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A b s t r a c t

The aim of the study was to investigate the effect of vertical displacement of the sample on the 
results of X-ray diffraction (XRD) in Bragg-Brentano geometry. Measurements were performed on 
an S275JR steel sample using a Phaser D2 diffractometer (Cu Kα, λ = 1.541874 [Å]) with a step size 
of 2θ = 0.01°. The shifts in the positions of the 2θ peaks and half-widths (FWHM) were analyzed. 
A comparison between the theoretical model and experimental peak shifts has been calculated. 
The lattice constant was determined using the Nelson-Riley method, the crystallite size using the 
Scherrer method, and the parameters using the Williamson-Hall method. A vertical displacement 
of 1 mm produced an approximately 0.8° shift of the (110) peak. Based on the diffraction data, the 
lattice parameter was determined using the Nelson-Riley extrapolation method (2.8643-2.8678 
[Å]), the crystallite size was evaluated using the Scherrer method (110-260 [Å], with the largest 
value for the (110) peak), and lattice distortions were assessed using the Williamson–Hall approach 
(approx. 0.26-0.30[%]). The results highlight the significance of precise sample positioning, as even 
a small displacement can lead to noticeable errors in peak locations and consequently in the derived 
structural parameters.
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Introduction

X-ray diffraction (XRD) is a fundamental technique for determining crystal 
structure parameters, identifying phases, and evaluating microstructural features 
of materials, such as crystallite size and internal stresses. XRD applications include 
both basic research and quality control in industry (e.g., metallurgy, coatings, 
electrochemical materials, pharmaceuticals), where diffractometric results enable 
the evaluation of composition, type-III stresses, or the presence of undesirable crystal 
forms (HARRINGTON, SANTISO 2021). The precision and accuracy of XRD results 
depend significantly on the measurement geometry and the correct positioning of the 
sample relative to the goniometer axis, known as the Bragg-Brentano geometry (Fig. 1). 
This is the classical symmetrical reflection arrangement. The X-ray beam strikes the 
flat surface of the sample at an angle θ to the sample plane and is scattered at the 
same angle, while the detector records scattered radiation at an angle 2θ relative to 
the incident beam. During the measurement, the angle of incidence and the angle 
of the detector change in a coupled manner so that Bragg’s condition is satisfied for 
successive lattice planes. This allows the detector to record intensity as a function 
of the diffraction angle (CLINE 2014).

X-ray beam

Detector

Sample

Diffractometer circle

x=–1

X-ray tube

x=0

x=1θ θ

Fig. 1. Bragg-Brentano geometry
Source: Self-made – own source.

In Bragg-Brentano geometry the X-ray source, the sample surface and the detector 
must lie on the same focusing circle; a vertical displacement of the sample therefore 
changes the effective point of incidence of the beam relative to the diffractometer 
radius. A simple geometric derivation shows that, to first order for small displacements, 
the resulting shift of the recorded diffraction angle [rad.] can be written as (1).
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	 ∆(2𝜃𝜃) = −2𝑠𝑠 cos𝜃𝜃𝑅𝑅  	 (1)

where:
θ	 – reflection angle [rad.].
s	 – displacement of the sample [mm]
R	– radius of the goniometer circle [mm]

The formula implies two important, experimentally observed facts: the 
angular shift scales approximately linearly with the displacement s, and 
the shift is largest at low Bragg angles because of the cos θ dependence.  
If the sample is shifted vertically, the geometric condition is violated and a shift 
in the angles of maximum reflections (change in the position of 2θ peaks) 
and possible distortion of the line shape are observed (CULLITY 2014, 
WEIDENTHALER 2011, KRIEGNER 2015).

In addition to sample displacement, other geometric sources of error may 
occur, including axial divergence, imperfect flatness of the sample surface, sample 
transparency (beam penetration through a thin sample), and the use of a simple 
(linear) detector that does not geometrically fit the focal circle. The aim of this 
work is to investigate the effect of sample displacement on the recorded XRD 
spectra, which will allow us to assess the significance of this error and its 
consequences for the interpretation of crystallographic data.

Materials and methods

Materials

The material investigated in this study was low-carbon structural steel 
S275JR. The sample surface was prepared for X-ray diffraction measurements 
in accordance with ASTM E975-13. The chemical composition of the steel 
(maximum permitted values according to EN 10025-2) is shown in Table 1.

Table 1 
Chemical composition of S275JR steel

Element Carbon Manganese Silicon Phosphorus Sulfur Nitrogen Copper

Content [%] 0.210 1.500 – 0.035 0.035 0.012 0.550

Source: ASTM E975-13.
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Experimental setup

XRD measurements were carried out using a Bruker Phaser D2 diffractometer 
equipped with Cu Kα radiation (mean wavelength λ = 1.541874 [Å]) and goniometer 
radius equal 140 mm. Scans were recorded with a step size of 0.01° in 2θ and 
a counting time of 1 s per step. To introduce controlled vertical displacements, 
spacers (washers) made of the same steel grade were used. For correct Bragg-
Brentano focusing, the sample surface must be positioned at a height of 6 mm, 
which corresponds to the goniometer rotation axis; this reference (proper) position 
is denoted as x = 0 and all intentional height shifts are reported relative to this 
datum. The sample surfaces were set at heights of 5, 5.5, 6, 6.5, and 7 mm.

Angular position and diffraction line profile

The recorded diffractograms were normalized to unity by dividing each 

intensity value I(2θ) by the maximum value 𝐼𝐼𝑛𝑛 =
𝐼𝐼(2𝜃𝜃)
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

 . Then, the profile 

of each diffraction reflection was described by the Pearson VII function according 

to formula (2):

	 𝐹𝐹(2𝜃𝜃; 𝑏𝑏,𝑚𝑚, 𝑎𝑎, 𝑑𝑑, 𝑝𝑝, 𝑞𝑞) = 𝑎𝑎 [1 + 2𝜃𝜃 − 𝑑𝑑
𝑏𝑏2 ]

−𝑚𝑚
+ 𝑝𝑝 · 2𝜃𝜃 + 𝑞𝑞 	 (2)

where:
b, m, a, d, p, q – coefficients determined by the least-squares method
θ – reflection angle [rad.].

The values of coefficients b, m, a, d, p, and q were determined using the 
least squares method, assuming a linear distribution of the background under 
the diffraction peak. An example description of the diffraction reflection profile 
with the determined coefficients is shown in Fig. 2.

Knowledge of the exact functional description of the Bragg reflection was 
necessary to accurately determine the angular position of each diffraction line. 
This position is described by a coordinate determining the position of the center 
of gravity of each reflection (3). This was necessary because the K2, component, 
which always causes peak asymmetry, was not removed from the XRD spectrum, 
so using the position of the reflection maximum would not be accurate enough.

2𝜃𝜃𝑠𝑠𝑠𝑠 =
∫ 2𝜃𝜃: 𝐹𝐹(2𝜃𝜃, 𝑏𝑏,𝑚𝑚, 𝑎𝑎, 𝑑𝑑, 𝑝𝑝, 𝑞𝑞)𝑑𝑑(2𝜃𝜃)2𝜃𝜃2
2𝜃𝜃1 − ∫ 2𝜃𝜃2𝜃𝜃2

2𝜃𝜃1 (𝑝𝑝 · 2𝑎𝑎 + 𝑞𝑞) · 𝑑𝑑(2𝜃𝜃)

∫ 𝐹𝐹(2𝜃𝜃, 𝑏𝑏,𝑚𝑚, 𝑎𝑎, 𝑑𝑑, 𝑝𝑝, 𝑞𝑞)2𝜃𝜃2
2𝜃𝜃1 − ∫ (𝑝𝑝 · 2𝜃𝜃 + 𝑞𝑞) · 𝑑𝑑(2𝜃𝜃)2𝜃𝜃2

2𝜃𝜃1

 

(3)
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where:
b, m, a, d, p, q – coefficients determined by the least-squares method
θ – reflection angle [rad.].

Furthermore, knowledge of the center of gravity location enabled the 
determination of the maximum radiation and the exact full width at half 
maximum (FWHM), which was necessary for further calculations (FULTZ, 
HOWE 2013).
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Fig. 2. Peak profile 110
Source: Self-made – own source.

Nelson-Riley Method

The Nelson–Riley extrapolation method was used to determine the crystal 
lattice parameter, allowing the reduction of systematic errors that depend 
on the diffraction angle (NELSON, RILEY 1944). For each diffraction peak, 
an individual lattice parameter ahkl was first calculated using Bragg’s law (5). 
However, these provisional values are affected by angular-dependent errors, which 
become smaller as the reflection angle θ approaches 90°. Since direct measurement 
at 2θ = 180° is impossible due to diffractometer geometry, the method uses 
a correction function f(θ) (4) that describes how these errors vary with θ.  
The calculated values ahkl are then plotted as a function of f(θ). If the assumed 
form of f(θ) is correct, the points align approximately along a straight line. 
Using the least-squares method, the value of the lattice parameter extrapolated 
to f(θ) = 0 is taken as the final lattice constant a0 and is presented in Fig. 3 
(LIPSON 2001).
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	 𝑓𝑓(𝜃𝜃) = 1
2 ⋅ (

cos2𝜃𝜃
sin𝜃𝜃 + cos2𝜃𝜃

𝜃𝜃 ) 	 (4)

where:
θ – reflection angle [rad.].

	 𝑎𝑎𝑜𝑜 =  𝜆𝜆 · √ℎ2 + 𝑘𝑘2 + 𝑙𝑙2

2 · sin𝜃𝜃  	 (5)

where:
h, k, l	– Miller index
λ	 – radiation wave length [Å]
θ	 – reflection angle [rad.].
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Fig. 3. An example of an approximate crystal lattice function for the tested sample
Source: Self-made – own source.

Scherrer Method

The size of α-iron phase crystallites was determined using the Scherrer method 
based on the analysis of the half-width of diffraction reflections. The broadening 
of diffraction lines is directly related to the size of the ordered crystal lattice areas 
that scatter X-rays in a coherent manner. In the case of smaller crystallites, the 
diffraction peaks become broader, which allows their quantitative determination 
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based on the recorded diffraction spectra (SCHERRER 1918, NWAOKAFOR 
et al. 2021). The effect is described by formula (6).

	 𝐷𝐷𝑣𝑣 =
𝐾𝐾 ⋅ 𝜆𝜆

𝛽𝛽𝑟𝑟 ⋅ cos𝜃𝜃
 	 (6)

Dv	– crystallite size perpendicular to the reflecting plane,
K	 – Scherrer constant equal to 0.9,
λ	 – wavelength of radiation,
βr	 – half-width of the reflection,
θ	 – reflection angle.

Williamson-Hall Method

The Williamson-Hall method was used to simultaneously evaluate the 
contribution of crystallite size and lattice distortion (type III stresses) to the 
broadening of diffraction lines. Unlike the Scherrer method, this method 
assumes the influence of lattice distortions on the half-width of the reflection 
(WILLIAMSON, HALL 1953, PELLEG et al. 2005). Assuming this, the 
relationship can be written as an equation linking the line width to the diffraction 
angle. After appropriate transformation, a straight function line is obtained, 
whose slope corresponds to the amount of deformation, and the intercept allows 
the size of the crystallites to be estimated as shown in Figure 4 (7).

	
𝜀𝜀 = 𝛽𝛽𝑧𝑧

4 ⋅ tg𝜃𝜃 
	 (7)

𝛽𝛽𝑧𝑧 = 4 ∙ tg𝜃𝜃 ∙ 𝜀𝜀 

where:
ɛ	 – relative lattice distortions,
βz	– reflection width related to the influence of distortions,
θ	 – reflection angle.

In the Williamson-Hall method, the equation for the half-width of the 
reflection is (8):

	 𝛽𝛽 = 𝛽𝛽𝑘𝑘 + 𝛽𝛽𝑧𝑧 	 (8)

β	 – width of diffraction reflections
βk	– reflection width depending on the size of crystallites
βz	– reflection width with distortion influence
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Fig. 4. Approximated function of Williamson-Hall for position x = 0
Source: Self-made – own source.

Results and Discussion

The recorded diffractograms show that a deviation to the “+” side from the 
center of the focus circle causes significant shifts of the reflections towards 
higher 2θ angles. In the case of deviations to the “–” side, the opposite is true. 
Visual analysis of the recorded diffractograms (Fig. 5) indicates a systematic 
shift in the position of the 2θ peaks depending on the height of the sample.

For each of the diffractograms, measurements were made of the positions 
of the centers of gravity of the 2θ angle reflections of selected peaks (Tab. 2) 
and their half-widths were determined (Tab. 3). This is necessary to calculate 
the size of crystallites or lattice distortions.

Table 2 
Measurement of 2θ reflection positions for different sample height settings

Miller Index
X = –1 X = –0.5 X = 0 X = 0.5 X = 1 

[Degrees] [Degrees] [Degrees] [Degrees] [Degrees]
110 43.941 44.316 44.732 45.087 45.432
200 64.409 64.765 65.106 65.435 65.755
211 81.804 82.101 82.437 82.727 83.008
220 98.550 98.809 99.080 99.356 99.356
310 116.085 116.334 116.549 116.793 116.950

Source: Self-made – own source. 
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Fig. 5. A comparison of diffractograms with different positions of the samples
Source: Self-made – own source.

Table 3
Measurement of the FWHM of 2θ reflections for different sample height settings

Miller Index X = –1 X = –0.5 X = 0 X = 0.5 X = 1 

[Degrees] [Degrees] [Degrees] [Degrees] [Degrees]

110 0.337 0.342 0.336 0.332 0.349

200 0.593 0.720 0.617 0.579 0.683

211 0.670 0.649 0.634 0.628 0.632

220 0.838 0.828 0.807 0.787 0.824

310 1.301 1.316 1.320 1.257 1.356

Source: Self-made – own source.

In addition, the percentage differences of the 2θ angle relative to the correct 
position were calculated. It can be seen that the largest deviations are for the 
largest reflection originating from the (110) plane. The data presented in Tables 2 
and 4 show that a 1 mm shift of the sample causes a shift of the (110) reflection 
by as much as approximately 0.8°, while for reflections with a further angle 
position, this effect is much smaller. A comparison of the shifts for the (110) 
peak is shown in Figure 6.
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Table 4
Differences from the reference position

Miller Index
X = –1 X = –0.5 X = 0 X = 0.5 X = 1 

[Degrees] [Degrees] [Degrees] [Degrees] [Degrees]

110 –0.791 –0.416 0.000 0.355 0.700

200 –0.697 –0.341 0.000 0.329 0.649

211 –0.633 –0.336 0.000 0.290 0.571

220 –0.530 –0.271 0.000 0.276 0.276

310 –0.464 –0.215 0.000 0.244 0.401

Source: Self-made – own source.
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Fig. 6. Overview of peak 110 for different height shifts
Source: Self-made – own source.

The results obtained for the Miller index peak (110) were compared with 
the theoretical model from equation (1) and summarized in Table 5. The results 
indicate similar values between the two methods.

Table 6 shows the calculated values of sin2 θ for each reflected signal and 
their ratios relative to the first peak in order to determine the structure layout.
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Table 5
Comparison of theoretical values with measured values  

for peak values with an index of (110)

S[mm] 2θ (Measured) 
[Degrees]

Measured Δ2θ 
[Degrees]

Predicted Δ2θ (model) 
[Degrees]

Measured – predicted 
[Degrees]

–1 43.941 0.791 0.757 0.034
–0.5 44.316 0.416 0.378 0.038

0 44.732 0.000 0.000 0.000
0.5 45.087 0.355 0.378 0.023
1 45.432 0.700 0.756 0.056

Source: Self-made – own source.

Table 6
Quotient of the values of the sine of theta squared

Measurement Miller index 2θ sin2θ
sin2𝜃𝜃ℎ𝑘𝑘𝑘𝑘

sin2𝜃𝜃ℎ1𝑘𝑘1𝑙𝑙1
 

X = –1 [Degrees] 110 43.941 0.140 1.000
200 64.409 0.284 2.029
211 81.804 0.429 3.063
220 98.55 0.574 4.103
310 116.085 0.720 5.143

X = –0.5 [Degrees] 110 44.316 0.142 1.000
200 64.765 0.287 2.049
211 82.101 0.431 3.081
220 98.809 0.577 4.119
310 116.334 0.722 5.074

X = 0 [Degrees] 110 44.732 0.145 1.000
200 65.106 0.290 2.000
211 82.437 0.434 2.999
220 99.08 0.579 3.998
310 116.549 0.723 4.997

X = 0.5 [Degrees] 110 45.087 0.147 1.000
200 65.435 0.292 1.988
211 82.727 0.437 2.971
220 99.356 0.581 3.955
310 116.793 0.725 4.935

X = 1 [Degrees] 110 45.432 0.149 1.000
200 65.755 0.295 1.976
211 83.008 0.439 2.945
220 99.356 0.581 3.898
310 116.95 0.727 4.873

Source: Self-made – own source.
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Based on the measurements taken, the lattice constants for each series 
of measurements were calculated to check for changes between heights. 
The results are summarized in Table 7 and presented in Figure 7.

Table 7
Results of lattice constants using the N-R method

Position X = –1 X = –0.5 X = 0 X = 0.5 X = 1

Lattice constant [Å] 2.8678 2.8661 2.8643 2.8653 2.8654
Source: Self-made – own source.
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Fig. 7 Lattice constant comparison in the sample shift function
Source: Self-made – own source.

An elementary model of alpha iron with a correct height of 6 mm and a lattice 
constant calculated using the N-R method. A comparison of the elementary 
model and the diffractogram for x = 0 is shown in Figure 8.

The next step was to calculate the size of the crystallites using the Scherrer 
method. The highest value is observed for the (110) peak, and the lowest for 
the (310) peak. The results are summarized in Table 8.

Table 8
Crystallite sizes determined using the Scherrer method

Miller Index X = –1 [Å] X = –0.5 [Å] X = 0 [Å] X = 0.5 [Å] X = 1 [Å]
110 254.401 251.014 255.877 259.291 246.971
200 158.453 130.761 152.878 163.212 138.609
211 157.002 162.447 166.291 168.685 167.980
220 145.421 147.565 151.824 156.722 149.460
310 115.460 114.544 114.543 120.700 112.137

Source: Self-made – own source.
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Fig. 8. Comparison of the model diffractogram with the measured diffractogram for x = 0
Source: Self-made – own source.

Additionally, calculations were performed using the W-H method, which 
also assumes the influence of network distortions. The results obtained using 
this method were significantly higher. It is also worth noting the lower values 
for x = –0.5 and x = 1. The results are summarized in Table 9.

Table 9
Results of crystallite size and lattice distortion using the W-H method

W-H X = –1 X = –0.5 X = 0 X = 0.5 X = 1

D [Å] 992.894 531.411 945.112 910.124 694.838

ɛ [%] 0.297 0.261 0.288 0.272 0.277

Source: Self-made – own source.

Conclusions

The deviation of the sample position from the center of the circle in Bragg- 
-Brentano geometry focusing causes a systematic shift in the angular positions 
of the 2θ reflections. Comparing the measurement results with the theoretical 
model shows that the experiment was performed correctly and that the model 
accurately determines the possible displacement. The difference between 
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the measured and calculated results ranged from 0.023 to 0.056 degrees. 
The calculated lattice constant values varied only within a very small range 
(2.8643-2.8678 [Å]). This means that the Nelson-Riley method effectively limits 
the influence of geometric errors on the final result. This effect is most pronounced 
at the smallest 2θ diffraction angles (e.g., the (110) reflection). For the x = 0 
reference setting, the ratios of the calculated sin2θhkl are close to 1, 2, 3, 4, 5, 
which confirms their regular (cubic) arrangement. The largest crystallite size was 
observed for peaks with an index of (110) for the Scherrer method. A relationship 
between peak size and crystallite size can also be observed, i.e., the larger the 
peak, the larger the crystallite size. The crystallite size values obtained using 
the Williamson-Hall method were significantly larger than those calculated 
using the Scherrer method. This may be due to lattice distortions, although the 
differences are very large. In summary, the shift causes noticeable changes in the 
results obtained. Falsifying them can lead to erroneous conclusions and misuse.
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