtz group  𝑢  and  𝑅   are the basic unknowns of the Cosserat 

model. Physically defining them, these are three components of displacement and three 

components of rotation. The physical space in which the body is to be inserted has four 

lagrangean coordinates:  𝜚𝑏  where 𝑏 = 𝑡, 𝑥, 𝑦, 𝑧   - they are, in a special case, glued to the initial 

reper ℝ. 

The fundamental object was introduced by the Cosserats "ex cathedra" without explaining 

the physical basis, is described to be: "geometric velocities" [COSSERAT E. AND   F. 1909A, §43]. 

They are formed by differentiating the element of the group according to four coordinates  𝜚𝑏.  

The Cosserats mark them as:   𝜉𝑏 , 𝜂𝑏 , 𝜁𝑏  and    𝑝𝑏 , 𝑞𝑏 , 𝑟𝑏  , respectively, with  denotation  𝜉  is 

referring to the first element of the group,   𝜂  to the second,  𝜁  to the third,  𝑝  to the fourth,  𝑞 

to the fifth,  𝑟  to the sixth.  Thus, it can be shown that these “geometric velocities” of Cosserats 

are measures of intrinsic deformation and are collected within a four-vector with six values in 

the Lie algebra of the group  ℋ(𝑥, 𝑡) = 𝑇(3) ⊲ 𝑆𝑂(3).  This vector with six values within Lie 

algebra, according to the tradition of gauge field theory, will be denoted by the letter  𝒜 . 

In the gauge field theory it is called the gauge potential, but in the fiber manifold 

differential geometry it is called  “compensating potential”  or “one-form of connection” and, 

finally,  within the  moving frame description it is called in French literature “a torsor”, the 

Germans used the term “dyname”, and the English called it a “wrench”, while the elements of 

SO(3) were then “screws”. Ericksen and Truesdell re-called this object as “the wryness” 

[ERICKSEN, TRUESDELL 1958].4     

 
4  There is an anecdote relating with the notion of “wryness”. One of us (J. Badur) in  December 1984 visited 
Technical University at Saint Petersburg. The aim of visit was to meet prof. Pavel Zhylin. The meeting takes 
place in Zhylin’s cathedral room accompanied by a guard from the university's security bureau with a 
Kalashnikov rifle on his back and a mysterious employee of the secret police. The atmosphere of the meeting 
was tense. When J. Badur handed over his article [PIETRASZKIEWICZ, BADUR 1983A], the police officer first 
checked it for a long time, page by page, before it could be handed over to Pavel Zhylin. In this situation, it 
was not known what to talk about, and Zhylin was not sure to whom he is talking. Then he pointed to the 
article Ericksen and Truesdell [ERICKSEN, TRUESDELL 1958] and asked, indicating to the first mathematical 
equation - what is this object? When J. Badur, without hesitation, replied that “it is a wryness connection", 
the anxiety and tension subsided, and the two participants began to talk about the "intrinsic approach".  
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If the Lie algebra of  ℋ(𝑥, 𝑡) = 𝑇(3) ⊲ 𝑆𝑂(3) consist six matrices  𝒯𝛽   (𝛽 = 1,2,3  

(translational), 𝛽 = 4,5,6 (rotational)) then, the whole Cosserats measures of velocities and 

deformations can be collected together and simply defined to be: 

𝒜 = 𝒜𝑏𝛽𝒯𝛽(𝜚𝑏) = 𝒜𝑏(𝜚𝑏) = (𝜕𝑏𝕄)𝕄
−1(𝜚𝑏)                                    (23) 

It means that one-form of connection (the gauge potential)  𝒜  has four component is 

space-time and six values in the lie algebra of Helmholtz monodromy group.  When we take 

the time coordinate of 4-time continuum  𝑏 = 𝑡 (time) then from eq. (4) one obtains the 

Cosserats kinematic velocities [COSSERAT E. AND  F. 1909A]: 

𝒜𝑡 = 𝒜𝑡𝛽𝒯𝛽 = 𝜉𝒯1 + 𝜂𝒯2 + 𝜁𝒯3 + 𝑝𝒯4 + 𝑞𝒯5 + 𝑟𝒯6                               (24) 

And for 𝑏 = 𝑖 = 𝑥, 𝑦, 𝑧,  one obtains the “geometric velocities”:  

𝒜𝑖 = 𝒜𝑖𝛽𝒯𝛽 = 𝜉𝑖𝒯1 + 𝜂𝑖𝒯2 + 𝜁𝑖𝒯3 + 𝑝𝑖𝒯4 + 𝑞𝑖𝒯5 + 𝑟𝑖𝒯6                              (25) 

It means that all together we have 4 x 6 = 24 components of Cosserats deformations 

components which are the function of six parameters of Helmholtz group. Unfortunately, in the 

1909-1935 this helpful structure of non-abelian gauge group was far to turn whole elasticity 

theory into the frame of gauge field theory. In the period 1909-1950  the original concept of 

Cosserats has steeply been forgotten.   

 

6. The Sudria vectors notation. 

Before that, in 1935 Joachim Sudria [SUDRIA 1925, 1935] a scientist related with 

Toulouse,  developing reasoning truly in Cosserats’ tradition, and having  an unambiguous 

reference to the notion of Euclidean action5 to witness an approach truly in the Cosserats’ 

tradition with an unambiguous reference to the notion of Euclidean action. Having a critical 

treatment to the Planck concept of “smallest quantum of action” Sudria underline that after 

Lagrange yet Lazare Carnot was sufficiently hostile to that notion being given a priori that he 

deemed any proof that contained the word “force” to be absurd [CARNOT 1793].  

Keeping itself the doctrine of action, Sudria, underlying the French tradition of 

developing of a set governing equation only on the base of variational treatment of the action, 

 
5  J. Sudria even cite Léon Brillouin: “Among the physicists, who dares to boast that they have a clear idea of 
action?” 
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has rewritten the “intrinsic” Cosserats equation in terms of “vectors”. It means, that Sudria has 

resigned with Lie group algebra notation: 𝜉𝑏 , 𝜂𝑏 , 𝜁𝑏 (𝑏 = 𝑡, 𝑥, 𝑦, 𝑧) [translational deformation 

potentials] and 𝑝𝑏, 𝑞𝑏 , 𝑟𝑏 ( 𝑏 = 𝑡, 𝑥, 𝑦, 𝑧) [rotational deformation potentials] and, as a form of 

simplification, he introduced two “vector measures”: Υ𝑏 = 𝜉𝑏𝑑1
′ + 𝜂𝑏𝑑2

′ + 𝜁𝑏𝑑3
′   and Ω𝑏 =

𝑝𝑏𝑑1
′ + 𝑞𝑏𝑑2

′ + 𝑟𝑏𝑑3
′   (nowadays [BADUR, PIETRASZKIEWICZ 1986; BADUR 1993B] denoted as:  

𝒽𝑏 , ℓ𝑏, respectively), where three base of  fixed (Lagrangean) frame are:  𝑑1 ≡ 𝑑𝑥, 𝑑2 ≡ 𝑑𝑥,

𝑑3 ≡ 𝑑𝑧. Notice, that the form this vector denotation is only one step to tensor notation:  𝒱 =

Υ𝑏⨂𝑑𝑏
′    and   ℒ = Ω𝑏⨂𝑑𝑏

′    which is commonly used in the literature [GÜNTHER 1958; KRÖNER 

1960; TOUPIN 1962; MINDLIN, TRIESTEN 1962; ERINGEN, SUHUBI 1964]. 

As energetical partners for deformation  Υ𝑏 and curvature  Ω𝑏  Sudria defines stress:  ℰ𝑏 =

𝐴𝑏
′ 𝑑1

′ + 𝐵𝑏
′𝑑2

′ + 𝐶𝑏
′𝑑3

′   and couple  ℳ𝑏 = 𝑃𝑏
′𝑑1
′ + 𝑄𝑏

′ 𝑑2
′ + 𝑅𝑏

′ 𝑑3
′    vectors, with a special 

definition a case when 𝑏 = 𝑡 (time). With these definitions the four-time Cosserats equations 

of motion [COSSERAT E. AND  F. 1909A, §63] written for convective coordinates  𝜚𝑏  take a more 

compact form [SUDRIA 1935]:  

                        
𝐷

𝐷𝜚𝑏
 ℰ𝑏 = 𝑓𝑟      ,   

𝐷

𝐷𝜚𝑏
 ℳ𝑏 + Υ𝑏 × ℰ𝑏 = 𝑚𝑟                                             (26) 

where (𝑏 = 𝑡, 𝑥, 𝑦, 𝑧)  and  𝑓𝑟 , 𝑚𝑟   are intrinsic translational and rotational Cosserat action 

sources. In the above Sudria defines the divergence operator to be:                          

𝐷

𝐷𝜚𝑏
 (∙) = (∙),𝜌𝑏 + Ω𝑏 × (∙)                                                                 (27) 

The future of mechanics has shown that the Sudria technique via “vectors”  Υ𝑏, Ω𝑏  and  

ℰ𝑏 , ℳ𝑏  does not develop more on the ground of 3D medium. However, what is surprising, in 

the field of thin beam (wires, strings, rods), plate and shells, modeling with using of the vector 

measures of deformation and stress has becomes very popular and have been introduced quite 

independently in a different context [TONOLO 1930; KRAUß 1929; SYNGE, CHIEN 1941; CHEN 

1944; ZERNA 1950]. For the better denotation, we will call the pure deformation vector  Υ𝑏  as 

the Sudria vector, and the curvature  Ω𝑏  as the Darboux vector.   

Let us mention, for historical precision, that Sudria vector notation has not been accepted 

on the ground of 3D Cosserats bodies, but within the framework of rods, plate and shells both 

Sudria deformation vector and the Darboux curvature vector were frequently used. One of the 

veteran of this treatment was Wojciech Pietraszkiewicz  known from his celebrated report 

“Introduction to non-liner shell theory” [PIETRASZKIEWICZ 1988].  Other papers by GREEN ET 
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AL 1965, SIMMONDS, DANIELSON 1972;  REISSNER 1981; BASAR 1987; MAKOWSKI, STUMPF 

1990; SANSOUR AND BUER 1992 are examples of universality of  Sudria formulation.  

Remark  5.   On the beginning of 60, the Sudria vector notation has become popular 

among the group of German scientists (Günther, Kröner, Kessel, Hermann Schaefer, Kluge, 

Besdo, Lippmann, as well as Eric Reissner). It was in 1958 when Wilhelm  Günther introduced 

a complete set of vector presentation of the Cosserats continua  but limited to the geometrically 

linear case. In that case the differences between Eulerian, Lagrangean and intrinsic description 

vanish and the Sudria  Υ𝑏, Ω𝑏  and  ℰ𝑏 , ℳ𝑏  becomes [74]:   Υ𝑖 ≅ 𝜀𝑖 + 1; Ω𝑖 ≅ 𝜅𝑖 ; ℰ𝑖 ≅ 𝔅𝑖;  

ℳ𝑖 ≅ 𝔗𝑖.  Then, the first and second Cauchy laws (eq.26) take the vectorial form: 𝜕𝑟(√𝑔𝔅𝑟) +

√𝑔𝑓0 = 0  and  𝜕𝑟(√𝑔𝔗𝑟) + 𝑒𝑟 × (√𝑔𝔅𝑟) + √𝑔𝑚0 = 0   - which are important in any 

curvilinear coordinate system with 𝑔 being the measure of metrics.  

Instead of fully nonlinear vectors:    Υ𝑖  and Ω𝑖   Günther has proposed linear expressions 

as:  𝜀𝑖 = 𝜕𝑖𝑢 + 𝜕𝑖 × 𝜑 ;  𝜅𝑖 = 𝜕𝑖𝜑    where 𝑢, 𝜑  are the vectors od displacement and rotation. 

Probably Günther is the first who is able to rewrite the Cosserats compatibility conditions in 

terms of the linear Sudria deformation and Darboux curvature vectors [GÜNTHER 1958, eq.2] 

as:  𝜕𝑖𝜀𝑗 + 𝑒𝑖 × 𝜅𝑗 = 0 ;  𝜕𝑖𝜅𝑗 − 𝜕𝑗𝜅𝑖 = 0. These are nothing else as the linearized 18 Cosserats 

compatibility equations. Next, if the deformations 𝜀𝑖, 𝜅𝑗   are given as independent of Cosserats 

displacement and rotation then, as Günther postulate, they must define some “incompatibility 

objects”:  𝐽𝑘
(𝑟)
≡ 𝜖𝑖𝑗𝑘𝜕𝑖𝜅𝑗 ; 𝐽𝑘

(𝑡)
= 𝜖𝑖𝑗𝑘(𝜕𝑖𝜀𝑗 + 𝑒𝑖 × 𝜅𝑗)  which are the measures of strain 

incompatibilities. Additionally, these objects must fulfil the co-called Bianchi differential 

identities [GÜNTHER 1958, eq. 2.16, 2.17]: 𝜕𝑖𝐽𝑖
(𝑟)
= 0  ;  𝜕𝑖𝐽𝑖

(𝑡)
+ 𝑒𝑖 × 𝐽𝑖

(𝑟)
= 0 .  

Generally, Günther after by developing some “primary sequence of deformation set of 

equations” was able to find quite similar sequence for stresses and moments. Among them he 

proposed 18 stress function  [GÜNTHER 1958, eq. 3.11, 3.12]:  𝔅𝑟 = 𝜖𝑖𝑗𝑟𝜕𝑖𝔣𝑗  and  𝔗𝑟 =

𝜖𝑖𝑗𝑟(𝜕𝑖𝔥𝑗 + 𝑒𝑖 × 𝔣𝑗).  In this manner Günther has shown that a structure of governing equations 

of the Cosserats continua is the same as the general structure of the classical field theory known 

as the Tonti primary and dual diagrams [TONTI 1976]. In the differential geometry these 

structures are known as the “Spencer sequences”  - the complete development of their 

knowledge one can find in  Jean-François Pommaret’s works [POMMARET 2010; POMMARET 

2014; POMMARET 2016].  
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Let us mention that 3D approach is consistent with Euclidean geometry therefore initial 

reference curvature vectors are unpresented in 𝜕𝑖𝜅𝑗 − 𝜕𝑗𝜅𝑖 = 0. In shells the situation is 

different from very beginning since a surface has 2D Riemannian geometry. If  ℓ𝛼 , 𝛼 = 1,2 is 

the actual Darboux curvature vectors, then the curvature compatibility equations: ℓ1,2 − ℓ2,1 +

ℓ1 × ℓ2 = 0  is fully equivalent to three scalar Gauss-Codazzi equations typical for Riemannian 

space. According to Reissner, one can write the Darboux curvature vectors as a sum of the 

reference, undeformed Darboux vector  ℓ𝛼
°    and the Reissner deformation curvature 𝜅𝛼  as : 

ℓ𝛼 = 𝑅ℓ𝛼
° + 𝛾𝛼𝜅𝛼  [REISSNER 1950; SIMMONDS, DANIELSON 1972; REISSNER 1974; 

PIETRASZKIEWICZ 1979] where deformed base is  𝑎𝛼 = 𝑥,𝛼 = 𝛾𝛼𝑑𝛼
′  .   

 

7. Intrinsic versus natural approach – a time after Cosserats 

In summary, let us highlight three research paradigms. From very beginning, we have 

three ways of describing the physics of a continuum: two of them, the description of Lagrangean 

(mainly for solids) and Eulerian (for fluids) belong to the natural description. 

The third description that the Cosserats developed in their two monographs [COSSERAT 

E. AND F. 1896; COSSERAT E. AND  F. 1909A]6 is the description of the type "intrinsic" (both 

from lagrangean and eulerian point of view). This description has not been taken up in the 

literature and contemporary plays a marginal role.  Nevertheless, the continuum with the 

asymmetric stress tensor and couple stress has been developed since 1950 either in the 

description of Lagrange [LE CORRE 1965; GÜNTHER 1958; GRIOLI 1960; KOITER 1964; 

NOWACKI 1966] or  the Euler description [BESSAN 1963; ERINGEN AND SUHUBI 1964; 

LIPPMANN 1969; ALBLAS 1969 and BADUR, ZIÓŁKOWSKI, ZIÓŁKOWSKI 2015]. 

It would seem that the "intrinsic" description should go to the dungeons of history. And 

it will be forgotten once and for all. At least that's what the work of mechanics indicated: 

NOWACKI 1986; EHLERS ET AL. 2003; TRUESDELL 1953; REISSNER 1974; GRIOLI 1960 MAUGIN 

2014; BASAR AND WEICHERT 2000. 

Even Truesdell and Toupin  in their fundamental monography [TRUESDELL, TOUPIN 

1960] on the classical field theory, have overlooked the potential power of “intrinsic 

description”. Probably Clifford Truesdell, writing his historical review [TRUESDELL 1960] on 

 
6  The paper:  Note sur la théorie de l’action euclidienne  [COSSERAT E. AND  F. 1909B] can not be treated as 
completly different form monography [COSSERAT E. AND  F. 1909A].  
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thin elastic bodies, was not yet familiar with the France achievements in the “intrinsic” and 

“moving frame” descriptions. Especially, this Truesdell’s ignorance concern to the thin shells, 

which was a subject of his PhD thesis in 1943. Even in the paper ERICKSEN J.L., TRUESDELL C. 

1958 the basic articles concerning “intrinsic approach” are not cited, what should be treated as 

a salient removing of “intrinsic” from mechanics.    

Fortunately, the Cosserats stood on the shoulders of giants, they did not invent new 

abstract physics, but only unified within the basis of the 3D body, earlier concepts applied to 

material point mechanics, mechanics of rods and beams, mechanics of plates and shells. This 

attempt to a unification, important for mechanics, is extremely valuable for the entire physics 

of the continuum, as it was noticed by the American researcher E. Wilson as early as 1913 

[WILSON 1913]. Today, the same attempts to unify different interactions are made within gauge 

field theory [MEISSNER 2013; HEHL 2017]. The way of searching for new field theory models 

is the same as that established by the Cosserats – one needs to find a set of equations of motion 

and laws of currents conservation based on action: 

𝛿𝒜 = 𝛿 ∫ (∭ 𝑊
⬚

𝑆

𝑡𝐵

𝑡𝐴

 𝑑𝑎 𝑑𝑏 𝑑𝑐) 𝑑𝑡 = 𝛿 ∫ (∭ Ω
⬚

𝑆

𝑡𝐵

𝑡𝐴

 𝑑𝑥𝑑𝑦𝑑𝑧) 𝑑𝑡                 (28) 

where  𝑊,Ω    are the volumetric energy densities in the Lagrange and Euler descriptions, 

respectively [COSSERAT E. AND  F. 1909A]. Unfortunately, apart from very general formulas for 

the Least Action Principle, the Cosserats have not provided any more information on possible 

constitutive equations, finishing their considerations on possibility of splitting kinetic energy 

and deformation energy. The intrinsic deformations in Eulerian description are not defined 

therefore the Eulerian volumetric densities Ω  in eq. 28  is not written explicitly. Only in the 

first monography: Sur la theorie de l'elasticite (1896) Cosserats proposed an explicit form of 

lagrangean    𝑊 = 𝑊(𝒱2) = 𝑊(𝐸)   consistent with the  « constrained rotation » restrictions. 

In the above, the Lagrangean finite deformation tensor is defined to be: 2𝑅𝐸𝑅𝑇 = (𝒱2 − 1) 

[COSSERAT E. AND F. 1896; COSSERAT E. AND  F. 1909A; COSSERAT E. AND  F. 1909B].  

 

8.  Concept of compensating potentials 

Probably Herman Weyl was first who introduced in 1918 to the field theory a notion of 

gauge transformation as transformation related with a local group of symmetry. He has attempt 

to unify gravity and electromagnetism as the unifying two groups: Poincare PL(14) and unitary 
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U(1). Weyl clarified that the  electromagnetic  field  is  intimately related to local internal 

symmetries, under the U(1) group that act on the 4-spinorfields of charged matter. The group 

U(1) is abelian group where algebraic nonlinearities are abandoned. In the mid 1950’s Yang 

and Mills, dealing with nuclear strong interactions, further  explored  the  notion  of  gauge  

symmetries  in  field  theories  going  beyond  the U(1) group to include non-Abelian Lie group 

SU(2). Then non-Abelian algebraic nonlinearities – similar to well-known SO(3) nonlinearities, 

have been appeared.  In 1956 Utiyama reinterpreted gauge fields as “compensating potentials” 

of all semi-simple Lie groups including the Lorentz group.  

Then the idea of gauging appears as a concept of mathematical description based on the 

technique of localization, some global symmetry group of the field theory, introducing a new 

interaction described by the gauge potential. The compensating field – mathematically is 

nothing else as a scalar or vector with  𝑛 −values within the algebra of local group, where 𝑛 is 

the dimension of Lie algebra. The main postulate of gauging was to introduce the compensating 

fields in a such manner that makes it possible for the fields and matter action to be locally 

invariant under the symmetry group. This rule of local invariance as a result leads to a concept 

of minimal replacing of “classical derivative” into “covariant gauge derivative”. 

Simultaneously, owing the works of Trautman [MEISSNER 2013], developed a clear differential 

geometrical interpretation of the gauge potential as the connection of the fiber bundle, which is 

the manifold obtained from the base space-time manifold and the set of all fibers. These are 

attached at each space-time point and are the vector, tensor or spinor spaces of representation 

within  𝑛- parametrical algebra of the local symmetries. What is important in this geometrical 

interpretation, that the imposition of local symmetries implies that the geometry of the fiber 

bundle is non-Euclidean, and the gauge field strengths tensor is the two-form of curvatures of 

such a manifold [POMMARIET 1989; POMMARET 2016; DE LEÓN, EPSTEIN, JIMÉNEZ 2021].  

The gauge field theory can be also interpreted as some intrinsic description where intrinsic 

space of Lie algebra is introduced by “moving frame” of a symmetry group. Thomas Craig, an 

American physicist, was a pioneer in applying the Cosserats moving frame to the description 

of space-time deformation of gravitation continua [CRAIG 1898]. Such w concept of gravitation 

gauge potential was in contrary to Władysław Gosiewski’s concept of gravitation deformation 

metrics [GOSIEWSKI 1877; BADUR 2022]. The Gosiewski model of gravitation has used the 

space metrics 𝑔𝑖𝑗 as a gravitation potential where continuum deformation has been induced by 

insertion of a massive body.  Therefore, in contemporary field theory there are exist two quite 

different models of gravitation: the first is based on space-time metric:  𝑔𝜇𝜈  as the gravitational 
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potential (a fundamental unknown) and second is based on gauge compensating field    𝒜    as 

fundamental gravitational field [BADUR 2022].  

Élie Cartan [CARTAN 1925], the French geometer of Lie group of moving frame, was the 

next who adopted the Cosserats intrinsic description to describing of gravitation potential 

adopted to any space-time relativity conditions. Unfortunately, the Cartan gravitation model 

has been   development in the language of modern differential geometry, therefore it cannot be 

appreciated as a fully physical model. Only in 1965,  Hehl and Kröner [HEHL, KRÖER 1965A, 

1965B] by precise consideration of group arguments in the Cosserats vision of continuum were 

able for noting the rich possibility of gravitation modeling though include the action of 

distributed couples along with more classical contact forces. In contrary to common general 

relativity model, the model of gravitation based on the Cosserats, has contains a new additional 

physical quantities like “spin” and “torsion” [HEHL 1973; HEHL AND OBUKHOV 2007; LAZAR 

AND HEHL 2010]. Hehl notices that a fundamental difference between general relativity and the 

Cartan model of gravitation lies on the fact that the Cartan model is completely the gauge field 

theory only based on an algebraic nonlinearity, whereas the general relativity is based on 

geometric nonlinearity [HEHL 2017].   

 

9. Concept of anholonomy frame 

The group of Italian geometers, among them T. Levi-Civita and Gregorio Ricci-

Curbastro, have developed a concept of arbitrary moving frame with  𝑎, 𝑏, 𝑐 … =

1,2,3,4, 5, … , 𝑛 frame vectors  𝑒𝑎, called the anholonomy base.7  The rule of differentiation in 

“anholonomy world” was not a simple one, firstly it must be defined the differentiation operator 

as: 𝜕𝑎 =
𝜕

𝜕𝜚𝑎
= 𝑅𝑎𝑖

𝜕

𝜕𝑥𝑖
= 𝑅𝑎𝑖𝜕𝑖  where 𝑅𝑎𝑖 anholonomy coefficients . This anholonomic 

derivative leads to the anholonomy base differentiation to be: 𝜕𝑎𝑒𝑏 = 𝛾𝑎𝑏𝑐𝑒𝑐 . The coefficients  

𝛾𝑎𝑏𝑐,   called the Ricci rotation coefficients [SCHOUTEN 1954], have no any similarity to the 

Christoffel symbols, since they are defined without any reference to the space metrics as:   

𝛾𝑎𝑏𝑐 = 𝑅𝑎𝑘𝑅𝑏𝑗𝜕𝑘𝑅𝑐𝑗 where 𝑖, 𝑗, 𝑘 = 1,2,3  are related with the holonomic system of 

 
7  In the gravitation this base is called Vierbeinen [HEHL 1973].  If one retains the idea of a difference then 
one may also remark that the first theory of gravity makes recourse to only Riemann space, therefore, a 
space without torsion; the second one makes recourse to a space with torsion, in the sense of Élie Cartan. 
However, Hehl has proof, that a space with torsion may be represented on a space without torsion by means 
of the absolute differential calculus and the Ricci rotation coefficients [HEHL, OBUKHOV 2007; SIMON, 

DELL’ISOLA  2018]. 
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coordinates. Geometers Cartan, Ricci, Schouten and others have shown that even if the 

holonomic space is a Euclidean (no curvature and torsion) the anholonomy system in general 

possesses both curvature and torsion. Élie Cartan [CARTAN 1925, pp. 367] defined the 

components of torsion  𝔨𝑎𝑏𝑐 and curvature   𝔯𝑎𝑏𝑐𝑑 by the formulas: 

𝜕𝑎(𝜕𝑏𝑓) − 𝜕𝑏(𝜕𝑎)𝑓 = 𝜕[𝑎𝜕𝑏]𝑓 = (𝛾𝑎𝑏𝑐 − 𝛾𝑏𝑎𝑐)𝜕𝑐𝑓 = 𝔨𝑎𝑏𝑐𝜕𝑐                     (29) 

𝔯𝑎𝑏𝑐𝑑(𝛾) = 𝜕𝑑𝛾𝑎𝑏𝑐 − 𝜕𝑐𝛾𝑎𝑏𝑑 − 𝛾𝑎𝑏𝑒𝔨𝑒𝑐𝑑 + 𝛾𝑒𝑎𝑑𝛾𝑒𝑏𝑐 − 𝛾𝑒𝑎𝑐𝛾𝑒𝑏𝑑                    (30) 

Briefly, Ricci’s model of immersed anholonomic manifold, in its fundamental formulas, 

recalls, at the same time, the formulas of Cosserats which are only limited to the cases when 

the anholonomic indices are low:  𝑎, 𝑏, 𝑐, 𝑑 = 1,2,3  and no more. It was Thomas Craig who 

was the first to introduce a model of gravitation with the indices 𝑎, 𝑏, 𝑐, 𝑑 = 1,2,3,4 [CRAIG 

1898] and his model of gravitation has no relation with any Riemannian metrics taken as the 

gravity potentials. Craig’s model was developed in USA by Wilson, Tolman, Murnaghan, G.N. 

Lewis, and was discussed also by Whitehead in his relational model of gravitation [BADUR 

2022]. However, in the theory of groups, as proposed by CARTAN 1935; SCHOUTEN 1954, 

KRÖNER 1960, may be a theory of continuum with torsion; one may thus have, in the theory of 

Ricci coefficients, everything that one has in that of Riemann spaces, generalized by the 

appearance of torsion. 

One information is an important for correct understanding the differential tools related 

with a moving frame. For example, how to calculate the operation of divergence if, according 

to Cosserats, we use the rotated second Piola-Kirchhoff stress:  𝑆′ = 𝑅𝑆𝑅−1 [COSSERAT E. AND 

F. 1896, eq.22]. Or, similarly, how to write explicit component form of Sudra vectors (eq.26). 

As Angelo Tonolo has pointed us [TONOLO 1930], the anholonomy base is differentiated by the 

Ricci rotation coefficients, then  the divergence of the rotated second Piola-Kirchhoff stress 

should be calculated with two not one Ricci rotation coefficients:   Div′(𝑆′) = (𝜕𝑏𝑆𝑎𝑏 +

𝛾𝑐𝑑𝑎𝑆𝑐𝑑 + 𝛾𝑑𝑐𝑎𝑆𝑐𝑑)𝑒𝑎  [TONOLO 1930, eq.1] or Div′(𝑆′) = 𝜕𝑏𝑆𝑎𝑏𝑒𝑎 + 𝑆𝑎𝑏ℓ𝑎 × 𝑒𝑏 + 𝑆𝑎𝑏ℓ𝑏 ×

𝑒𝑎  if we develop  the Sudria equation (27).        

 

10.  The fruitful analogy 

The classical Cauchy continuum model considers material continua (fluids, solids, grains, 

foams, etc.) as a collection of simple particle-continua with points having three displacement-

degrees of freedom, and the response of a material to the deformation is characterized by a 
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symmetric Cauchy stress tensor. Such mathematical model is governed by the equation of 

motion which is identified with the balance of linear momentum. The balance of moment of 

momentum, established by Euler in 1752 [EULER 1752] for a single rigid body is automatically 

fulfilled in the Cauchy model of continuum. In the whole XIX century, developing of mechanics 

of rigid body, thin beams and thin shells lead to increasing a role of finite rotations in description 

of motion and deformation of solid continua. In 1884 Hess discovered [HESS 1884] quite 

unusual analogy between mechanics of thin Euler-Kirchhoff beam model and mechanic of rigid 

body. When he has changed the time (𝑡) coordinate in six rigid body equation of motion into 

length coordinate (𝑠) in the six equation of a thin beam statics, then it appears that these 

equations have the same structure. Hass called this phenomenon as “kineto-static analogy”.  

Using this analogy in a little extended manner, where time and space coordinates play the 

same: “time-governed” role, Aron in 1874 [ARON 1874], constructed from very beginning a 

deformable surface model where three parameters: two surface convective coordinates and time 

coordinate were used for construct a “surface-time analogy”. In constructing the model of 

surface Aron was under influence of Sophie Germain, which has treated the plate as to be a 

crossing two elastic, flexible, thin, Euler beams. In Aron’s analogy, the time coordinate can be 

replaced mutually with the surface convective (Gauss) coordinates and three translations, and 

three rotations of any surface points become the basic unknowns.  

Next, Aron’s paper was the subject of critical analysis by Love [LOVE 1888] who, first of 

all, made linearization and next elimination of rotations as independent variables. To eliminate 

rotations Love used geometrical constrains, nowadays known as “Kirchhoff-Love constrains”. 

In this approach, rotation of beams and shells, even if huge, are eliminated and become hidden 

parameters. What important, concept of couples, would be further used since it has relation with 

engineering practice. Günther says that:  the doors for 3D+time continua were opened 

[GÜNTHER 1961]. The solid body can be described as rigid particles continuum with four-time 

parametrization, since tree spatial parameters acts in the same manner as time. François and 

Eugène Cosserats were be first in discovery of four-time property of  Euclidean time-space and 

first in introducing of 4-time relativity. The pioneers of using intrinsic formulation before 

Cosserats are listed as Euler [EULER 1752], Lagrange [LAGRANGE 1762], Piola [PIOLA 1833; 

DELL’ISOLA AT AL. 2015], Kirchhoff [KIRCHHOFF 1852; 17], Skiba [SKIBA 1874], Franke 

[FRANKE 1889], Basset [BASSET 1894, 1895].   
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In the literature there are many examples of using Hess’ analogy to construct a 

mathematical model of shell surface with displacement and independent or dependent rotations. 

These examples nowadays are excellent patterns for developing the string theories in the 

quantum field modeling.  Let us mention the papers of HENCKY 1915; WEATHEBURN 1927; 

KRAUß 1929; VALID 1979; BASAR 1987; MAKOWSKI AND STUMPF 1990; CHRÓŚCIELEWSKI ET 

AL 192; OPOKA AND PIETRESZKIEWICZ 2004 and others. Even realistic, very practical models 

of rods, strings and lines have the base located within intrinsic approach see: [DANIELSON AND 

HODGES 1984; HODGES 1990; DILL 1992; O’REILLY AND TURCOTTE 1997;  CRISFIELD, JELENIĆ 

1998; GRUTTMAN ET AL 1998; LUO 2010).    

  

11. The concept of constrained rotations (1896) 

The first attempts to Cosserats model of continuum have really been started in his 

pioneering paper [COSSERAT E. AND F. 1896].  The basic variables of the Cosserats continuum 

are six unknown functions: for a solid there are the displacement and finite rotation of the 

particle of the continuum, and for fluids there are the material velocity and vorticity of the fluid 

element. Mobile reper  ℝ′ = {𝑥′, 𝑑𝑥
′ , 𝑑𝑦

′ , 𝑑𝑧
′ }𝑇  to which we refer the description of the motion 

moves in relation to the output reper ℝ = {𝑥, 𝑑𝑥, 𝑑𝑦, 𝑑𝑧}
𝑇  (see: fig 2) by displacement   𝑢 =

𝑥′ − 𝑥  and rotation    𝑑𝑎
′ = 𝑅𝑑𝑎  (𝑎 ≡ 𝑥, 𝑦, 𝑧).   In general, the rotation  𝑅  is arbitrary, but in 

the concept of constrained rotation, the rotation ceases to be an independent variable and 

becomes dependent on displacements in such a way that   𝑅 ≡ ℛ     where the rotation ℛ =

ℛ(𝑢, ∇𝑢)  is determined from the polar decomposition of the deformation gradient tensor: 

𝐹 = 𝒱ℛ = ℛ𝒰 = Grad 𝑢 = 𝑢⨂∇                                                     (31) 

Such a concise polar decomposition, devised precisely for the purpose of the concept of 

bound rotation, was devised by the Cosserats brothers as early as 1896 [COSSERAT E. AND F. 

1896, eq. 97]. To introduce this condition in a mathematically unambiguous way, they write:  

𝒱 = 𝒱𝑇  [COSSERAT E. AND F. 1896, eq. 99], i.e. they put three additional scalar conditions on 

the side components  𝒱.  

So, the idea is as follows.  Instead of the classical description within a fixed Cartesian 

frame of reference (Lagrangean or Eulerian), we can introduce new kinetics of description using 

a moving reper  ℝ, which rotates in a manner determined by displacements so as to maintain 

the symmetry of the objects used. In this approach, there are no more torque stresses and angular 
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momentum equations. However, we use explicitly, a rotating reference trihedron in order to 

more easily separate the insignificant quantities of deformation from the enormous rotations 

that contribute nothing to the internal energy. This thought guided Love in constraining Aron’s 

2D+time model or  Pietraszkiewicz  when writing about the new role of finite rotations in the 

description of the 3D deformation of the Cauchy continuum [PIETRASZKIEWICZ, BADUR 1983A]. 

Writing the condition of constrained rotation 𝒱 = 𝒱𝑇 in a way that uses the Cosserat 

notation, we have: 

𝒱 =  (

𝜉1 𝜉2 = 𝜂1 𝜉3 = 𝜁1
𝜂1 = 𝜉2 𝜂2 𝜂3 = 𝜁2
𝜁1 = 𝜉3 𝜁2 = 𝜂3 𝜁3

) = 𝒱𝑇                                             (32) 

We use Cosserats’ notation here, because we remember that the transition of "torsor" to 

"tensor" radically changes the doctrine of description within the mobile frame.   It should be 

emphasized here that the mechanics of flexible rods and thin shells consistently apply the 

description in the mobile reper or in some other "intrinsic" base of coordinates. The most 

famous example is the Cosserats surface statics equations derived in 1874 by Aron [ARON 1874] 

and repeated independently by REISSNER 1950, 1974.  It is different in 3D+time mechanics, 

where either a purely Lagrangean or purely Eulerian description is used, and internal objects 

are given a tensor character (e.g. translational deformation tensor and rotational deformation 

tensor). 

Let us return in this paragraph to the revaluation of the main achievements of Cosserats’ 

work entitled: Sur la theorie de l’elasticite [COSSERAT E. AND F. 1896]. This work is wrongly 

overlooked as contributing nothing to the Cosserats model.  Even the eminent researcher and 

expert on the Cosserats model, Prof. Jean-François Pommaret, forgot about it. In 1995, 

Pommaret heard of unknown results and without delay came from Paris to Poitiers by a bicycle 

to meet one of these authors. His surprise, when he saw 18 equations of continuity of 

deformations [COSSERAT E. AND F. 1896, eq. A, p.186], was complete, he decided to make a 

special article informing about: “Cosserats secrets” [POMMARET 1997]. Thus, in the literature, 

prof. Pommaret is known also as the specialist form Cosserats’ live and Cosserats’ 
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achievements.  Nevertheless, probably, the best scientific analysis of Cosserats efforts are given 

by WILSON 19138  and NEFF 2019.9 

In short, the work of the Cosserats from 1896 concerns the Cauchy continuum, but it has 

a novelty in the form of writing kinematic equations, constitutive equations and equations of 

motion which are referred to the moving base of the   𝑑𝑎
′    trihedron - this motion is originally 

marked as a mapping of the reper:  𝑀𝑥𝑦𝑧 → 𝑀′𝑥′𝑦′𝑧′.  This notation is slightly more complete 

and concise than the notation: ℝ → ℝ′, because it informs that the differentiation operation with 

respect to the moving coordinates   𝑥′𝑦′𝑧′  will be performed using motionless coordinates 𝑥𝑦𝑧  

first by “pull-back” of the object from the primed to the non-primed system, then by 

differentiation with respect to the non-primed coordinates and then by "push-forward" the result 

to the primed system.10 

Cosserats write the vector of displacement using in their model once a reference to a 

stationary base and once to a mobile base [COSSERAT E. AND F. 1896, eq. 94]  𝑢 = 𝑢𝑑𝑥 + 𝑣𝑑𝑦 +

𝑤𝑑𝑧 = 𝑢
′𝑑𝑥
′ + 𝑣′𝑑𝑦

′ + 𝑤′𝑑𝑧
′ . The rotation of bases is described explicitly by the rotation 

tensor: 𝑑𝑏
′ = 𝑅𝑏′𝑎𝑑𝑎 where  𝑏′ = 𝑥′, 𝑦′, 𝑧′  and  𝑎 = 𝑥, 𝑦, 𝑧.  Its nine components are directional 

cosines of the projections of the corresponding base vectors; they can, due to the orthogonality 

of rotation 𝑅−1 = −𝑅𝑇, be written using a finite rotation vector or three Euler angles – 

measured from 𝑀𝑥𝑦𝑧 when we push an object or measured from  𝑀′𝑥′𝑦′𝑧′, when we pull an 

object. Cosserats decide to describe the rotation using a unit rotation vector   𝑒  with the same 

components (𝑙, 𝑚, 𝑛)    relative to  𝑑𝑏
′    and  𝑑𝑎.  So,   𝑒 = 𝑙𝑑𝑥

′ +𝑚𝑑𝑦
′ + 𝑛𝑑𝑧

′ = 𝑙𝑑𝑥 +𝑚𝑑𝑦 +

𝑛𝑑𝑧.   The measure of the magnitude of rotation is the angle  𝜔 . Having  (𝑙, 𝑚, 𝑛, 𝜔)  and 

remembering that 𝑒2 = 1  d'Olinde Rodrigues [see: BADUR 2022] proposed four quantities 

[COSSERAT E. AND F. 1896, p.124]: 

 
8  Edwin Bidwell Wilson (1879–1964) was an American mathematician-physicist who had been a PhD 
student of J. W. Gibbs at Yale, and became Professor of mathematics first at M.I.T  and then at Harvard. He 
was co-authored a book on vector analysis with Gibbs (first edition, 1901, then several further editions). He 
proposed in 1911, the first model of general relativity which explicitly fulfils the invariance under the 
Lorentz group of symmetry. He proposed also a hyperbolic model of space-time – which is consistent both 
with electrodynamics and gravitation. 
9   Patrizio Neff (1999) An outstanding researcher concerning the Cosserats model. He is a chef Professor 
at  Lehrstuhl fur Nichtlineare Analysis, Universität Duisburg-Essen. 
10  There are in the literature a lot of extensions of deformable moving reper concept. Especially, if 
continuous crystal defects need to be described. LE AND STUMPF 1998; CAPRITZ AND VIRGA 1994; FOREST AT 

AL. 1997; NEFF 2006; FOREST AND SIEVERT 2006; PAPENFUSS AND FOREST 2006; CLAYTON 2022  are among 
them.   
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𝜆 = 𝑙 sin 
𝜔

2
    ,   𝜇 = 𝑚 sin 

𝜔

2
    ,   𝜈 = 𝑛 sin

𝜔

2
     ,   𝜌 = cos

𝜔

2
                         (33) 

which allow to represent the components of the rotation tensor briefly as [COSSERAT E. AND F. 

1896, p125] 

𝑅𝑏′𝑎 = (

𝜌2 + 𝜆2 − 𝜇2 − 𝜈2 2(𝜆𝜇 − 𝜈𝜌) 2(𝜆𝜈 + 𝜇𝜌)

2(𝜆𝜇 + 𝜈𝜌) 𝜌2 + 𝜇2 − 𝜆2 − 𝜈2 2(𝜇𝜈 − 𝜆𝜌)

2(𝜆𝜈 − 𝜇𝜌) 2(𝜇𝜈 + 𝜆𝜌) 𝜌2 + 𝜈2 − 𝜆2 − 𝜇2
)              (34) 

This is an extremely comfortable character, used in numerical practice. This character is 

also used by the Cosserats in their 1909 monograph. However, as indicated [BADUR, 

CHRÓŚCIELEWSKI 1983; PIETRASZKIEWICZ, BADUR 1983A], this form is not very convenient for 

differentiating and integrating the rotation tensor, hence different representations are used in 

the literature. The Cosserats, apart from the representation of Rodrigues, which in itself does 

not have much reference with the representation of Euler, do not use other solutions such as: 

Leibniz’s monad, Hamilton's quaternion, Grassmann extensions, Dirac spinors, etc. [BADUR 

2022]. 

The mechanics of the Cauchy continuum, as presented in the base of the constrained  

mobile reper 𝑀′𝑥′𝑦′𝑧′ , has required additional operations from the Cosserats, translated in the 

language known from description of the fixed  𝑀𝑥𝑦𝑧.  There are new objects unknown in 

Cauchy mechanics, mainly we mean the differences resulting from the differentiation of the 

fixed base   𝑑𝑎   and the mobile base  𝑑𝑏
′ .   The base  𝑑𝑎  is a constant one, hence only the 

physical components of e.g. stress tensors must be differentiated.  

As a new object the Cosserats have introduced the rotated Piola–Kirchhoff stress tensor 

[COSSERAT E. AND F. 1896, eq. 22] which is: 

𝑆′ = 𝑅𝑆𝑅−1 = 𝑃1𝑑𝑥
′⨂𝑑𝑥

′ + 𝑃2𝑑𝑦
′⨂𝑑𝑦

′ + 𝑃3𝑑𝑧
′⨂𝑑𝑧

′ + 𝑈1(𝑑𝑥
′⨂𝑑𝑦

′ + 𝑑𝑦
′⨂𝑑𝑥

′ ) +

                                      𝑈2(𝑑𝑥
′⨂𝑑𝑧

′ + 𝑑𝑧
′⨂𝑑𝑥

′ ) + 𝑈3(𝑑𝑦
′⨂𝑑𝑧

′ + 𝑑𝑧
′⨂𝑑𝑦

′ )                                     (35)  

with six components  𝑃1, 𝑃2, 𝑃3, 𝑈1, 𝑈2, 𝑈3  (nowadays 𝑆𝑎𝑏 = 𝑆𝑏𝑎)  – numerically equal to the 

components of the un-rotated second Piola–Kirchhoff tensor  𝑆. Occurring in the equation of 

motion  𝑆′   requires knowledge of formulas for differentiation of the mobile base. You can use 

generalized formulas on the Frenet trihedron or Poisson formulas for differentiation of the 

mobile reper after time: 

𝑑𝑥,𝑡
′ = 𝑞𝑑𝑦

′ − 𝑟𝑑𝑧
′   ;   𝑑𝑦,𝑡

′ = 𝑟𝑑𝑧
′ − 𝑝𝑑𝑥

′   ;  𝑑𝑧,𝑡
′ = 𝑝𝑑𝑥

′ − 𝑞𝑑𝑦
′                              (36) 
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Which can be shortly written as:  𝜕𝑡𝑑𝑖
′ = 𝑑𝑖,𝑡

′ = ℓ𝑡 × 𝑑𝑖
′.    To be precise, the time 

denotation should be   𝑡′  instead of  𝑡. This is the distinction the Cosserats make in the next 

chapter [COSSERAT E. AND F. 1896, §41], in which they deal with the dynamics of the surface 

inserted into the movable reper. Then denote time as a separate parameter  𝜌1  and assign it the 

role of time ["quand  𝜌1  varie scule et joue le rôle du tempes"]. This confirms our thesis that 

the Cosserats is building a 4-time intrinsic continuum where space coordinates are treated to be 

time-like parameters [BADUR, CHRÓŚCIELEWSKI 2015].  

The Poisson parameters  𝑝, 𝑞, 𝑟  occurring in (eq. 36)11 depend entirely on the time 

derivatives  of the rotation tensor  𝑅𝑏′𝑎. Hence, treating the coordinates  𝑥′, 𝑦′, 𝑧′   as three 

additional times, the Cosserats obtain Poisson curvature parameters for: 𝑥′  →  𝑝1, 𝑞1, 𝑟1, for  

𝑦′  →  𝑝2, 𝑞2, 𝑟3,   and  𝑧′  →  𝑝3, 𝑞3, 𝑟3 , respectively.   The determination of these curvature 

components as a function of the Euler angles or the finite rotation vector function has been the 

subject of numerous works, because it is an important element of kinematics unknown for 

researchers familiar only with kinematics of the Cauchy continuum. We will not deal with this 

element by referring the reader to works on the theoretical mechanics of the material point 

where numerous formulas for  𝑝, 𝑞, 𝑟 are given as a function of, for example, Euler angles, or 

to the work of the mechanics of rods and thin shells.12 

Remark 6.  However, what is important from the point of view of the concept of a 

constrained mobile reper is the time curvature parameters  𝑝, 𝑞, 𝑟  and space curvature 

parameters  𝑝𝑎, 𝑞𝑎, 𝑟𝑎  should be represented by derivatives not of the rotation tensor but of  the 

translational deformation measures. This is necessary because in the calculation procedure there 

are no turnovers, but only combinations of derivatives expressing them. Such a missing formula 

for the parameters 𝑝𝑎, 𝑞𝑎, 𝑟𝑎, 𝑎 = 𝑥′, 𝑦′, 𝑧′  for the 3D continuum was given in 1983 by 

PIETRASZKIEWICZ AND BADUR 1983A in terms of the Green strain tensor components and in 

paper [BADUR 1993B] in terms of  𝒱  components. It should be added here that the parameters 

𝑝𝑎, 𝑞𝑎, 𝑟𝑎 define a curvature vector  ℓ𝑎 = 𝑝𝑎𝑑𝑥
′ + 𝑞𝑎 𝑑𝑦

′ + 𝑟𝑎 𝑑𝑧
′  , which after Cosserats’, is 

called the Darboux curvature vector. It allows us to briefly write equations (36) as:    𝜕𝑏𝑑𝑎
′ =

𝑑𝑎,𝑏
′ = ℓ𝑏 × 𝑑𝑎

′ .    

 
11  It is a tradition of using the same letters od denotations in the whole literature. Proposed by Poisson 
letters  𝑝, 𝑞, 𝑟  are applied by KIRCHHOFF 1859, 1883; LECORNU 1880; HESS 1884; FRANKE 1889; DARBOUX 
1890, 1900; CARTAN 1925; SUDRIA 1925; CESARO 1926; DELENS 1927; CESARO 1926 and others. 
12  These relations should be useful do numerical simulations, especially in Finite Element and Finite Volume 
Method. Let us mention papers by: SANSOUR 1998B; GRUTTMAN ET AL. 1998; WIŚNIEWSKI 1998; NADLER AND 

RUBIN 2003; CHRÓŚCIELEWSKI ET AL2010; GRUTTMANN ET A. 1989.   
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Let us emphasize that formulas for Darboux vectors in terms of deformations and their 

derivatives for two- and one-dimensional continuums are more complicated than for 3D one.  

An example is Love’s paper [LOVE 1888] on constrained Aron's curvature vectors  ℓ𝛽   (𝛽 =

1,2)   for curvilinear coordinates  𝜚𝛽 on two-dimensional surface to get constrained rotations 

as independent variables. Love eventually obtained linearized expressions for  ℓ𝛽 =

ℓ𝛽(𝑢; 𝑢,𝛽;  𝑢,𝛽𝛾) as a function of the displacement of surfaces and their first and second 

derivatives, and his model records the equation of motion (equilibrium) in the rotated basis. In 

this sense, the name "Kirchhoff-Love shell theory" is a bit misleading. Kirchhoff, continuing 

Poisson's metric approach, develops the theory in a natural, metric approach, while Love, 

following Aron, develops an intrinsic approach. Therefore, for the sake of accuracy, we should 

speak of the "Aron-Love" intrinsic model and the  "Poisson-Kirchhoff"  natural model.   

The difference between these models is fundamental, just as the difference between 

Hehl's and Einstein's gravity model is fundamental.  In the years 1970-2000, the description of 

the intrinsic type, thanks to the development of computer techniques, became popular and 

effective. Jacek Chróścielewski [BADUR, CHRÓŚCIELEWSKI 1983; CHRÓŚCIELEWSKI ET AL 1992; 

CHRÓŚCIELEWSKI ET AL 2004; CHRÓŚCIELEWSKI ET AL 2010] and Carlo Sansour [SANSOUR, 

BUER 1992; SANSOUR 1998A, 1998B; SANSOUR, SKATULLA 2008] made significant 

contributions to this field. Another important applications are made due to efforts of ATLURI  

AND CAZZANI 1995; DE BORST 1991 and RUBIN 2000.  

Remark 7. In the work under discussion, the Cosserats devote much space to the equations 

of continuity of deformations derived as part of the "natural" approach by Berré de Saint-Venant 

[see POINCARÉ 1898]. Cosserats ask whether the intrinsic approach with constrained rotation 

can derives the same “natural” strain continuity equations. This question was very occupied the 

Italian geometers like BELTRAMI (1871, 1911) and CESARO 1926. Even later, the Italian 

mathematicians TONOLO 1930; FINZI 1932; PASTORI 1934 developed the intrinsic approach 

based on constrained finite rotation. Complete set of governing equation based on both polar 

decomposition    𝐹 = 𝒱ℛ = ℛ𝒰   proposed in his valuable paper SIGNORINI 1943. Modern 

statement of intrinsic formulation of 3D media has been developed by FERRARESE 1959, 1971, 

1972, 1976; GRIOLI 1960, 1968; BESSAN 1963; Stasi 1976; CAPRIZ ANA PODIO-GUIDUGLI 1977. 

Revalorization of Italian works has been made by ZHONG-HENG 1963, 1983. 

Remark 8.  In 1896 the Cosserats the main goal was to obtain the balance of linear 

momentum in the rotated frame. Let note, that the Cosserats presents the correct panorama of 
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whole set of balances, both; in Eulerian natural and Lagrangean natural descriptions. They 

introduce by a variational treatment the first and second Cauchy law:   div 𝑡 + 𝜌𝑏 = 0   and  

𝑡 = 𝑡𝑇, respectively [Cosserat E. and F., eq. 24, 25] within the Eulerian description.  

Next the Cosserats propose to pull-back the Cauchy stress tensor to the form of first Piola-

Kirchhoff  [Cosserat E. and F. 1896, eq.36]:  𝑃 = 𝒥 𝑡 (𝐹−1)𝑇  where 𝒥 = |det 𝐹| = √𝒱𝑇𝒱 =

 𝜌0/𝜌  and  𝐹 = Grad 𝑥  is the gradient of deformation. Then changing description to natural 

lagrangean, the Cosserats transform the first and second Cauchy law into:  Div 𝑃 + 𝜌0𝑏 = 0 

and  𝑃𝐹𝑇 = 𝐹𝑃𝑇, respectively [Cosserat E. and F. 1896, eq. 34 and 37]. They prove that: 𝑃 =

𝜕𝑊

𝜕𝐹
    and  𝑆 =

𝜕𝑊

𝜕𝐸
  where  2𝐸 = 𝐹𝑇𝐹 − 1 is the Lagrange deformation tensor and  𝑆  is the 

second Piola-Kirchhoff stress tensor.  By finding that:  𝑃 = 𝐹𝑆  [Cosserat E. and F. 1896, eq.33] 

Cosserats are able to write the first and second Cauchy law to be [Cosserat E. and F. 1896, eq. 

38]: 

Div(𝐹𝑆) + 𝜌0𝑏 = 0  and  𝐹𝑆𝐹𝑇 = 𝐹𝑆𝑇𝐹𝑇                                    (37) 

Next Cosserats propose to constitute the Cauchy stresses by the fully nonlinear relation 

[Cosserat E. and F. 1896, eq. 61, 62]:  

𝑡 = ℐ 𝐹
𝜕𝑊

𝜕𝐸
 𝐹𝑇                                                                  (38) 

Having the first and second Cauchy laws in the both natural descriptions, Cosserats next, 

introduce the concept of “rotated second Piola-Kirchhoff stress”: 𝑆′ = 𝑅𝑆𝑅−1  (see eq. 35. 

above). Then using   𝐹 = 𝒱𝑅   Cosserats transforms  Div(𝐹𝑆)   into  Div′(𝒱𝑆′)  [Cosserat E. 

and F. 1896, p. 192] what finally leads to the first and second Cauchy laws written within 

moving frame:  

Div′(𝒱𝑆′) + 𝜌0𝑏
′ = 0      ;     𝒱𝑆′𝒱𝑇 = 𝒱(𝑆′ )𝑇𝒱𝑇                                      (39) 

Since Cosserats denotes 𝒱𝑆′  to be: 

𝒱𝑆′ =

𝐴𝑥′𝑑1
′⨂𝑑1

′ + 𝐵𝑥′𝑑2
′⨂𝑑1

′ + 𝐶𝑥′𝑑3
′⨂𝑑1

′ +

𝐴𝑦′𝑑1
′⨂𝑑2

′ + 𝐵𝑦′𝑑2
′⨂𝑑2

′ + 𝐶𝑦′𝑑3
′⨂𝑑2

′ +

𝐴𝑧′𝑑1
′⨂𝑑3

′ + 𝐵𝑧′𝑑2
′⨂𝑑3

′ + 𝐶𝑧′𝑑3
′⨂𝑑3

′    

                                 (40) 

They obtained the first Cauchy law in the rotating base, expressed by components as 

[Cosserat E. and F. 1896, eq. 100]: 
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(
𝜕𝐴𝑥′

𝜕𝑥
+ 𝑞1𝐴𝑧′ − 𝑟1𝐴𝑦′ +

𝜕𝐵𝑥′

𝜕𝑦
+ 𝑞2𝐵𝑧′ − 𝑟2𝐵𝑦′ +

𝜕𝐶𝑥′

𝜕𝑧
+ 𝑞3𝐶𝑧′ − 𝑟3𝐶𝑦′ + 𝜌0𝑋

′) 𝑑1
′ +

(
𝜕𝐴𝑦′

𝜕𝑥
+ 𝑟1𝐴𝑥′ − 𝑝1𝐴𝑧′ +

𝜕𝐵𝑦′

𝜕𝑦
+ 𝑟2𝐵𝑥′ − 𝑝2𝐵𝑧′ +

𝜕𝐶𝑦′

𝜕𝑧
+ 𝑟3𝐶𝑥′ − 𝑝3𝐶𝑧′ + 𝜌0𝑌

′) 𝑑2
′ +

(
𝜕𝐴𝑧′

𝜕𝑥
+ 𝑝1𝐴𝑦′ − 𝑞1𝐴𝑥′ +

𝜕𝐵𝑧′

𝜕𝑦
+ 𝑝2𝐵𝑦′ − 𝑞2𝐵𝑥′ +

𝜕𝐶𝑥′

𝜕𝑧
+ 𝑝3𝐶𝑦′ − 𝑞3𝐶𝑥′ + 𝜌0𝑍

′) 𝑑3
′ = 0

 

And corresponding stress boundary condition [Cosserat E. and F. 1896, eq. 101]. The 

second Cauchy law (19) is fulfilled automatically since the rotated second Piola-Kirchhoff 

stress  𝑆′  are expressed in the function of the Lagrange strain tensor  𝐸 only. In the literature 

of 3D continuum, there is no examples of explicit using of eq. (39), however in the low 

dimensional continua like rods or shells we have a lot of examples for the numerical treatment 

]for instance; HAY 1942; KLINGER 1942, SIMO 1992; STEINMANN 1994; IBRAHIMBEGOVIC 

1994; ARMERO AND ROMERO 2003. 

Remark 9.   There is known that the most exhaustive revalorization of the Cosserats paper 

on “constrained elasticity” [COSSERAT E. AND F. 1896] was made by Antonio Signorini 

[SIGNORINI 1943]. Signorini in his paper has no any reference to the later Cosserats monography 

[COSSERAT E. AND  F. 1909A], since he is only interested in developing of  the 1896-Cosserats 

ideas. He notices that an influence of this paper onto the while Italian school of mechanics in 

Palerno and Bologna is evident and  impressive. Signorini recalls the achievements of:  Burali-

Forti, Marcolongo, Burgatti, Cisotti, C. Tolotti, V. Volterra, G. Grioli, B. De Finetti, T. Boggio, 

Crudeli, Cesaro, D. Bonvicini, I. Gasperini, Almansi, and others.        

Considering the natural Lagrangean and Eulerian descriptions Signorini has repeated the 

Cosserats. Signorini does not develop the moving frame in the sense of the Cosserats, since, he 

decides to use another polar decomposition then the Cosserats. He takes:  𝐹 = Grad 𝑥 = 𝑅𝑈 

(left decomposition;  𝛼 = 𝛼𝜌𝛼𝛿  in original notation [SIGNORINI 1943, eq. 8]). His starting point 

is similar: in the Eulerian description first and second Cauchy law are: div(𝑡) + 𝜌𝑏 = 𝜌𝑎,  𝑡 =

𝑡𝑇 , respectively  (originally: 𝑘(𝐹 − 𝑎) = gradP𝛽,  𝛽 = 𝐾𝛽 [SIGNORINI 1943, p103] - 𝛽 – 

omografia euleriana di tensione). Next by defining 𝑃 = 𝒥𝑡(𝐹−1)𝑇  he obtains the Kirchhoff 

stress form of equation: Div(𝑃) + 𝜌0𝑏 = 𝜌0𝑎 [SIGNORINI 1943, p.105] and further, by 

introducing “omografia lagrangiana di tensione” :  𝑆 = ℐ 𝐹−1𝑡(𝐹−1)𝑇  (second Piola-Kirchhoff 

stress tensor) Signorini is able to write: Div(𝐹𝑆) + 𝜌0𝑏 = 𝜌0𝑎  [SIGNORINI 1943, p. 105-107]. 

Nest, using  𝐹 = 𝑅𝑈 , Signorini defines the stretched second Piola-Kirchhoff tensor  

denoted by him as “𝛿 “ [SIGNORINI 1943, p. 107]:  
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𝑡 = 𝒥−1𝐹𝑆𝐹𝑇 = 𝑅(𝒥−1𝑈𝑆𝑈)𝑅𝑇 = 𝑅𝛿𝑅−1                                       (41) 

Which is quite different from rotated second Piola-Kirchhoff  𝑆′ = 𝑅𝑆𝑅−1  (see eq. 35 

above). Signorini proved next that stretched second Piola-Kirchhoff is equal to:  𝛿 =

𝒥−1𝑆(1 + 2𝐸) = 𝒥−1(1 + 2𝐸)𝑆.  Unfortunately, the measure  𝛿  is does not yet used by 

Signorini in the first Cauchy law. On the domain of the shell modelling this object was 

introduced by PIETRASZKIEWICZ 1979, 1988.    

Remark 10.  Probably, the best result in developing of the Cosserats’1896, Signorini has 

obtained in expressing of the Cosserats strain compatibility equations (see eq.1). He found that 

equation (9) for  𝛽 = 4,5,6  (rotational part) will be better to write in terms of left Darboux 

curvature vector  ℓ𝑖 = 𝑅𝓀𝑖  (𝑖 = 𝑥, 𝑦, 𝑧) (see Sudria’s  Ω𝑏 = 𝑝𝑏𝑑1
′ + 𝑞𝑏𝑑2

′ + 𝑟𝑏𝑑3
′ ≡ ℓ𝑏). The 

left Darboux curvature vector is defined as an axial vector taken on:  

𝓀𝑖 = [𝑅−1𝑅,𝑖]× = 2𝜗[𝑞,𝑖 + (𝑞,𝑖) × 𝑞]     ,   𝜗 = (1 + 𝑞2)−1                        (41) 

If a rotation matrix is represented by the “rotation vector” 𝑞 = 𝑒 tg  𝜔/2  in the form:  

𝑅 = 𝜗[(1 − 𝑞2)1 + 2𝑞 × 1 + 2𝑞⨂𝑞] . As Signorini show via differentiation of polar 

decomposition one obtains   𝓀𝑖  in terms of  𝑈 and its derivatives as [SIGNORINI 1943, eq. 73]: 

𝓀𝑖 = 𝒥
−1𝑈 [ (𝑈,𝑖𝑈)× +

1

2
 rot(𝑈2𝑒𝑖)]                                               (42) 

or, explicitly, in components as [PIETRASZKIEWICZ 1979]:  

𝓀𝑖 = 𝓀𝑖𝑟𝑒𝑟 =
1

2
𝒥−1𝑈𝑟𝑚[∈𝑚𝑝𝑘 𝑈𝑝𝑙,𝑖𝑈𝑙𝑘 +∈𝑚𝑙𝑘 (𝑈𝑙𝑝𝑈𝑝𝑘),𝑖]𝑒𝑟                      (43) 

Condition of integrability of rotation can be found if we define:  𝒦𝑖 = 𝑅
−1𝑅,𝑖 =

𝓀𝑖 × 𝐼   then from the condition of commutation:  𝑅,𝑖𝑗 − 𝑅,𝑗𝑖 = 0  one obtain 

[PIETRASZKIEWICZ, BADUR 1983B]:  

𝒦𝑖,𝑗 −𝒦𝑗,𝑖 +𝒦𝑖𝒦𝑗 −𝒦𝑗𝒦𝑖 = 0                                                         (44) 

what Signorini  [SIGNORINI 1943, p. 75] write with the use of  the Darboux curvature vector 

as: 

𝜕

𝜕𝑦𝑟+1
𝓀𝑟 −

𝜕

𝜕𝑦𝑟
𝓀𝑟+1 − 𝓀𝑟 × 𝓀𝑟+1 = 0     ,       𝑟 = 1,2,3                              (45) 
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where 𝑦𝑟 , 𝑟 = 𝑥, 𝑦, 𝑧 means the Lagrangean coordinates. This result recalculated 

FERRARESE 1959. It can be written in an arbitrary curvilinear coordinate as [ZHOUNG-HENG 

1983; BADUR, PIETRASZKIEWICZ 1986; BADUR 1993A]: 

∈𝑖𝑗𝑘 (𝓀𝑗;𝑘 −
1

2
 𝓀𝑗 × 𝓀𝑘 ) = 0                                                                       (46) 

This formula does not appear in the Cosserats work [COSSERAT E. AND F. 1896], although 

they want to show that the nonlinear conditions of inseparability of the deformations they 

obtained, after substituting the constrained rotations, lead to the six linear continuity conditions 

of Berré de Saint Venant. Cosserats define the vector of linear rotation  𝜏  as 

  𝐹 = 1 + 𝜀 + 𝜏 × 1 [COSSERAT E. AND F. 1896, p. 135]  and describe its derivative to be: 

2
𝜕

𝜕𝑦𝑖
𝜏 = 𝓀𝑖 + 𝜏(𝓀𝑖⨂𝜏) + 𝜏 × 𝓀𝑖                                                    (47) 

After linearization of formulae nr (43)  𝓀𝑖 = 𝓀𝑖𝑟𝑒𝑟 ≈
1

2
∈𝑟𝑙𝑘 (𝜀𝑙𝑘),𝑖𝑒𝑟  from eq. (46) we have: 

∈𝑖𝑗𝑘 𝓀𝑗;𝑘 = 
1

2
 ∈𝑖𝑗𝑘∈𝑟𝑙𝑚 (𝜀𝑙𝑚);𝑗𝑘𝑒𝑟 = 0                                              (48) 

There are six equations of Berré de Saint Venant which have been evaluated from 

constrained rotation approach.  Yet other attempts to develop this line of reasoning one can find 

in papers by ARIANO 1924; CESARO 1926; TONOLO 1930; STAZI 1976. FORTUNE AND VALLEÉ 

2001 where able to be shown more concise formulae which have an interpretation of  the 

Bianchi identity.  

 

12. Further developing of the moving frame concept within the Cartan differential 

forms calculus 

It is a fact that the concept of the mobile reper has triggered thinking about new ways of 

"locating" the physical elementary object under reasoning within a time-space. Note, that the 

classical Newtonian mechanics is familiar only with “a simple placement” method. This brutal 

method leads to a concept of simple placement of a material particle within the Euclidean space. 

Usually, we call this method as “natural”, but this method has nothing common with “the real 

nature”. It is rather a result of anthropomorphic simplification only. Therefore, “the natural 

description” cannot be treated as only one possible in the whole continuum physics. Since, in 

relation to the classical natural description, that is originating in the Euclid geometry and the 
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method of simple placement proposed by Newton, one can say that a new competitive way of 

placement based on the concept of "moving frame" has clearly appeared in the Cosserats 

doctrine.  It forced a change in the mathematical tools of description because while the natural, 

metric, description uses mainly the “scalar product of vectors”, the description of the mobile 

reper mainly uses “vector multiplication of vectors” and asymmetric components of tensors. 

In the 1920s and 1930s, Élie Cartan, being against to Riemannian geometry, introduced 

calculus of differential forms, in which a new: „ ∧ „   multiplication played a major role; and 

instead of vectors and tensors, one-forms and two-forms have appeared. Cartan has radical 

changed the calculus and the form of governing equations [CARTAN 1935]. For instance, the 

Cosserats continuity equations of deformation [see COSSERAT E. AND F. 1896, eq (A)] now take 

the form of the Mauer-Cartan structure equations [DELENS 1927]:  𝑑𝜃 + 𝜔 ∧ 𝜃 = 0;   𝑑𝜔 + 𝜔 ∧

𝜔 = 0. Unfortunately, the physical sense of these equations is the same, and exterior calculus 

change only the understanding of space-time Ricci metric. And inform as that the Riemannian 

or Euclidean metrics are too poor to be correct for exterior calculus framework. The biggest 

example of changes in the exterior calculus notation is the skew-symmetric field tension tensor,  

known in the Lie group theory as [CHAICHIAN, NELIPA 1984]:  𝐹𝛼𝛽 = [𝐷𝛼, 𝐷𝛽] = −𝜕𝛼𝐴𝛽 +

𝜕𝛽𝐴𝛼 + 𝐶𝛼𝛽
𝛾𝛿
𝐴𝛾  - now it becomes a two-form [DE LEÓN ET AL 2021] : 𝐹 = 𝑑𝐴 + 𝐴 ∧ 𝐴. 

In general, the calculus based on differential forms is a good basis for "algebraization of 

physics" and for introducing the concept of "compensating potentials" into the differential 

geometry.  One of the contemporary creators of the differential forms calculus and a continuator 

of Cartan's idea, Prof. J. Pommaret, believes that all mechanics should be rewritten in the 

language of differential forms in order to free oneself from the erroneous doctrine of "simple 

placement".  In the literature there are many concepts of the new "location of an elementary 

object”, for instance, nowadays "p-brane" plays a role of universal elementary object 

[POMMARIET 1989, 2014; BADUR 2009]. Professor M. Epstein et al. proposes to use the 

operation of embedding of an elementary object having  𝑛 −dimensions in a space-time 

continuum with (𝑛 +𝑚) −dimensions so as to build-up all the features of the elementary object 

with more sensitive time-space continuum features. As can be seen (𝑛 +𝑚) −dimensional 

space of Euclid, Riemann, projective or symplectic have to poor structure and should be 

abandoned as soon as possible [BADUR 2009, DE LEÓN ET AL 2021]. 

 

13. Euclidean action and the corresponding group of transformations 
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For a long time before Cosserats, the principles of mechanics, whose role is preeminent 

in physics, have been the subject of discussions that touch upon their origin, nature, and 

implications. However, under the influence of the profound criticism the Lagrange variational 

approach to mechanics, the Cosserats interest in those studies has been renewed, and the aspects 

of the question have been modified from many points of view. It is not pointless to observe that 

if the founders of celestial mechanics believed very firmly that the study of discrete ensembles 

of points would reveal the secrets of nature then they did not perhaps have as much faith in 

Newton’s laws of dynamics.  

The Cosserats give a place the notion of symmetry group at the basis for mechanics.  In 

his approach that notion has already played a significant role in the study of the principles of 

kinematics. For Cosserats, it seems that it must take on an importance in the discussion of the 

fundamentals of the physical sciences that is no less considerable because one can regard them 

an adequate translation of the idea of measurement due to the invariance that it implies. 

In Cosserats case, whole of physical system is based on an energy Lagrangean  𝑊. 

Therefore, many principles of mechanics that are known without knowledge of   𝑊, must be 

accommodated to  𝑊  as some restrictions. For instance, the d’Alembert principle can be 

introduced as an equivalent principle that relates only to the case where the action of 

deformation is completely separate from the kinetic action. The Cosserats assume the following 

principles:  

a) the equations of motion of the body with micro-rotation are the necessary condition of the 

stationarity of the action energy  𝑊. 

b) the action functional  𝑊 is invariant with respect to the Euclidean group of transformation, 

c) the equation of motion has the same form in every inertial system i.e. they are invariant with 

respect to the Galilean transformation group [LANGE 1885].  

The Cosserats introduced a notion of “transformation” not only in mechanics but also in 

physics. And they put a difference between the motion of coordinate system (passive 

transformation) and the motion of a material point within fixed coordinate system (active 

transformation). That last transformation is called a proper motion or active motion, or even 

displacement. Now, one sees immediately that the new transformation is again a motion. One 

expresses that by saying that when one composes the motions by performing them in 

succession, they will form a group that one calls the group of motions.  
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The Cosserats are first in the literature in introducing the condition of invariance under 

the group of Euclidean displacements which is a function of six parameters  

𝑎1, 𝑎2, 𝑎3, 𝜔1, 𝜔2, 𝜔3:  

𝛿𝑥 = (𝑎1 + 𝜔2𝑧 − 𝜔3𝑦)𝛿𝑡 ;  𝛿𝑦 = (𝑎2 + 𝜔3𝑥 − 𝜔1𝑧)𝛿𝑡 ;  𝛿𝑧 = (𝑎3 + 𝜔1𝑦 − 𝜔2𝑥)𝛿𝑡     (49) 

From condition of invariance the action 𝛿𝑊 = 0 with respect to the six-parameter 

Euclidean transformation group one can obtain the six conservation laws. It means, that, in 

principle, every model of continua contains 𝑚 equations of motions and 𝑛 accompanying 

conservation laws. Usually, from physics it follows that 𝑚 > 𝑛 . The discovery of the Euclidean 

group of symmetry was an important achievement, therefore Cosserats underline the invariance 

of action functional in the title of their next monograph “L’action euclidienne de déformation 

et de mouvement” [COSSERAT E. AND F. 1909B].   As we already mentioned, the unknown 

variables displacement and rotation are basic for describe variational laws of motion within the 

reference space. Thus, a change of the coordinate system in this space leads for a given 

configuration to a change of unknown variables for given localization in form of eq. (49). 

Making use of the relation eq. (49) from invariance condition one obtains:  

𝜕𝑊

𝜕𝑥
= 0  ;  

𝜕𝑊

𝜕𝑦
= 0   ;  

𝜕𝑊

𝜕𝑧
= 0                                                       (50) 

𝜕𝑊

𝜕𝑦,𝜚𝑏

𝑑𝑧

𝑑𝜚𝑏
−
𝜕𝑊

𝜕𝑧,𝜚𝑏

𝑑𝑦

𝑑𝜚𝑏
= 0;  

𝜕𝑊

𝜕𝑧,𝜚𝑏

𝑑𝑥

𝑑𝜚𝑏
−
𝜕𝑊

𝜕𝑥,𝜚𝑏

𝑑𝑧

𝑑𝜚𝑏
= 0; 

𝜕𝑊

𝜕𝑥,𝜚𝑏

𝑑𝑦

𝑑𝜚𝑏
−
𝜕𝑊

𝜕𝑦,𝜚𝑏

𝑑𝑥

𝑑𝜚𝑏
= 0       (51) 

where   the index   𝑏 = 𝑡, 𝜚1, 𝜚2, 𝜚3 .  First three conditions (50) are nowadays interpreted to be 

the weak principle of momentum conservation. For the same reason the second three conditions 

(51) are called as the weak principle of moment of momentum conservation. Equations (50) 

and (51) are very important in the Cosserats monography, they are searched and developed for 

every Cosserats objects: beams, shells and 3D+time body. In the Cosserats [COSSERAT E. AND 

F. 1909A] the form of (50) and (51) is quite the same and independent how many intrinsic 

coordinates was used.  

Let us turn attention, that above conservation principles are valid only when the equations 

of motion for displacements and rotations are satisfied.  This way of reasoning, but without any 

physical explanation has repeated nine years after by Emmy Noether [BADUR 2021].  Everyone 

is astonished of the new, deeply anti-Newtonian, form of momentum conservation.  But if we 

do not make the last condition but require the invariance of  𝑊  no matter the equations of 

motion are satisfied or not, then we obtain so-called strong conservation principles – and 
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fortunately, the strong conservation principle of momentum is fully equivalent to the second 

law of Newtonian motion.    

Nowadays, the Euclidean group of symmetry, owing works of TOUPIN 1962, 1964, is 

assumed to be not six but seven parameters, such that the demand of invariance is equivalent to 

the existence of seven conservation laws for energy, momentum, and rotational momentum. If 

one takes into account possibility of the domain variables variations, then yet a set of additional 

conservation laws follows from the Euclidean group of symmetry – these are: the conservation 

of pseudo-energy [BADUR 2021], the conservation of pseudo-momentum and conservation of 

pseudo-moment of momentum [KLUGE 1969; LAZAR, HEHL 2010].  

 

14. Multidimensional branes as elementary statement of matter 

The four-time unification concept, proposed by E. and F. Cosserats more than one 

hundred years ago, now is intensively developed in quantum physics within the framework of 

the brane field theory.  It is surprising that the superstring theories are not just theories of one-

dimensional objects. There are higher dimensional objects with dimensions from zero (points) 

to nine – such objects are called p-branes [MEISSNER 2013]. In terms of branes, what we usually 

call a membrane would be a two-brane, a string is called a one-brane and a point is called a 

zero-brane. It is easily to find a precise analogy with the Cosserats mechanical-branes if we 

remember that string lives in ten-time dimensions, which means one real time dimension plus 

nine time-like dimensions.  A special class of p-branes in string theory are called D-branes. 

Roughly speaking, a D-brane is a p-brane where the ends of open strings are localized on the 

brane. Now we can say that a Cosserats dream about a common mathematical theory for 

material continua and for electromagnetic and gravitational fields is fulfilled and preferred by 

Cosserats the differential geometry of fiber bounds plays a role of deductive leader 

[EPSTEIN,  DE LEÓN 1998; LAZAR, HEHL 2010; DE LEÓN ET AL 2021].   

 

15. Four-time operators 

The concept of gradient of deformation is a special relation of material change of 

immersed continua observed from the space-time point of view.  For a point or a rigid body the 

deformation gradient is to be zero, since no any change inside that body can be observed. We 

can observe the “gradient of deformation” for a deformable line is a continuous set equipped 



 

41 

 

with a finite small cross section area. If  𝑠   is convective coordinates of curved material line 

than its deformation gradient is :  𝐹𝑠 = Grad𝑠𝑥 = 𝜕𝑠𝑥⨂𝐴
𝑠 = 𝑎𝑠⨂𝐴

𝑠 = 𝐹𝑠𝑖𝑒𝑖⨂𝐴
𝑠 . By the Hess 

analogy we may take the time gradient as  𝐹𝑡 = Grad𝑡𝑥 = 𝜕𝑡𝑥⨂𝐴
𝑡 = 𝑎𝑡⨂𝐴

𝑡 = 𝐹𝑡𝑖𝑒𝑖⨂𝐴
𝑡 

where 𝐹𝑡𝑖  is interpreted as the velocity. Two-dimensional gradient on surface parametrized by 

𝜚𝛼  is  𝐹2 = Grad2𝑥 = 𝜕𝛼𝑥⨂𝐴
𝛼 = 𝑎𝛼⨂𝐴

𝛼 = 𝐹𝛼𝑖𝑒𝑖⨂𝐴
𝛼 , where 𝛼 = 1,2 ;  𝑖 = 𝑥, 𝑦, 𝑧.   

In other words, a motion of single point is the time-parameter of space trace (𝜚0 = 𝑡), a 

deformation of line is one parameter  motion of trihedron:  𝜚1 = 𝑠, a deformable surface with 

a set of two parameters  𝜚𝛼, 𝛼 = 1,2 and a deformable 3D medium is governed by three 

parameters  𝜚𝑖  𝑖 = 1,2,3. In the presence of motion, one must add the time 𝜚0 = 𝑡   to these 

three geometric parameters  𝜚𝑏 ,  𝑏 = 𝑡, 1,2,3   The mathematical continuity that we assume in 

such a definition, leaves untouched at each point the trace of an invariable [i.e. rigid] solid; 

therefore, we can foresee that from a mechanical viewpoint moments will appear that are well 

known and are studied, since Euler and Bernoulli, along elastic flexible lines and on surfaces, 

and that Love and Helmholtz have tried to embed in a three-dimensional space. 

This method is based on a simple extension of the natural convective, curvilinear 

coordinate system   𝜚𝑖  𝑖 = 1,2,3 having a time 𝑡, to a common system called “the four-time”. 

Then the referential base system should be defined as: 𝐴𝑡 , 𝐴𝑖 - for three-dimensional body,  

𝐴𝑡 , 𝐴𝛼 ,   𝛼 = 1,2 - for dynamics of two-dimensional body (surfaces), 𝐴𝑡 , 𝐴𝑠   - for dynamics of 

one-dimensional body (rods), and 𝐴𝑡   - for dynamics of rigid body. Let a Lagrangean gradient 

operator be defined as:  

Grad4(∙) = (∙)⨂ [
𝑑

𝑑𝑡
𝐴𝑡 +

𝑑

𝑑𝜚𝑖
𝐴𝑖 +

𝑑

𝑑𝜚α
𝐴α +

𝑑

𝑑𝜚𝑠
𝐴𝑠]                             (52) 

The intrinsic placement usually is described in terms of Lie algebra base adequate to the 

intrinsic group. Let us, for the von Helmholtz monodromy group (eq.1)  take for simplicity the 

local Cosserat reper base:  𝑑𝑡
′ , 𝑑1

′ , 𝑑2
′ , 𝑑3

′ .  In time 𝑡 = 0  this reper takes the referential position: 

𝑑𝑡, 𝑑1, 𝑑2, 𝑑3 = 𝑑𝑡, 𝑑𝑎 , 𝑎 = 1,2,3 . Since both reference vectors:  𝐴𝑡, 𝐴𝑖   and  𝑑𝑡 , 𝑑𝑎     are 

Lagrangean-like and are a priori known, it is possible to define a shifter tensor S = 𝑆𝑏𝑖𝑑𝑏⨂𝐴
𝑖 

which describes a connection between both  systems. In particular case:  𝐴𝑖 = 𝛿𝑏
𝑖𝑑𝑏. According 

to Cosserats, we do not loss any generality if we suppose that  both referential systems 

coincides: 𝐴𝑖 = 𝛿𝑏
𝑖𝑑𝑏  being the set of orthogonal vectors.    
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Two fundamental unknown fields of Cosserat continua are: the placement  𝑥 = 𝑥𝑖𝑑𝑖 =

𝑥𝑖
′𝑑𝑖
′ and the proper rotation:    𝑅 = 𝑑𝑖

′⊗𝑑𝑖,  both measured from the intrinsic observer view 

point. Now, let us define the fundamental for the Cosserat four-time intrinsic formulation two 

basic measures of continuum velocities – both are expressed within the terms of referential 

gradient:  

𝐹 = Grad4𝑥  ;   𝐹
∗ = Grad4𝑅                                                    (53) 

These gradients should be next  “transported”  into intrinsic frame where, according to 

the Cartan definition of a connection, they constitutes proper expression for intrinsic 

deformation measures, which Cosserats were called: the “geometrical velocities”. 

 

16.  Cosserats measures of velocities and “geometrical velocities” 

The first geometrical velocities, called by the name  “translational geometrical 

velocities”, taken collectively for zero-, one-, two- and three-dimensional bodies (the so-called 

the Cosserat p-brane) is defined to be:      

           

𝒱 = 𝐹𝑅−1 = [𝑥⨂(𝜕𝑡𝐴
𝑡 + 𝜕𝑠𝐴

𝑠 + 𝜕𝛼𝐴
𝛼 + 𝜕𝑖𝐴

𝑖)](𝑑𝑗⨂𝑑𝑗
′)

= (𝜕𝑡𝑥)⨂𝑑𝑡
′ + (𝜕𝑠𝑥)⨂𝑑𝑠

′ + (𝜕𝛼𝑥)⨂𝑑𝛼
′ + (𝜕𝑖𝑥)⨂𝑑𝑖

′ 

=  𝑥𝑖,𝑡
′ 𝑑𝑖

′ + 𝑥𝑖
′(ℓ𝑡 × 𝑑𝑖

′)⨂𝑑𝑡
′                    (rigid body) 

= 𝑥𝑖,𝑠
′ 𝑑𝑖

′ + 𝑥𝑖
′(ℓ𝑠 × 𝑑𝑖

′)⨂𝑑𝑠
′                (static of  rods)

= 𝑥𝑖,𝛼
′ 𝑑𝑖

′ + 𝑥𝑖
′(ℓ𝛼 × 𝑑𝑖

′)⨂𝑑𝛼
′          (statics of surface)

= 𝑥𝑖,𝑏
′ 𝑑𝑖

′ + 𝑥𝑖
′(ℓ𝑏 × 𝑑𝑖

′)⨂𝑑𝑏
′    (dynamics of 3D body)

                               (54) 

Now, let recall the common notation of translational geometrical velocities, taken from 

Poisson’s mechanics where: 𝜉, 𝜂, 𝜁- for a rigid body; 𝜉𝑠, 𝜂𝑠, 𝜁𝑠 - for roods: 𝜉α, 𝜂𝛼 , 𝜁α - for 

surfaces;  𝜉𝑏 , 𝜂𝑏 , 𝜁𝑏  - for 3D+time body. It means that eq.(54) can be shortly written as follows:     

𝒱 = 𝐹𝑅−1        

=

{
 

 
𝜉𝑑1

′⨂𝑑𝑡
′ + 𝜂𝑑2

′⨂𝑑𝑡
′ + 𝜁𝑑3

′⨂𝑑𝑡
′ = 𝜈𝑖𝑑𝑖

′⨂𝑑𝑡
′           (rigid body)         

𝜉𝑠𝑑1
′⨂𝑑𝑡

′ + 𝜂𝑠𝑑2
′⨂𝑑𝑡

′ + 𝜁𝑠𝑑3
′⨂𝑑𝑡

′ = 𝜈𝑖𝑠𝑑𝑖
′⨂𝑑𝑠

′    (statics of rods)        

𝜉𝛼𝑑1
′⨂𝑑𝛼

′ + 𝜂𝛼𝑑2
′⨂𝑑𝛼

′ + 𝜁𝛼𝑑3
′⨂𝑑𝛼

′ = 𝜈𝑖𝛼𝑑𝑖
′⨂𝑑𝛼

′   (statics of surfaces)    

𝜉𝑏𝑑1
′⨂𝑑𝑏

′ + 𝜂𝑏𝑑2
′⨂𝑑𝑏

′ + 𝜁𝑏𝑑3
′⨂𝑑𝑏

′ = 𝜈𝑖𝑏𝑑𝑖
′⨂𝑑𝑏

′   (dynamics of 3D body)

                   (55) 

where we will be in accordance with the Poisson rigid body dynamics putting  𝑑𝑡
′ = 1. It is easy 

to find that  𝒱 = 𝐹𝑅−1  is a complicated, nonlinear function of  the placement  𝑥  and the 

rotation 𝑅. In particular, the Darboux vectors: ℓ𝑡, ℓ𝑠, ℓ𝛼, ℓ𝑖 , defined by the relations similar to 
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the rigid body rotational motion: 𝑑𝑖,𝑡
′ = ℓ𝑡 × 𝑑𝑖

′   according to Poisson’s denotations are : ℓ𝑡 =

𝑝𝑑1
′ + 𝑞𝑑2

′ + 𝑟𝑑3
′ ;   𝑙𝑖 = 𝑝𝑖𝑑1

′ + 𝑞𝑖𝑑2
′ + 𝑟𝑖𝑑3

′ . Same times in the rigid body dynamics, the 

angular velocity vector:  

ℓ𝑡 = −
1

2
(𝑅̇𝑅−1)×                                                                  (56) 

is called as the Euler-Poisson intrinsic vector. Since, in general we have the left (ℓ𝑏) and the 

right (𝓀𝑏) Darboux vectors (𝑏 = 𝑡, 𝑠, 𝛼, 𝑖) and, generally, ℓ𝑏 = 𝑅𝓀𝑏, then for angular velocity  

ℓ𝑡  there exist a right representation 𝓀𝑡  such as:  𝑅̇ = ℓ𝑡 × 𝑅 = 𝑅 × 𝓀𝑡. The left angular 

velocity ℓ𝑡  is a space (intrinsic) measure and right angular velocity 𝓀𝑡  is a  body natural 

measure [FERRARESE 1959; CAPRIZ 2008]. The Cosserats assumes that the quite similar 

“angular velocities” are related with spatial coordinates 𝜚𝑖 , 𝑖 = 𝑥, 𝑦, 𝑧 .  Further, in this place 

one can see exactly, the “heard” of the Cosserats four-time continuum concept.  Therefore, 

taking into account different denotations of the “rotational geometrical velocities” we can 

collect different results (rigid body, rods, shells, 3D) into one concise definition:    

ℒ = −
1

2
(𝐹∗𝑅−1)× =

{
 

 
ℓ𝑡⨂𝑑𝑡

′ = (𝑝𝑑1
′ + 𝑞𝑑2

′ + 𝑟𝑑3
′ )⨂𝑑𝑡

′ = ℓ𝑖𝑡𝑑𝑖
′⨂𝑑𝑡

′

ℓ𝑠⨂𝑑𝑠
′ = (𝑝𝑠𝑑1

′ + 𝑞𝑠𝑑2
′ + 𝑟𝑠𝑑3

′ )⨂𝑑𝑡
′ = ℓ𝑖𝑠𝑑𝑖

′⨂𝑑𝑠
′

ℓ𝛼⨂𝑑𝛼
′ = (𝑝𝛼𝑑1

′ + 𝑞𝛼𝑑2
′ + 𝑟𝛼𝑑3

′ )⨂𝑑𝑡
′ = ℓ𝑖𝛼𝑑𝑖

′⨂𝑑𝛼
′

ℓ𝑏⨂𝑑𝑏
′ = (𝑝𝑏𝑑1

′ + 𝑞𝑏𝑑2
′ + 𝑟𝑏𝑑3

′ )⨂𝑑𝑏
′ = ℓ𝑖𝑏𝑑𝑖

′⨂𝑑𝑏
′

              (57) 

Since, in the literature of Cosserats continuum, the tensor denotation dominate, we have 

write these components also in eq. (55, 57)   as:  𝜈𝑖𝑏  and  ℓ𝑖𝑏 , (𝑏 = 𝑡, 𝑠, 𝛼, 𝑖).  Both relations 

(55) and (57) can be easily written also in the Sudria vector notation: 𝒽𝑏 , ℓ𝑏 as:  𝒱 = 𝒽𝑏⨂𝑑𝑏
′    

and   ℒ = ℓ𝑏⨂𝑑𝑏
′ .     

The main goal of the paper is not to destroy the continuum theory tradition where tensors 

are fundamental things and basic tools. We only try to explain  the “secret line” of the Cosserats 

reasoning in which they are looking for better modeling of  intrinsic properties of matter. Their 

mathematical concept is analogous with concept of a  “monad” proposed by Leibnitz, the 

concept of “extensions” proposed by H. Grassmann, concept of “octonian” proposed by Caley, 

etc. [BADUR 2022]. Mathematically, it is equivalent to the operation of taking the square on a 

scalar or vector. The best example of such successful operation is the Dirac equation of an 

electron written to be:  

Dirac spinor equation =  √Klein − Gordon equation                               (58) 
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Trying to describe a continuum more precisely then  the continuum governed by the 

Newtonian balance of the quality of motion, motivation of the Cosserats was to find a following 

system of equations:  

Cosserats equations of motion =  √Newtonian:   𝑚𝑎 = 𝑓                         (59) 

It is known fact from the gauge field theory [BASSET 1894] that the above “square 

operation” gives a possibility to introduce the intrinsic, local group of symmetry, which is 

hidden in the classical equation without “square”. From this reason, the Cosserats continuum is 

described by “torsors”  with six values in the Lie algebra. These six values are denoted by the 

Cosserats by specific order in their denotations, mainly, the repeated letters  𝜉, 𝜂, 𝜁, 𝑝, 𝑞, 𝑟   

which corresponds to six Lie algebra  𝒯𝛼 matrices (see eq. 4,5 above).  

The above formulae are one of the most marvelous in a whole classical field theory – it 

underline the  main features of the  four-time formulation of the local von Helmholtz group of 

symmetry.  The Darboux vectors:  ℓ𝑡, ℓ𝑠, ℓ𝛼, ℓ𝑖    are the function of rotation only – it should be 

noted that, it is a single  formulae:  for a rigid body, rods, surfaces and 3D body -  independently 

of which case is calculated.  

But one can not to be impressed to resignation with the tensor description tradition. Since 

the Cosserat continuum is fully equivalently described within the natural Lagrangean and 

Eulerian descriptions.  Owing to a numerous authors HELLINGER 1914, SIGNORINI 1943; de 

BORST 1991; LACHNER ET AL. 1994; LAKES 1995; SAWCZUK 1967, MALCOLM AND GLOCKNER 

1972, SHIELD 1973; SIMON, DELL’ISOLA 2018)  a satisfied formulation in the language of 

tensors are available and are important in experimental foundations of the constitutive 

equations.     

 

17. Intrinsic symmetry flux 

Cosserats brothers have also introduced a concise system of internal measures of 

momentum and angular momentum fluxes. Independently of the dimension of body (a rigid 

body, rods, surfaces, 3D body) they proposed to use the following measures: 𝐴𝑏
′ , 𝐵𝑏

′ , 𝐶𝑏
′ ;  𝑏 =

𝑡, 𝑠, 𝛼, 𝑖 for translational fluxes of symmetry and: 𝑃𝑏
′ , 𝑄𝑏

′ , 𝑅𝑏
′   for rotational fluxes of symmetry. 

The order: 𝐴′, 𝐵′, 𝐶′, 𝑃′, 𝑄′, 𝑅′  correspond with six  𝒯𝛼 matrices of Lie algebra.  These measures 

appear in every Cosserats’ bodies [COSSERAT E. AND  F. 1909A], therefore, we propose to 

introduce a one, unified, definition – for the translational fluxes:  
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𝒯 = 𝐽𝒱−1𝜎 =

{
 

 
(𝐴′𝑑1

′ + 𝐵′𝑑2
′ + 𝐶′𝑑3

′ )⨂𝑑𝑡
′ = 𝒯𝑖𝑡𝑑𝑖

′⨂𝑑𝑡
′                  (rigid body)           

(𝐴𝑠
′𝑑1

′ + 𝐵𝑠
′𝑑2
′ + 𝐶𝑠

′𝑑3
′ )⨂𝑑𝑡

′ = 𝒯𝑖𝑠𝑑𝑖
′⨂𝑑𝑠

′             (statics of rods)        

(𝐴𝛼
′ 𝑑1

′ + 𝐵𝛼
′𝑑2

′ + 𝐶𝛼
′𝑑3

′ )⨂𝑑𝑡
′ = 𝒯𝑖𝛼𝑑𝑖

′⨂𝑑𝛼
′       (statics of surfaces)    

(𝐴𝑏
′ 𝑑1

′ + 𝐵𝑏
′𝑑2

′ + 𝐶𝑏
′𝑑3

′ )⨂𝑑𝑡
′ = 𝒯𝑖𝑠𝑑𝑖

′⨂𝑑𝑏
′      (dynamics of 3D body)

                                    (60)      

and for rotational fluxes:  

ℳ = 𝐽𝒱−1𝜇 =

{
 

 
(𝑃′𝑑1

′ + 𝑄′𝑑2
′ + 𝑅′𝑑3

′ )⨂𝑑𝑡
′ = ℳ𝑖𝑡𝑑𝑖

′⨂𝑑𝑡
′              (rigid body)           

(𝑃𝑠
′𝑑1
′ + 𝑄𝑠

′𝑑2
′ + 𝑅𝑠

′𝑑3
′ )⨂𝑑𝑡

′ = ℳ𝑖𝑠𝑑𝑖
′⨂𝑑𝑠

′            statics of rods)        

(𝑃𝛼
′𝑑1
′ + 𝑄𝛼

′ 𝑑2
′ + 𝑅𝛼

′ 𝑑3
′ )⨂𝑑𝑡

′ =ℳ𝑖𝛼𝑑𝑖
′⨂𝑑𝛼

′     (statics of surfaces)   

(𝑃𝑏
′𝑑1
′ + 𝑄𝑏

′ 𝑑2
′ + 𝑅𝑏

′ 𝑑3
′ )⨂𝑑𝑡

′ =ℳ𝑖𝑠𝑑𝑖
′⨂𝑑𝑏

′    (dynamics of 3D body)

   (61) 

In above, 𝐽 = det𝐹 , and the nonsymmetrical momentum flux  𝜎 = 𝜎𝑘𝑙𝑒𝑘⨂𝑒𝑙, the angular 

momentum flux 𝜇 = 𝜇𝑘𝑙𝑒𝑘⊗ 𝑒𝑙   which are usually used for momentum and angular 

momentum balances (see: eq. 16). The above definitions of symmetry fluxes are independent 

of dimension of Cosserats’ continua and, in the literature, are related to as the intrinsic 

formulation. Generally, the translational measures: 𝜈𝑖𝑏 , 𝒯𝑖𝑏  as well as the rotational 

one:  ℓ𝑖𝑏 ,ℳ𝑖𝑏 , 𝑏 = 𝑡, 𝑠, 𝛼, 𝑖 ,   are well known within the dynamics of rigid body, rods, material 

surfaces and 3D body. Especially, well known is a similarity between equations of the rigid 

body dynamics and rods statics – in the literature it  has a name of the “Kirchhoff analogy” or  

“kineto-static analogy” [HESS 1884; GREEN AND LAWS 1966; REISSNER 1981; HODGES 1990; 

HODGES 1990].  

 

18. Gauge flux conservation 

Among the requirements to be imposed on the lagrangean functional 𝑊 the most 

important is the property of invariance under the action of gauge transformation. Classical 

Maxwell electrodynamics is the best example of the Lagrangean, which should satisfy 

simultaneously and independently the invariance under the action of 6-parameter Lorentz group 

and second one is the 1-parameter local 𝑈(1) group of gauge symmetry. From each invariance 

property it follows the so-called currents of symmetry which are: six equations of conservation 

of the energy-momentum tensor (the current of the Lorentz group) and one equation 𝜕𝜇𝑗
𝜇 = 0.  

Analogically in the original Cosserats continuum there also exist two kind of group. The 

first one is the Euclidean group with constant, coordinate independent six translational  and 

rotational parameters. The second one is local von Helmholtz group  ℋ(𝑥, 𝑡) = 𝑇(3) ⊲ 𝑆𝑂(3), 
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which play a role of  𝑈(1) in Maxwell electrodynamics or 𝑆𝑈(2) in the Yang-Mills non-

Abelian  strong interaction. If the set of the Cosserats measures is simply written as eq. 7;      

𝒜𝑏 = 𝜉𝑏𝒯1 + 𝜂𝑏𝒯2 + 𝜁𝑏𝒯3 + 𝑝𝑏𝒯4 + 𝑞𝑏𝒯5 + 𝑟𝑏𝒯6  then,   if lagrangean action is a function of 

Cosserats velocity measures:  𝑊(𝒜𝑏)   than one can define the following current symmetry 

fluxes: 

𝒥𝑏 =
𝜕𝑊

𝜕𝒜𝑏
= 𝐴𝑏

′ 𝒯1 + 𝐵𝑏
′𝒯2 + 𝐶𝑏

′𝒯3 + 𝑃𝑏
′𝒯4 + 𝑄𝑏

′𝒯5 + 𝑅𝑏
′𝒯6                            (62) 

It is nothing else like another form of the Cosserats stress and couple stress defined 

previously in   𝒯,ℳ (eqs. 60, 61). In original approach there is no d’Alembert principle 

introduced, then the Cosserats defines the 𝑊(𝒜𝑏)   to be fully coupled between deformation 

action and kinetic action. It is also the reason that we called this assumption as “four-time 

continuum”. In order to explain the unexpected form of spatial  𝒥𝑖  and temporal 𝒥𝑡 and their 

energetical partners: 𝒜𝑖  ,𝒜𝑡  the Cosserats underlines the common structure of gauge potential 

variation:  𝛿𝕄 = (𝛿′𝕄)𝕄 ;  𝛿(𝕄)−1 = −𝕄−1(𝛿′𝕄) what leads to [BADUR 1990, 1993A]:  

𝛿𝒜𝑏 = [ 𝕀 𝜕𝑏 −𝒜𝑏]𝛿
′𝕄 = 𝒟𝑏 𝛿

′𝕄                                                (63) 

where the invariant (intrinsic) variation denoted by Cosserats as 𝛿′ is here also applied. Thus, 

using eq. (63) to the variation of lagrangean   𝑊(𝒜𝑏)   one obtains:  

𝛿𝒜 = ∫ ∭ 𝛿𝑊
⬚

ℬ
 𝑑𝜚𝑖

𝑡2
𝑡1

  𝑑𝑡 = ∫ ∭ 𝒥𝑏 ∘ 𝛿𝒜𝑏
⬚

ℬ
 𝑑𝜚𝑖

𝑡2
𝑡1

  𝑑𝑡 =                                         

   ∫ ∭ 𝒥𝑏 ∘ [ 𝕀 𝜕𝑏 −𝒜𝑏]𝛿
′𝕄

⬚

ℬ
 𝑑𝜚𝑖

𝑡2
𝑡1

  𝑑𝑡 = ∫ ∭ [ 𝕀 𝜕𝑏 −𝒜𝑏]𝒥
𝑏 ∘ 𝛿′𝕄

⬚

ℬ
 𝑑𝜚𝑖

𝑡2
𝑡1

  𝑑𝑡 + 𝑏𝑐. 

From the above it follows the common set of governing equation of motion written by 

means of covariant derivative  𝒟𝑏  (𝑏 = 𝑡, 𝑠, 𝛼, 𝑖):  

{
 

 
𝒫 = −𝒟𝑡𝒥

𝑡                     (rigid body motion)  

𝒟𝑠𝒥
𝑠 + 𝒫 = 0                     (statics of rods)      

𝒟𝛼𝒥
𝛼 + 𝒫 = 0                (statics of surface)    

𝒟𝑡𝒥
𝑡 + 𝒫 = −𝒟𝑡𝒥

𝑡   (dynamics of 3D body)

                                             (64) 

Here, intrinsic sources of action, denoted by 𝒫  are also written within Lie algebra base:   

𝒫 = 𝜉0𝒯1 + 𝜂0𝒯2 + 𝜁0𝒯3 + 𝑝0𝒯4 + 𝑞0𝒯5 + 𝑟0𝒯6  where the Cosserats denotations are used.  

There are Cosserats equations presented in the particular chapters of their monography.   We 

hope that our revalorization of the Cosserats mathematical model will be useful in better 

understanding the structure of governing equations and the concept of many-time unification. 
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We underline, also that the Cosserats concept of many-time unification is in a complete 

opposition to the concept of many-dimensional unification which is used in efforts by  

Norström, Kaluza, Silberstein and others pioneers  in the general relativity and relativistic 

cosmology [BADUR 2021].    

 

19. Conclusions 

The Cosserats monography [COSSERAT E. AND  F. 1909A] is commonly known, but every 

new reader meets a problem of interpretation old Cosserats results. Sometime even the main 

motivations of the Cosserats are unknown. Therefore, one still needs a  new revalorization of 

the classical formulas, for instance, the measures of Cosserats deformation. We recall that in 

the original Cosserats’ memoir as well as in others numerous works (even within the linear 

theory) the definition of deformation measures is given ex cathedra – without any explanation. 

Therefore, the question about the theoretical sources and physical meaning of those measures 

is still actual. In all of discussions presented in the literature, the measures are introduced by 

more or less complete definitions, sometime being far from the original Cosserats one.  In most 

of the works, additionally, the tensorial character of the Cosserats measures has been postulated.  

As a result, a new light on this problem is presented in our paper.  Our revalorization of the 

Cosserats measures (see eq. 7) is unique and, we hope, final.  

We have revalorized also the compatibility equations which are proposed in the early 

Cosserats work [COSSERAT E. AND F. 1896]. The new view on spatial-temporal compatibility 

is required if, one asserts possibility of a sort of  “inertia anisotropy”.  

Yet another historical comment has been presented. Especially we are focused on a 

“intrinsic” approach in the moving frame.   This approach is very important within the gauge 

theory of interactions; therefore we have entitled our paper: From solid mechanics backgrounds 

to modern field theory.          

Let we come back to what we mentioned at the beginning of this paper. From the point 

of view of pure mathematics,  the theory of “gauging continua” forms an interesting chapter of 

geometry of fiber bundle. From the point of view of the applications the value of this concepts 

is that they are helpful in studying the more difficult and general problems of mechanics, just 

as vector calculus has been for many years, and as tensor calculus is indispensable in the general 

relativity. Moreover, an appropriate calculation often enables us to grasp belter the essential 



 

48 

 

features of the problem. For instance, the week and strong interactions cannot be nowadays 

described without the gauge potentials and symmetry groups.  We should be glad if you got the 

impression that in this classical field of mechanics geometry there are still interesting questions, 

and that the study of these questions may be worthwhile for pure as well as the applied field 

theory.     
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