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Abstract 

Decision–action systems in high-stakes domains, such as oncology, face a critical barrier: 

the inherent unpredictability and “hallucination” risks associated with Large Language Mod-

els (LLMs). We introduce AGL (Actionable Granular Logic) as a formal logical framework 

designed to serve as a verifiable symbolic wrapper for generative AI. AGL bridges the gap 

between stochastic model outputs and rigorous clinical protocols by employing a Decidabil-

ity Split. This architecture encapsulates vague or probabilistic evidence into Information 

Granules (MT-FOGL), exposing them to a verifiable core exclusively via discrete threshold 

atoms. 

Unlike traditional rigid logics, AGL formalizes a flexible spectrum of operational re-

sponses (actions based on medical and expert knowledge)—ranging from hard procedural 

stops to adaptive clinical recommendations, such as flagging missing diagnostic prereq-

uisites. To ensure rigorous control, we restrict the reasoning core to guarded profiles 

(GF/RGF), guaranteeing decidability while addressing computational complexity through 

data locality and strategic computational budgeting. The framework’s practical viability is 

demonstrated through a prototype of the OnkoBot system, developed in collaboration with 

the Maria Sklodowska-Curie National Research Institute of Oncology (NIO-PIB). While 

comprehensive performance metrics are deferred to a subsequent report currently being 

prepared by the OnkoBot team from NIO-PIB, UWM, and collaborating partners, initial 

results indicate that AGL effectively mitigates hallucinations by grounding agentic propos-

als in auditable, formal specifications, providing a scalable and trustworthy foundation for 

AI in mission-critical deployments. 
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1. Introduction and motivation 

 
AI systems deployed in high-stakes (mission-critical) domains face requirements that differ qualitatively from 

typical applications: decisions have operational consequences, therefore auditability (the ability to reconstruct 

premises and the structure of reasoning) and bounded verifiability of the decision core become essential. Rely-ing 

exclusively on empirical safeguards (quality testing, red-teaming, safety filters) does not establish a formal 

correctness contract at critical points. 

Modern agentic systems based on large language models offer high expressivity, yet create deployment barriers 

related, among others, to hallucinations and limited logical accountability (the difficulty of formally justifying why 

a particular recommendation was produced). In practice, decision–action systems must also represent vague and 

uncertain notions, predictive model outputs, risk assessments, decision thresholds, and missing data. 

The central premise of this paper is to couple (i) an auditable description of the knowledge state and (ii) a formal 

description of procedures (workflows), while keeping the verification interface within a profile that supports meta-

theoretic analysis (decidability, complexity). To this end, we propose MT-FOGL (knowledge state and granularity) 

and AGL (procedures with regular-program syntax), with an explicit separation between the computation layer and 

the verifiable layer (the Decidability Split). 

Remark 1.1 (Naming convention). In this paper, AGL denotes the canonical action-oriented formalism. The terms 

GF/RGF refer exclusively to the verifiability profile (restrictions ensuring decidability), and not to the name of the 

framework nor to paper titles. 

For a complete list of acronyms and abbreviations used in the paper (clinical and IT/AI), see Annex A. 

 

 

2. Problem setting and design goals 

 
We consider systems that (i) maintain a knowledge state about objects (e.g., a case, a process, a patient), (ii) 

produce reasoning in the form of conclusions/qualifications (when a rule is applicable), and (iii) execute workflows 

consisting of decision and execution steps. The system must be auditable: it should support answering which 

premises and which logical structure led to a decision or recommendation. 

We capture the design requirements as follows: 

G1. Auditability: the reasoning core operates on explicit, discrete predicates and rules, inspectable by design. 

G2. Bounded verifiability: core properties are subject to algorithmic verification within a decidable fragment. 

G3. Separation of responsibility: complex computations (statistical/ML models, numerical methods) are en- 

capsulated outside the core. 

 

G4. Action orientation: the formalism describes not only “what is true” but also “what to do” via pro-

grams/procedures. 

G5. Deployability: constructs map naturally to system components (KB-state, execution, audit trail). 

 

Remark 2.1 (Disclaimer: illustrative nature of medical examples). All medical-context examples (formulas, rules, 

procedures, thresholds) are strictly illustrative (non-normative) and serve to demonstrate the formal constructions 

of AGL. They are not clinical recommendations nor medical advice and must not be interpreted as a formalization 

of any particular guideline. In real deployments, the content of rules, thresholds, and procedures requires validation 

by qualified experts and adaptation to local standards and data. 
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2.1. An example application of AGL architecture and the Decidability Split 

 
We explain the intuition behind the AGL architecture and the Decidability Split using Figures 1–2, step by step. 

 

Reading guide for Figure 1 (step-by-step). Figure 1 presents the operational mechanism of AGL as a 

compilation–verification pipeline that produces explicit audit evidence. The workflow can be read as follows: 

Step 1 (Surface layer). A domain expert (e.g., a clinician) or an engineer specifies human-meaningful rules and 

AGL programs that describe decision conditions and workflow steps (actions, branching, iteration, escalation). 

Step 2 (Grammar-grounded translation). The specification is translated by a grammar-grounded compiler into 

a formal representation accepted by the verification core. This step makes the mapping from the surface language 

to the verifiable core explicit and auditable. 

Step 3 (Φ-constraints / verifiability filters). During translation, all tests and constraints used in programs 

are forced to belong to the selected verifiability profile, i.e., the Guarded Fragment / Regular Guarded Fragment 

(GF/RGF). This does not automatically guarantee global consistency of all domain assumptions; rather, it ensures 

that the verification tasks posed to the core remain algorithmically decidable and thus suitable for systematic 

checking. 

Step 4 (Decidability Split via threshold atoms). Numerical, probabilistic, and vague premises are not processed 

inside the core. They are computed outside the core as Information Granules and exposed to the core only through 

Boolean threshold atoms (e.g., a computed risk score of 0.82 is mapped to the two-valued fact “risk > 0.8”). This 

is the Decidability Split: complex computation is encapsulated, while the core reasons over two-valued predicates. 

Step 5 (Verification core). The verification core reasons about the compiled FO-PDL-style workflow under 

GF/RGF tests and produces machine-checkable outcomes (e.g., satisfiable/unsatisfiable, property holds/violated) 

together with evidence artifacts. 

Step 6 (Decision policy). Verified outcomes are mapped to an operational policy such as accept / abstain / 

escalate. For example, the system may accept an action when the verified conditions hold, abstain when evidence 

is insufficient, and escalate when the risk or uncertainty triggers expert review. 

Step 7 (Evidence artifacts / audit trail). For every decision and executed workflow, AGL can generate auditable 

artifacts: (i) proofs or proof sketches supporting the decision under the core assumptions, (ii) counterexamples 

when a property fails, and (iii) execution traces documenting which tests/rules fired and which actions were taken. 

Key takeaway. Figure 1 illustrates the strict separation between the expressive layer and the verifiable core: 

decision thresholds appear only as Boolean threshold atoms in rules and tests; arithmetic is not part of the verifiable 

core. 

 

Clinical reading guide for Figure 2 (three-level view). Figure 2 explains why the AGL approach can 

remain auditable and verifiable even when it uses complex AI components. It can be read as a three-level structure 

in which information becomes progressively more precise and suitable for formal checking. 

Level 1 (bottom, blue: computation outside the core). This is where raw hospital data and complex models 

live (EHR, LIS/PACS, ML/statistics, simulations). Outputs here are typically numerical and uncertain (e.g., 

probabilities, scores). This layer is intentionally not subject to formal verification. 

Level 2 (middle, green: auditable granulation interface, MT-FOGL). This is the key safety boundary (De-

cidability Split). It translates graded outputs into explicit Boolean threshold atoms that the core can use. For 

example, a computed risk of 0.82 is mapped into a two-valued premise such as “risk > 0.8”. Because thresholds 

and mappings are explicit, they can be reviewed, versioned, and audited (e.g., which threshold was used and when 

it was crossed). 

Level 3 (top, yellow: logical-procedural core). This is the only layer where formal verification is performed. 

The core reasons over two-valued premises and FO-PDL-style workflows with GF/RGF-bounded tests. As a result, 
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verification tasks remain algorithmic (decidable) and can produce evidence artifacts (proofs, counterexamples, and 

execution traces). 

Practical implication. If a clinician asks “why did the system recommend action 𝐴?”, the audit trail can point 

to the specific threshold atoms and workflow steps used in the core. Errors or uncertainty in numerical estimation 

affect which threshold atoms are supplied, but they do not break the verifiability of the core itself. 

Thus, Figure 1 shows the end-to-end compilation and verification pipeline, while Figure 2 makes explicit the 

decisibility boundary that preserves auditability and algorithmic verification in the AGL core. 

 

 

3. MT-FOGL: soft typing, Information Granules, and threshold atoms 

 

 

 

3.1. Soft typing over a single universe 

 

 

Definition 3.1 (MT-FOGL (soft typing)). Let L be a first-order signature containing a distinguished family of unary 

predicates {Type𝑖 (·)}𝑖∈𝐼 (soft types), where 𝐼 is an index set enumerating available soft types and any additional 

symbols. An MT-FOGL theory is a set of first-order sentences over L, optionally extended by typing axioms that 

constrain admissible arguments of relations and functions. 

 

Intuition. Soft types let us describe a single underlying universe 𝑈 while still writing typed constraints and 

workflows. They behave like auditable “labels” (unary predicates) rather than a commitment to many-sorted 

semantics, which keeps the verifiable core close to standard first-order reasoning while remaining engineering-

friendly. 

 

Typed variables as syntactic sugar. For readability we use the notation: 

 

∀𝑢 : Patient 𝜑(𝑢) as shorthand for  ∀𝑢 (Patient(𝑢) → 𝜑(𝑢)), 

 
∃𝑡 : Therapy 𝜓(𝑡) as shorthand for  ∃𝑡 (Therapy(𝑡) ∧ 𝜓(𝑡)). 

 
 

 

3.2. Information Granules 

 
In practical decision–action systems, the notions used by rules are rarely fully crisp. Concepts with vague 

boundaries, partial observability, and stochastic uncertainty are common. In MT-FOGL we capture these phe-

nomena via Information Granules, and then expose them to the rule/procedure layer through auditable threshold 

atoms. 

 

3.2.1. Fuzzy and probabilistic granules 

 
Definition 3.2 (Information Granule (fuzzy/probabilistic)). Let 𝑈 be a non-empty universe of objects. A fuzzy 

information granule is a function Φ𝐺 : 𝑈 → [0, 1] (membership degree), a probabilistic information granule is a 

function 𝑃𝐺 : 𝑈 → [0, 1] (probabilistic score), and a crisp information granule is a function 𝐶𝐺 : 𝑈 → {0, 1} 



6 

 

 

≥𝑟 

Intuition. An information granule summarizes a potentially complex, model-based assessment (fuzzy mem-

bership, probability, or a crisp indicator) into a single score that can be logged, calibrated, and versioned. The 

verifiable core never manipulates this score numerically; it only consumes discrete facts derived from it (threshold 

atoms). 

Remark 3.3 (Vagueness vs. probability). Φ𝐺 (𝑢) denotes a degree of membership (concept vagueness), whereas 

𝑃𝐺 (𝑢) denotes the probability of satisfying a criterion (stochastic uncertainty). Although both values lie in [0, 1], 

their interpretation and data sources differ. 

 

3.2.2. A unified scoring symbol and threshold atoms 

From the perspective of auditability and verifiability of the rule core, a discrete interface is essential. Therefore, 

numerical and probabilistic comparisons are compiled into atomic threshold predicates, which can be used in rules 

(GF/RGF) and in AGL program tests. 

Definition 3.4 (Unified scoring symbol). Let 𝐺 be an information granule and let Ψ ∈ {Φ, 𝑃, 𝐶} denote the scoring 

family: Ψ = Φ for a fuzzy membership degree, Ψ = 𝑃 for a probabilistic score, and Ψ = 𝐶 for a crisp score with 

codomain {0, 1} ⊆ [0, 1]. Then Ψ𝐺 : 𝑈 → [0, 1] denotes Φ𝐺 or 𝑃𝐺 or 𝐶𝐺, respectively. 

Definition 3.5 (Audit-bounded threshold set (granular signature)). For each application and each scoring family 

Ψ ∈ {Φ, 𝑃, 𝐶}, we fix a finite set of rational thresholds 𝑅Ψ ⊆ [0, 1] ∩ Q called the granular signature. Only 

threshold predicates with 𝑟 ∈ 𝑅Ψ are admitted in the verifiable core. 

 

Intuition. Without an explicit bound, the family {𝐺Ψ (·)}𝑟 ∈[0,1] is uncountable and cannot be treated as a practical 

predicate signature. The granular signature makes the interface finite, reviewable, and stable under audit: it is an 

explicit design choice that can be justified clinically/organizationally and version-controlled. 

 

Intuition. The symbol Ψ𝐺 is a notational unification: it lets us write common interface rules without committing 

to whether a score is fuzzy (Φ𝐺), probabilistic (𝑃𝐺), or crisp (𝐶𝐺). This improves readability and supports uniform 

compilation into threshold atoms. 

Definition 3.6 (Threshold atoms for fuzzy/probabilistic granules). For any threshold 𝑟 ∈ 𝑅Ψ we introduce unary 

predicate symbols: 

𝐺Ψ (·), 𝐺Ψ (·), 𝐺Ψ (·), 𝐺Ψ (·), 𝐺Ψ (·), 
≥𝑟 

 

with the intended semantics (for 𝑢 ∈ 𝑈): 

≤𝑟 <𝑟 >𝑟 =𝑟 

 
M |= 𝐺Ψ (𝑢) ⇐⇒ ΨM (𝑢) ≥ 𝑟, M |= 𝐺Ψ (𝑢) ⇐⇒ ΨM (𝑢) ≤ 𝑟, 

≥𝑟 𝐺 ≤𝑟 𝐺 

 
and analogously for <, >, and =. 

 

Intuition. Threshold atoms are the only way numerical evidence enters the verifiable core. They act like a 

discretization boundary: the computation layer may change (models, calibration, population statistics), but the core 

sees only a finite, auditable set of two-valued facts. 

 

Parameterized atoms and provenance (auditable evidence carriers). In the surface specification 

(e.g., an expert-facing DSL) one often writes parameterized conditions such as “Ψ𝐺 (𝑢) ≥ 𝑟” with a configurable 

threshold 𝑟. In AGL this is compiled into the fixed predicate signature determined by the granular signature 𝑅Ψ: 

only comparisons at 𝑟 ∈ 𝑅Ψ become atoms in the verifiable core. The choice of 𝑅Ψ, as well as the construction of 
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Ψ𝐺 (expert-defined, learned/calibrated from data, or hybrid), must be recorded with provenance metadata (version, 
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𝐵 𝐵 

𝑖=1 

data window, calibration method, responsible role), so that every threshold fact used in a decision–action workflow 

is traceable. 

Remark 3.7 (Decidability Split). The complex estimation mechanisms behind Φ𝐺, 𝑃𝐺, and 𝐶𝐺 (numerical/ML 

models, calibration, population-level analysis) are isolated outside the verifiable core. The rule and procedure layer 

operates solely on discrete threshold atoms, which stabilizes auditability and supports the GF/RGF verifiability 

profile. 

 

3.2.3. Approximation granules in the Pawlak tradition 

In Pawlak’s classical approach, the starting point for rough-set granules is an information/decision system 

based on a fixed set of attributes. These are used to construct lower and upper approximations of vague concepts. 

Intuitively, such approximations arise from observability: attributes (our “glasses”) induce an indiscernibility 

relation. 

Definition 3.8 (Attribute language and atomic facts). Let 𝑈 be a universe of objects and let 𝐴 be a set of attributes. 

Each attribute 𝑎 ∈ 𝐴 has a value domain 𝑉 (𝑎). Atomic facts are expressions of the form 𝑎(𝑥) = 𝑣, where 𝑥 ∈ 𝑈 

and 𝑣 ∈ 𝑉 (𝑎). 

 

Intuition. The attribute language isolates what can be observed (auditable atomic facts) from how it is computed. 

It provides a stable vocabulary for rules and program tests, so that verification concerns only this discrete interface, 

not the underlying estimation pipelines. 

Definition 3.9 (Indiscernibility w.r.t. an attribute set). Let 𝐵 ⊆ 𝐴. Define the indiscernibility relation ∼𝐵 on 𝑈 by: 

 

𝑥 ∼𝐵 𝑦 ⇐⇒ ∀𝑏 ∈ 𝐵 𝑏(𝑥) = 𝑏(𝑦). 
 

 

3.2.4. Elementary granules and crisp granules in Pawlak’s view 

Let [𝑥] 𝐵 denote the equivalence class of 𝑥 w.r.t. ∼𝐵. This is the indiscernibility class induced by 𝐵. 

In particular, [𝑥] 𝐵 is the basic unit of granulation induced by ∼𝐵 and describes the finest level of distinguishability 

available under observation limited to the attribute set 𝐵. 

Intuitively: an elementary granule groups objects that cannot be distinguished using observable attributes from 

𝐵. 

For a concept 𝑋 ⊆ 𝑈: 

 

𝑋𝐵 := {𝑥 ∈ 𝑈 | [𝑥]  ⊆ 𝑋}, 𝑋
𝐵  

:= {𝑥 ∈ 𝑈 | [𝑥]  ∩ 𝑋 ≠ ∅}. 

 
In the auditable core we use predicates 𝑋low,𝐵, 𝑋up,𝐵, 𝑋bd,𝐵. 

For a fixed attribute set 𝐵, the class [𝑥] 𝐵 can be described by a conjunction of atomic conditions that crisply 

fix attribute values. In this perspective, crisp concepts are naturally described as alternatives (disjunctions) of 

elementary-granule descriptors, i.e., as unions of indiscernibility classes, corresponding to a set 𝐶 = 
U𝑘  [𝑥𝑖] 𝐵. 

This is an important semantic distinction: an elementary granule describes a single indiscernibility class, whereas 

a crisp granule (a crisp concept) can be a composition of many such classes via disjunction. 

Remark 3.10 (Relevance for the auditable interface). The above view aligns well with the AGL architecture: 

descriptors of elementary granules and crisp granules are classical formulas, hence they can feed the auditable rule 

core without introducing arithmetic into the verifiable layer. Rough approximations 𝑋𝐵 and 𝑋
𝐵  

can then be 

understood as operations over families of such granules arising from limited observability (i.e., from the choice of 

𝐵). 
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(𝑥) ≡ 𝑥 ∈ 𝑋 , (𝑥) ≡ 𝑥 ∈ 𝑋  \ 𝑋 . 

Remark 3.11 (Rough atoms as an auditable interface). The atomic interface for rough granules is two-valued (crisp) 

and has three key predicates: 

𝑋low,𝐵 (𝑥) ≡ 𝑥 ∈ 𝑋𝐵, 𝑋up,𝐵 𝐵 
𝑋bd,𝐵 𝐵 𝐵 

 
 

 
3.3. From clinical data to threshold atoms 

 
The table identified as Table 5 illustrates the bridge: clinical data/source → granule (fuzzy/probabilistic/rough) 

→ threshold atom used in a rule or a program test. It shows how clinical inputs and predictive model outputs are 

mapped to information granules and then to discrete predicates that form the only interface to the auditable rule 

core. 

 

 

4. AGL: a procedural extension in the style of FO-PDL 

 

 

 

4.1. Regular programs, tests, and (optionally) parallelism 

 
In AGL we introduce a workflow/program language with regular-program syntax in the sense of PDL, with an 

additional (optional) parallel-composition constructor: 

 

𝜋 ::= 𝑎 | 𝜋1; 𝜋2 | 𝜋1 ∪ 𝜋2 | 𝜋∗ | 𝜑? | 𝜋1 ∥ 𝜋2. 

 

Operator intuition (short, “for system users”). 

• 𝑎 (atomic action): a single step in a procedure (e.g., ordering a test, starting therapy, updating the KB-state). 

• 𝜑? (test): checks a condition without changing the KB-state; if 𝜑 fails, the execution path is blocked. 

• 𝜋1; 𝜋2 (sequence): execute 𝜋1 first, then 𝜋2. 

• 𝜋1 ∪ 𝜋2 (choice): allow alternative paths (the system chooses one). 

• 𝜋∗ (iteration): repeat the program zero or more times (follow-up / retry pattern). 

• 𝜋1 ∥ 𝜋2 (parallelism): two subprocesses may progress concurrently (“two tracks at once”). 

 

Tests as the verifiability interface (base profile). In practice, tests 𝜑? are the key interface between 

the MT-FOGL knowledge state and the procedural layer. Hence, in the base profile we assume that formulas 𝜑 used 

in tests belong to a core restricted to GF/RGF, to preserve control over decidability and complexity. Additionally, 

all numerical and probabilistic comparisons are admissible only through threshold atoms. 

 

Why ∥ is optional (expressivity vs. verifiability). The operator ∥ increases language expressivity, but 

typically complicates semantics and worsens meta-theoretic properties of the verifiable core, in particular 

complexity and often decidability of verification problems. For this reason, we recommend not using ∥ in the base 

AGL profile. 
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𝐺 𝐺 

⇒ M 

Two safe alternatives to ∥ in the base profile. 

1. Interleaving when order does not matter: 

(𝛼; 𝛽) ∪ ( 𝛽; 𝛼). 

 
2. Atomic action as a bundled protocol: when two actions are treated as one “package,” introduce a new atomic 

action 𝑎combo. 

Remark 4.1 (Engineering takeaway). In this paper we focus on the base profile (without ∥), because it offers the best 

trade-off between expressivity and verifiability. Extensions with concurrency are treated as specialized variants 

and a direction for future work. 

 

A note on decidability (base profile). Here we combine the procedural core (regular programs without 

explicit parallelism) with tests in a GF/RGF profile, which preserves decidability of verification-relevant problems 

(albeit with high worst-case complexity). If stronger verification guarantees are required in a given application, 

one can adopt an even more restrictive test subprofile (e.g., more constrained guarded variants), at the cost of 

expressivity. 

 

 

4.2. Modalities and operational meaning 

 
The modalities [𝜋] 𝜑 and ⟨𝜋⟩𝜑 express properties that hold after executing a procedure. From an engineering 

viewpoint, programs are interpreted as transitions between knowledge-base states (KB-states): actions update facts 

in the KB, and tests filter admissible execution paths. This yields readable, auditable procedures with explicit 

sequencing and branching structure. 

 

 

4.3. Formal semantics of AGL (core) 

 

 
Definition 4.2 (KB-state as an MT-FOGL structure). A KB-state (knowledge-base state) is an MT-FOGL structure 

M with a non-empty universe 𝑈M and an interpretation of the signature L (in particular, type predicates and 

application predicates).  Additionally, for each information granule 𝐺 the structure provides external scoring 

functions ΦM : 𝑈M → [0, 1] (fuzzy) and/or 𝑃M : 𝑈M → [0, 1] (probabilistic), which are not part of the 

first-order signature and may be computed by external, validated modules. 

 

Definition 4.3 (Atomic actions as state transformers). Each atomic action 𝑎 is interpreted as a binary relation 
𝑎 

⇒𝑎 on KB-states. We write M = ′ iff (M, M′) ∈⇒𝑎. In the base profile, actions may update the fact 

layer (extensions of selected predicates), while the granule scoring functions ΦM, 𝑃M are treated as external and 

recomputed after updates. 
𝐺 𝐺 

 
Definition 4.4 (Program semantics and satisfaction of dynamic modalities). Let [𝜋] ⊆ M × M denote the relation 

induced by program 𝜋 on the set of KB-states M, defined inductively by: 

 

[𝑎] :=⇒𝑎, [𝜋1; 𝜋2] := [𝜋1] ◦ [𝜋2], [𝜋1 ∪ 𝜋2] := [𝜋1] ∪ [𝜋2], [𝜋∗] := ([𝜋])∗, 

 

and for tests: 

[𝜑?] := {(M, M) | M |= 𝜑}. 
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Then satisfaction of dynamic modalities is defined by: 

 

M |= [𝜋] 𝜑 ⇐⇒ ∀M′ ((M, M′) ∈ [𝜋] ⇒ M′ |= 𝜑), 

 
M |= ⟨𝜋⟩𝜑 ⇐⇒ ∃M′ ((M, M′) ∈ [𝜋] ∧ M′ |= 𝜑). 

Remark 4.5 (Profile restriction for verifiability). In the base AGL profile, tests 𝜑? are restricted to formulas from 

GF/RGF, and all numerical/probabilistic comparisons appear only via threshold atoms. 

 

 

4.4. Why procedures are essential 

 
A purely rule-based description may suffice for classification, yet is often insufficient when decisions require 

sequencing, alternatives, or control loops (follow-up, retry). AGL models workflow as regular programs, and tests 

𝜑? act as auditable checkpoints, to which we apply GF/RGF profile restrictions. 

 

 

5. Verifiability profile: Guarded Fragment (GF) and Regular Guarded Fragment (RGF) 

 

 

 

5.1. Guarded Fragment (GF) 

 

 
Definition 5.1 (Guarded quantification (informal)). An occurrence ∃𝑦 𝜑(𝑥, 𝑦) is guarded if it has the form 

∃𝑦 (𝛼(𝑥, 𝑦) ∧ 𝜑(𝑥, 𝑦)), where the guard atom 𝛼(𝑥, 𝑦) contains all free variables of 𝜑. Analogously, ∀𝑦 𝜑(𝑥, 𝑦) is 

guarded if it has the form ∀𝑦 (𝛼(𝑥, 𝑦) → 𝜑(𝑥, 𝑦)). A formula belongs to GF if all quantifiers occur in guarded 

form. 

 

The guard as a data relation (“patient-centered” perspective). In practice, a guard corresponds 

to a relation that anchors new variables in the data: e.g., HasImaging( 𝑝, 𝑖𝑚𝑔), HasLab( 𝑝, 𝑙𝑎𝑏), HasReport( 𝑝, 𝑟). 

Thus quantification ranges over explicit links rather than over arbitrary objects in the database. For example, the 

condition “there exists an imaging study for the patient” is guarded: 

∃𝑖𝑚𝑔(HasImaging( 𝑝, 𝑖𝑚𝑔) ∧ StudyType(𝑖𝑚𝑔, CT)), 

where HasImaging( 𝑝, 𝑖𝑚𝑔) serves as the guard anchoring 𝑖𝑚𝑔 to the patient context 𝑝. 

 

5.2. RGF (Regular Guarded Fragment) as a controlled enrichment 

 
In practice, a guard may be path-based: instead of a single relational atom, we want to refer to a regular pattern 

of links. Such constructs are captured by the RGF profile, which preserves decidability of satisfiability with typical 

2ExpTime complexity [3]. 
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Example 5.2 (Why RGF matters: anchoring along a path (schematic)). Consider a situation in which an ob-

ject of interest is related to a patient only through an intermediate record. Let PatientHasRecord( 𝑝, 𝑟) and 

RecordHasSample(𝑟, 𝑠) be binary relations. In many data models, samples 𝑠 are not linked to the patient directly 

but via records 𝑟. A path-guard can be expressed as a regular relation 

 

𝜋 := PatientHasRecord · RecordHasSample, 

 

which anchors 𝑠 in the context of 𝑝 through 𝑟. Intuitively, it enables quantification “along a data path,” rather than 

using a single guard atom. 

Theorem 5.3 (Decidability facts (GF/RGF profile)). Satisfiability of GF is decidable [1] and is 2ExpTime-complete 

with the finite model property [10]. Satisfiability of RGF is decidable and is 2ExpTime-complete in standard 

formulations [3]. 

 

Practical verification pipeline (fragment selection → compilation → SAT → auditable 

result). In practice, the decidability facts above can be used as an engineering pipeline: (i) select the verifiability 

profile (GF or RGF) for all rule conditions and program tests; (ii) compile the chosen fragment of the specification 

(tests 𝜑?, guards, and rule antecedents) into a normal form suitable for automated checking; (iii) reduce the resulting 

bounded satisfiability/consistency checks to a propositional encoding and run a SAT solver (or an SMT solver if 

a fixed, safe background theory is used outside the verifiable core); (iv) return an auditable certificate: the set 

of fragment assumptions, the compiled fragment identifier, the solver outcome, and (when available) a witness 

model/counterexample trace. This keeps numerical evidence outside the core (only threshold atoms appear in the 

compiled fragment) while providing a concrete, repeatable verification path for deployments. 

Remark 5.4 (Computational perspective: asymptotic complexity vs. practical feasibility). The 2ExpTime-completeness 

results concern the worst case for the full class of formulas in the given fragment. In AGL, verification targets a 

restricted core (GF/RGF profile and specific procedures), and granule estimation is isolated outside the core (the De-

cidability Split), preventing arithmetic from being pulled into the verification problem. In practical decision–action 

systems, verification typically concerns constrained classes of queries and programs, often over highly structured 

data, which tends to reduce instance difficulty. 

 

 

6. Elementary clinical Information Granules (non-normative) 

 

 

 

6.1. Clinical acronyms used in illustrative examples 

 
To avoid ambiguity, Table 1 lists the clinical abbreviations used in the illustrative examples of this paper. They 

are included only to keep the examples readable; the examples remain non-normative and are not intended as 

guideline encodings. 

 

Acronyms. For a complete, alphabetically ordered list of clinical and IT acronyms used throughout the paper 

(including those used in the illustrative examples), see Annex A (Table 1). 

This section is didactic: it shows how Information Granules (the computation layer) may look in practice, and 

how we move from numerical scores to auditable threshold atoms used in the rule/procedure core. All examples 

are non-normative and do not constitute a formalization of any specific guideline. 
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 

In particular, we treat these snippets as narrative benchmarks for illustrating the Decidability Split, rather than as 

a clinically binding encoding of standards of care. This distinction matters because European oncology guidelines 

are regularly updated by leading scientific societies—for example, EAU for prostate cancer and ESMO for lung and 

chest tumours [6, 8]. 

 

 

6.2. Basic diagnostic granules (prostate cancer, schematic) 

 

 
Example 6.1 (Elementary clinical granules (schematic)). Let 𝑢 denote a patient. We illustrate several fuzzy granules 

Φ𝐺 (𝑢) ∈ [0, 1] and one crisp granule. 

(1) PSA granule (fuzzy): 

 ΦGPSA 
(u) = {

0,                𝑖𝑓 𝑃𝑆𝐴(𝑢) < 4

𝑃𝑆𝐴(𝑢) − 4

6
, 𝑖𝑓 4 ≤ 𝑃𝑆𝐴(𝑢) ≤ 10  

1,                  𝑖𝑓 𝑃𝑆𝐴(𝑢) > 10

 

 

(2) PSA granule (fuzzy): 

ΦGPSAD(u) = mi n (1,
𝑃𝑆𝐴𝐷(𝑢)

0.15
) 

(3) Age as risk-factor granule (fuzzy)         
 ΦGAge − HR 

(u) = {

0,                𝑖𝑓 𝐴𝑔𝑒(𝑢) < 70
𝐴𝑔𝑒(𝑢)−70

10
, 𝑖𝑓 70 ≤ 𝐴𝑔𝑒(𝑢) ≤ 80  

1,                  𝑖𝑓 𝐴𝑔𝑒(𝑢) > 80
 

 

(4) Gleason threshold crisp)          

ΦGGleason ≥ 7 = {

0,                      𝑖𝑓𝐴𝑔𝑒(𝑢) < 70

𝐴𝑔𝑒(𝑢) − 70

10
, 𝑖𝑓 70 ≤ 𝐴𝑔𝑒(𝑢) ≤ 80  

1,                       𝑖𝑓 𝐴𝑔𝑒(𝑢) > 80

(4) Adherence (probabilistic)

 
𝑃𝐺Compliance (𝑢) = 𝑃(adherence | History(𝑢), FamilySupport(𝑢)). 

 
Example 6.2 (Probabilistic granule: risk of lymph-node metastases (LN+)). Consider a probabilistic granule 𝐺LN+ 

that assigns to a patient 𝑢 a pre-operative estimate of the risk of lymph-node metastases. Let 

 

𝑃𝐺LN+ (𝑢) ∈ [0, 1] 

 
denote a probabilistic score computed by an external, validated module (e.g., the Briganti nomogram; 4). For 

instance, given a set of clinical features one may use a logistic model of the form: 

𝑃𝐺LN+ (𝑢) = ( 1 + exp
 
− (−1.78 + 0.35 · ln(PSA(𝑢)) + 1.15 · GSprimary(𝑢) 

+ 0.73 · cT(𝑢) + 0.02 · PBxpos(𝑢)))
 −1 

. 

 
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PSA≥𝑟1 

⊲⊳𝑟 

PI-RADS≥0.9 

where GSprimary(𝑢) is the dominant Gleason pattern, cT(𝑢) is the clinical stage, and PBxpos(𝑢) is the fraction 

of positive biopsy cores. 

In accordance with the Decidability Split, the computation above is not part of the verifiable core. The AGL 

core sees only a discrete interface in the form of threshold atoms, e.g., for a chosen policy threshold 𝑟 ∈ [0, 1]: 

 

𝑃 
LN+≥𝑟 (𝑢). 

 
Such an atom can then feed qualification rules or program tests 𝜑? within the GF/RGF profile. 

 

 

6.3. From numerical scores to auditable threshold atoms 

 
In line with the Decidability Split, comparisons such as Φ𝐺 (𝑢) ≥ 𝑟 do not enter the rule core. Instead, we use 

threshold atoms as discrete predicates employed in rules and in program tests. 

Example 6.3 (Threshold atoms for multi-level decisions (schematic)). For illustrative thresholds 𝑟1, 𝑟2 ∈ [0, 1] 

define atoms: 
Φ 
PSA≥𝑟1 

Φ 
PSAD≥𝑟2 

Φ 
Gleason≥7 

(𝑢). 

A simple qualification condition (in the classical core) can be written as: 
 

 
Φ 
Gleason≥7 

(𝑢) ∧ 
(
𝐺Φ 

 
Φ 
PSAD≥𝑟2 

(𝑢)
)
. 

 
All arithmetic remains encapsulated in Φ𝐺 and is not part of the verifiable core. 

Remark 6.4 (Where to place richer clinical example libraries). If a broader library of examples (diagnostic/therapeutic/follow-

up) is needed, a natural place is an appendix or a separate application-focused paper. In P1 we keep them intentionally 

short so as not to dilute the formal contribution of AGL. 

 

 

6.4. Canonical clinical formulas using threshold atoms (non-normative) 

 
In this subsection we show how typical “clinical formulas” can be expressed in the classical core (MT-FOGL + 

GF/RGF profile) exclusively via threshold atoms. All numerical comparisons are encapsulated in the definitions of 

Φ𝐺 and 𝑃𝐺 and exposed as discrete predicates 𝐺Ψ (𝑢). 

Example 6.5 (Qualification for biopsy (multi-level, threshold-atom style)). Let 𝑢 denote a patient. Introduce the 

following threshold atoms (illustrative thresholds): 

 

Φ 
PI-RADS≥0.9 

Φ 
PI-RADS≥0.7 

Φ 
PI-RADS≥0.3 (𝑢), 

 

Φ 
PSAD≥0.8 

Φ 
PSAD≥0.5 

Φ 
PSA≥0.3 (𝑢). 

Define three decision conditions in the classical core: 

 

𝜓urgent (𝑢) := 𝐺Φ Φ 
PSAD≥0.8 (𝑢), 

𝐺 

𝐺 (𝑢), 𝐺 (𝑢), 𝐺 

𝐺 (𝑢) ∨ 𝐺 

𝐺 (𝑢), 𝐺 (𝑢), 𝐺 

𝐺 (𝑢), 𝐺 (𝑢), 𝐺 

(𝑢) ∨ 𝐺 
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𝜓𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑(𝑢) ∶=  𝐺𝛷𝑃𝐼−𝑅𝐴𝐷𝑆 ≥ 0.7(𝑢)  ∨  (𝐺𝛷𝑃𝐼−𝑅𝐴𝐷𝑆 ≥ 0.3(𝑢)  ∧  𝐺𝛷𝑃𝑆𝐴𝐷 ≥ 0.5(𝑢)), 

 

𝜓𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙(𝑢) ∶=  𝐺𝛷𝑃𝑆𝐴 ≥ 0.3(𝑢)  ∧  (𝐺𝛷𝐹𝑎𝑚𝑖𝑙𝑦𝑅𝑖𝑠𝑘 = 1(𝑢)  ∨  𝐺𝛷𝐴𝑔𝑒−𝐻𝑅 ≥ 0.5(𝑢)).
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PSA>0.2 

Gleason≤6 

Volume>0.5 

PSA≥0.2 

Example 6.6 (Qualification for Active Surveillance (AS) (threshold-atom style)). Let 𝑢 denote a patient. Assume 

the following atoms (illustratively): 

 

Φ 
Gleason≤6 

Φ 
cT1-2a=1 

Φ 
PSA<0.5 

Φ 
CoresPos≤0.33 

(𝑢). 

 
Qualification condition in the core: 

 

𝜓AS-qual (𝑢) := 𝐺Φ Φ 
cT1-2a=1 

Φ 
PSA<0.5 

Φ 
CoresPos≤0.33 (𝑢). 

 
Optionally, a conservative exclusion: 

 

𝜓noAS(𝑢) := ¬𝜓AS-qual(𝑢) ∨ 𝐺Φ 𝑃 
Compliance<0.7 

Φ 
LifeExpectancy>10y=0 (𝑢). 

 
Example 6.7 (Follow-up: detecting biochemical recurrence (BCR) and triggering the next step). Let 𝑢 denote a 

patient after definitive treatment. Introduce atoms: 

 

Φ 
PSA≥0.2 

Φ 
PSA-confirmed=1 

(𝑢). 

 

Define the BCR condition:  

𝜓BCR(𝑢) := 𝐺Φ 

 

 
Φ 
PSA-confirmed=1 

 

(𝑢). 

Optionally, a trigger for imaging: 

𝜓TriggerImaging (𝑢) := 𝜓BCR (𝑢) ∧ ( 𝐺Φ 

 
 
 
        
        Φ 

 PSA-DT<6𝑚 

 

 

(𝑢)) . 

 
A follow-up procedure (orders, iterations, stop conditions) is naturally expressed in AGL programs, and the 

predicates above serve as tests 𝜑?. 

 

 

7. Examples: decision–action patterns (non-normative) 

 

 

 

7.1. End-to-end hero example: from granules to a verifiable workflow 

 
This example illustrates the full pipeline targeted by AGL: a computation layer produces graded evidence, the 

evidence is exposed to the verifiable core via a finite threshold signature, and a profiled rule core drives an 

actionable FO-PDL workflow. The example is schematic and non-normative. 

 

Computation layer (granules). Assume three graded outputs for a patient 𝑢: (i) a biochemical suspicion 

score Φpsa(𝑢) ∈ [0, 1], (ii) an imaging suspicion score Φimg(𝑢) ∈ [0, 1], (iii) a fitness score Φfit (𝑢) ∈ [0, 1]. 

Assume a finite, auditable threshold signature 𝑅psa = {0.6, 0.8}, 𝑅img = {0.6}, 𝑅fit = {0.4}. 

 

𝐺 (𝑢), 𝐺 (𝑢), 𝐺 (𝑢), 𝐺 

(𝑢) ∧ 𝐺 (𝑢) ∧ 𝐺 (𝑢) ∧ 𝐺 

(𝑢) ∨ 𝐺 (𝑢) ∨ 𝐺 

𝐺 (𝑢), 𝐺 

(𝑢) ∧ 𝐺 

(𝑢) ∨ 𝐺 
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Auditable interface (threshold atoms). The computation layer emits only two-valued facts such as: 

 

𝐺
Φpsa (𝑢), 𝐺

Φimg (𝑢), 𝐺Φfit (𝑢), 
≥0.8 ≥0.6 ≤0.4 

 

together with crisp observations (e.g., BiopsyAvailable(𝑢)). 
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≤0.4 

≥0.8 

≥0.8 ≥0.6 

Verifiable rule core (profiled to GF/RGF). Introduce two action-relevant predicates: HighRisk(𝑢) and 

EscalateToMDT(𝑢) (MDT = multidisciplinary team). A simple, guarded-style rule (written here in a classical 

implication form) can be: 

∀𝑢 (Patient(𝑢) ∧ 𝐺
Φpsa (𝑢) ∧ 𝐺

Φimg (𝑢) → HighRisk(𝑢))
 

, 

 
and an escalation rule driven by risk and low fitness: 

∀𝑢 (Patient(𝑢) ∧ HighRisk(𝑢) ∧ 𝐺Φfit (𝑢) → EscalateToMDT(𝑢))
 

. 

 
The essential point is that the core reasons only over two-valued atoms, while all graded computation remains 

outside. 

 

Action workflow (FO-PDL style). Let collect, compute, applyRules, requestEvidence, and escalate be 

primitive actions. A schematic workflow specification is: 

collect; compute; applyRules; ( EscalateToMDT(𝑢)?; escalate ∪ ¬EscalateToMDT(𝑢)?; requestEvidence). 

 
Since the tests are built from profiled predicates (including threshold atoms), the verification boundary remains 

explicit. 

In this section we present six short examples illustrating typical decision–action patterns in AGL. Examples 

are demonstrative (non-normative). The canonical principle remains unchanged: numerical and probabilistic 

comparisons are encapsulated as threshold atoms, and the rule/procedure core operates on discrete predicates. 

 

Audit trail generation. A deployment can log: (i) provenance identifiers for the computed granule values 

(or the values themselves where permitted), (ii) which threshold atoms from the finite signature 𝑅Ψ were asserted 

for patient 𝑢, (iii) which profiled rules/tests fired in the verifiable core, and (iv) which workflow branch/action was 

executed (including escalation). For example, the log may state that 𝑢 was escalated because a specific rule fired 

based on a threshold atom such as 𝐺Φrisk (𝑢), together with the compiled fragment identifier and verification 

outcome. 

 

 

7.2. Static patterns: threshold atoms as the rule interface 

 

 
Example 7.1 (E1: Fuzzy thresholds as auditable atoms (PSA + PI-RADS, schematic)). Let 𝑢 denote a patient. 

Assume two fuzzy granules Φ𝐺PSA (𝑢) and Φ𝐺PI-RADS (𝑢). The exposed interface: 

 

Φ 
PSA≥0.5 

Φ 
PI-RADS≥0.8 (𝑢). 

 
Qualification condition in the classical core: 

 

Φ 
PSA≥0.5 

Φ 
PI-RADS≥0.8 (𝑢). 

 
Example 7.2 (E2: A probabilistic threshold as a decision interface (LN+ risk, schematic)). Let 𝑃𝐺LN+ (𝑢) ∈ [0, 1] 

be a probabilistic granule estimating LN+ risk. For a policy threshold 𝑟 ∈ [0, 1] define the atom: 

 

𝑃 
LN+≥𝑟 (𝑢). 

𝐺 (𝑢), 𝐺 

𝐺 (𝑢) ∧ 𝐺 

𝐺 
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high-risk≥0.8 

high-risk≥0.8 

Such an atom can then feed qualification rules or tests 𝜑? in procedures. 

 

 

 

7.3. Procedural patterns: AGL programs (FO-PDL) 

 

 
Example 7.3 (E3: Branching “verify, then act” (schematic)). Let Patient(𝑢) be a type predicate. Consider an 

action 𝑎confirm, after which predicate MarkerConfirmed(𝑢) may become available in the KB-state. Let 𝑎treat and 

𝑎treatAlt be alternative actions. A branching program: 

𝜋 := Patient(𝑢)?; 𝑎confirm; ( MarkerConfirmed(𝑢)?; 𝑎treat ∪ ¬MarkerConfirmed(𝑢)?; 𝑎treatAlt). 

 

Interpretation. The program makes the decision point auditable by separating verification tests from actions. 

In particular, the system can record which test succeeded (MarkerConfirmed(𝑢)? or ¬MarkerConfirmed(𝑢)?), and 

therefore which branch enabled 𝑎treat versus 𝑎treatAlt. 

Example 7.4 (E4: Follow-up loop with a stop condition (iteration)). Let 𝑎follow be a follow-up action and let 

Stop(𝑢) be a stop condition expressed in the verifiable profile. A loop pattern: 

 

𝜋 := (¬Stop(𝑢))?; 𝑎follow and 𝜋∗. 

 
Example 7.5 (E5: Order-insensitive steps via safe interleaving). If two steps 𝛼 and 𝛽 are order-insensitive, model 

interleaving: 

(𝛼; 𝛽) ∪ ( 𝛽; 𝛼). 

This is a substitute for ∥ in the base profile. 

 

Interpretation. Instead of introducing true parallel composition in the base profile, we encode permissible 

interleavings explicitly. This keeps verification within standard program constructs while still capturing the intended 

independence of steps. 

 

 

7.4. Complex decision rules with quantifiers (MT-FOGL + GF/RGF style) 

 

 
Example 7.6 (A high-specialization center policy (schematic, auditable)). This example emphasizes that the AGL 

core is (profiled) first-order predicate logic (GF/RGF), while complex risk criteria are supplied via threshold atoms. 

 

(1) All high-risk patients must be discussed at an MDT.  Let 𝐺high-risk be a granule (e.g., fuzzy) 

describing “high risk,” and let 𝐺Φ (𝑢) be its threshold atom in the core. Let MDT(𝑢) denote the fact 

“patient 𝑢’s case is referred/discussed at an MDT.” In the classical core: 

∀𝑢 (Patient(𝑢) ∧ 𝐺Φ (𝑢) → MDT(𝑢)). 
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ASsaferThanTx≥𝑟 

very-low-risk=1 

(2) If the patient has contraindications to all options, consider best supportive care. Let 

FitRP(𝑢), FitRT(𝑢), and FitADT(𝑢) be schematic predicates expressing clinical eligibility for three treatment 

options: radical prostatectomy (RP), radiotherapy (RT), and androgen deprivation therapy (ADT), respectively. 

(These predicates are used here only to illustrate how domain predicates enter the verifiable core; they are non-

normative and require clinical definition and governance in any real deployment.) Let BSC(𝑢) mean “consider best 

supportive care.” Then: 

∀𝑢 (Patient(𝑢) ∧ ¬FitRP(𝑢) ∧ ¬FitRT(𝑢) ∧ ¬FitADT(𝑢) → BSC(𝑢)). 

 

(3) There exist patients for whom AS is safer than treatment (canonical variant).  Let 

𝐺very-low-risk be a granule (crisp or fuzzy) describing “very low risk” in the sense of eligibility for a conservative 

strategy. In the auditable profile assume its interface as: 

 

Φ 
very-low-risk=1 

(𝑢). 

 
Moreover, the risk comparison (e.g., “AS vs treatment”) is computed outside the core as a probabilistic granule 

𝑃𝐺ASsaferThanTx (𝑢) ∈ [0, 1] and exposed only via a threshold atom 𝐺𝑃 (𝑢) for a chosen policy threshold 

𝑟 ∈ [0, 1]. Then: 
 

∃𝑢 Patient(𝑢) ∧ 𝐺Φ 

 
  

  𝑃 
  ASsaferThanTx≥𝑟 

 

(𝑢). 

Remark 7.7 (Clinical interpretation and compliance with the Decidability Split). The formulas above show that AGL 

keeps the decision core as first-order predicate logic (profiled to GF/RGF), supporting auditability and verifiability. 

Vagueness and probability are modeled in the granule layer; the core sees only Boolean predicates (threshold atoms 

or crisp atoms) that serve as the interface to rules and program tests. 

 

 

8. Related work 

 
The choice of GF as a verifiability profile builds on classical results on guarded fragments of first-order logic, 

including decidability and the finite model property [1, 10]. The procedural layer of AGL relies on ideas from 

dynamic logics (PDL) and regular-program syntax [11], which enables a formal description of sequencing, choice, 

and iteration of actions. 

 

GF/RGF as a mechanism for controlling verifiability. Full first-order dynamic logic is often unde-

cidable; AGL therefore imposes engineering restrictions: (1) program tests 𝜑? are restricted to the GF/RGF profile, 

(2) arithmetic, probability, and vagueness are exposed to the core solely via threshold atoms, which stabilizes 

semantics and keeps the verification interface within two-valued logic. 

 

Probabilistic reasoning, inductive logic, and epistemic background. Threshold atoms in AGL 

deliberately decouple the verifiable two-valued core from graded evidence (probability / fuzziness), which connects 

naturally to classical probabilistic KR and inductive-logical perspectives on evidential support (Bayesian networks 

and probabilistic inference in particular) [7, 14, 18]. Moreover, since AGL is intended for workflow-like decision–

action systems deployed in multi-agent settings (human experts, services, and automated components), epistemic 

notions and reasoning about knowledge form an important meta-theoretic backdrop [9]. 

 

RGF and path-based data anchoring. The regularization of guards [3] is motivated by the need to 

𝐺 

(𝑢) ∧ 𝐺 
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express data-link patterns in quantifier guards and tests (e.g., patient–record–sample relations) that are typical for 

workflow systems. 
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Granular computing as a computation layer and an auditable interface. The concept of 

Information Granules and granular views of vagueness and uncertainty have deep roots in the literature on granular 

computing and information granulation [2, 19–21], while rough sets [13] provide a natural model of concept 

boundaries driven by observability. In AGL these mechanisms are deliberately separated from the verifiable core 

(the Decidability Split). 

 

Meta-theoretic background: non-classical logics and algebraic approaches. The classical 

monographs of Rasiowa and Sikorski [16] and Rasiowa [15] provide reference points for a broad spectrum of non-

classical logics. In this paper, however, such logics are not the core: instead, we use a two-valued verification 

interface and move “gradedness” into the granule layer. 

 

 

9. Discussion: expressivity vs. verifiability 

 
The richer the description language, the harder it becomes to achieve algorithmic verification and complexity 

control. AGL adopts a profiled approach: we allow expressivity in the surface layer (e.g., an expert-facing DSL), 

provided that it has an explicit mapping to a controlled verifiability interface. The verifiable core is restricted to the 

GF/RGF profile and to auditable predicates (threshold atoms). 

In practice, we realize this via two mechanisms: (i) the Decidability Split—all arithmetic and probability are 

encapsulated in Information Granules and exposed as threshold atoms, (ii) restricting program tests 𝜑? to GF/RGF, 

which stabilizes the properties of the verifiable core. The architectural rationale is illustrated in Fig. 1. 

 

Parallelism as an illustration of the trade-off. Extending the program language with ∥ increases 

expressivity (concurrent action tracks), but typically worsens verification properties (complexity and, in many 

variants, decidability). Therefore, in the base profile we recommend avoiding ∥ and using safe substitutes: 

interleaving (𝛼; 𝛽) ∪ ( 𝛽; 𝛼) when order does not matter, or treating a bundle of actions as a single atomic action. 

Figure 2 clarifies where the decidability boundary lies in AGL and how the granule layer acts as an auditable 

interface between computations and the verifiable core. 

 

 

10. Engineering applications of AGL in AI/IT 

 
The AGL logic presented in this paper has broad potential for engineering applications in AI/IT, because it is 

designed as an auditable control and verification layer for decision–action systems. 

The OnkoBot project is a year-long collaboration between clinical experts at NIO-PIB and engineering and 

research teams at UWM, conducted under a formal Letter of Intent and consolidated in a comprehensive internal 

project charter document for the OnkoBot program [5]. During this period, the team iteratively advanced proof-of-

concept prototypes across multiple platform subsystems and formalized successive milestones via mutually agreed 

project charters. 

From a deployment viewpoint, it is crucial that AGL does not compete with mature technologies based on 

fragments of FOL (Datalog, DL/OWL, SAT/SMT), but complements them with actionable granules: threshold-

based, auditable interfaces between rich input information and a classical, verifiable rule core. 

We distinguish two complementary application directions: 

 

(1) Enriching existing FOL-fragment applications in AI/IT with AGL mechanisms (guardrails, audit, verifiability 

profiling, decision correction and escalation). 
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(2) A layered view of non-classical logics, including modal and temporal logics: temporal, deontic, and “possibil-

ity/necessity” properties are captured procedurally in FO-PDL (workflow), without introducing many-valued 

truth into the fact core. 

 

 

 

10.1. Examples of potential AGL applications in AI/IT around key FOL fragments 

 
From the perspective of engineering practice in AI/IT, the most important FOL fragments are those that 

combine: (a) natural modeling (rules, classes, relations), (b) decidability and controlled complexity, (c) mature 

implementations (Datalog/ASP engines, DL reasoners, SAT/SMT solvers). 

In data technologies, CQ/UCQ/EPFO and Datalog (with recursion) dominate, while knowledge systems rely on 

DL/OWL. When inference must generate new facts under constraints, the family TGDs/Datalog± appears. When 

exceptions and defaults are essential, NAF and ASP enter practice. For controlled negation and locality in relations, 

GNFO and the guardedness principle (GF) are particularly relevant. Finally, when systems touch arithmetic and 

data structures at the level of code and constraints, SAT/SMT provides the computational backbone for verification 

and analysis. 

Table 2 summarizes these fragments in a practical view: what is restricted, what is gained, and where they 

dominate in AI/IT. Note: FO-PDL (procedural modal logic) is discussed in this paper as the procedural layer of 

AGL in Subsection 1; the table below concerns FOL fragments dominating in KR/DB/ATP. 

 

Engineering note: complexity regimes (data vs. combined). In Table 2 we list inference complexity 

in a compact form because AI/IT practice commonly uses two standard regimes: 

• Data complexity: treat the query/rules/ontology (TBox) as fixed and vary only the size of input data (ABox, 

database instance). This is the dominant perspective in database systems (e.g., for CQ) and analytics 

pipelines. 

• Combined complexity: treat both data and the problem description (query, rules, TBox) as variable. This 

typically yields higher bounds but better reflects costs when logic/ontologies/rules are generated or frequently 

modified (e.g., for Description Logics and guarded logics). 

 

Hence the complexity classes in Table 2 should be interpreted in the context of the dominant use cases of each 

fragment. 

 

 

10.2. Potential AGL applications related to non-classical predicate logics 

 
For many years, various areas of potential applications of non-classical logics in AI/IT have been intensively 

studied, in particular: 

• many-valued logics (e.g., Łukasiewicz, Post) — allowing more than two truth/assessment values, 

• modal logics — enabling necessity and possibility, 

• intermediate logics — modeling intermediate states and varying degrees of non-constructiveness, 

• paraconsistent logics — tolerating inconsistencies without trivialization, 

• temporal logics — describing time-dependent properties (e.g., disease progression), 
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• deontic logics — describing obligations and prohibitions (norms, procedures, policies). 

In decision–action systems, these classes matter because data and domain knowledge may be: (i) vague/graded, 

(ii) stochastically uncertain, (iii) incomplete or inconsistent, and (iv) embedded in time and, crucially, in proce-

dures. Formally, one can also generalize MT-FOGL constructions to predicate calculi with algebraic semantics, 

opening broad perspectives for integration with non-classical logics. Interested readers are referred to the classical 

monographs by H. Rasiowa and R. Sikorski [16] and H. Rasiowa [15]. 

In this paper, however, we adopt a classical core because it offers the most transparent engineering compromise 

between expressivity and verifiability. In particular, a classical approach provides: 

(1) mature meta-theoretic foundations (including decidability results for selected profiles), 

 

(2) broad availability of automated reasoning and verification tools, 

 

(3) a simple, auditable interpretation in the rule/procedure core, 

 

(4) straightforward mapping to existing decision-support architectures. 

 

Crucially, the key distinction that drives the AGL architecture is: uncertainty, gradedness, and probabilistic 

aspects are not encoded as degrees of truth in the logical core. Instead, they are encapsulated at the Information 

Granules level and exposed to the core only via threshold atoms. This keeps the rule/procedure core within classical 

two-valued first-order logic, profiled to GF/RGF, simplifying audit, stabilizing semantics, and enabling algorithmic 

verification while retaining rich inputs (the Decidability Split). Temporal and deontic properties are handled as 

workflow properties in FO-PDL, without introducing many-valued truth into the fact core. 

 

 

11. Planned next steps for AGL (Next steps) 

 

 

 

11.1. The key value of AGL in mission-critical systems 

 
We assume that AGL provides a formal core for constructing auditable, interpretable, and verifiable decision 

mechanisms under vagueness and uncertainty. In mission-critical contexts (clinical decision support, agent control, 

autonomous systems), the key is not prediction alone but the ability to document and enforce procedural constraints: 

from inputs, through granulation, to a verifiable verdict. Below we indicate priority, directly measurable next steps. 

 

 

11.2. Auditable procedural knowledge models as safety boundaries 

 

 

• Lead goal. Develop a methodology for building symbolic, auditable models of procedural knowledge (e.g., 

action rules, dynamic constraints, eligibility conditions) that can serve as a safety boundary (safety policy / 

guardrail) for decision systems in complex operational environments. 

• Role of AGL. Use native granulation mechanisms to construct procedural granules (conditions–actions–

constraints) with a full audit trail: (i) input conditions, (ii) granule assignment, (iii) rules/procedures fired, 

(iv) a formal justification of the verdict, and (v) identification of critical rules and boundary points (vagueness 

thresholds). 
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• Benchmark and metrics. Validate on domains requiring strict procedural compliance, in particular: (a) 

NSCLC scenarios (e.g., histopathology-driven diagnostics, diagnostic–therapeutic pathways as a narrative 

benchmark independent of guideline versions), and (b) simulations of autonomous agents/systems. Evaluate 

using measurable indicators: coverage (fraction of cases for which AGL produces a procedural verdict), 

conflict rate (number of detected rule conflicts and their classification), audit completeness (ability to 

reconstruct the full decision path), and explainability fidelity (agreement between explanations and the 

formal reasoning trace). 

 

 

 

11.3. Online verification of LLM agents: symbolic control, correction, and escalation 

 

 

• Application goal. Integrate AGL as a verifiable control mechanism (verifier) for LLM-based agents operating 

in mission-critical environments. The agent proposes an action (or recommendation), while AGL enforces 

procedural safety constraints. 

• Role of AGL in online control. AGL maps imprecise and uncertain agent outputs (e.g., proposed actions, 

textual rationales, plan parameters) to linguistic/procedural granules, then verifies them in real time against 

formal procedural rules (see Subsection 2). The verification outcome is always auditable: it includes the 

set of active rules, their satisfaction conditions, and a minimal formal justification. 

• Reaction policy. Instead of binary accept/reject, consider three modes: (i) allow (decision admissible), (ii) 

revise (AGL computes a correction to the nearest formally admissible decision), (iii) abstain & escalate (hold 

and escalate to an expert). This is particularly important in clinical and control settings where borderline 

decisions require controlled correction or escalation, not only hard rejection. 

• Boundary verification (uncertainty band). Prioritize cases in which an LLM agent generates decisions 

within an uncertainty band (i.e., near admissibility boundaries described by granules and thresholds). The 

goal is a mechanism that: (a) identifies the nature of borderline status, (b) generates an auditable correction 

(revise) or a formal justification for escalation, and (c) minimizes unnecessary rejections while maintaining 

safety. 

• Benchmark and metrics. Measure: allow/revise/escalate rates, correction effectiveness (fraction of inad-

missible cases becoming admissible after revise), time-to-verdict (online cost), and audit latency (time to 

produce the audit artifact). 

 

 

 

11.4. Human-in-the-Loop (HITL): governance, triggers, and evidence artifacts 

 
In AGL, Human-in-the-Loop (HITL) is not an informal “manual override”, but a controlled governance layer 

that is explicitly triggered by verifiable signals produced by the GF/RGF-bounded verification core. Operationally, 

HITL is the mechanism that closes the safety loop in mission-critical settings: it routes borderline, inconsistent, 

incomplete, or out-of-profile situations to qualified experts and records a traceable justification for the final 

operational decision (allow / revise / abstain&escalate). 
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Design principle (Decidability Split + finite evidence). The verifiable core never consumes raw 

clinical data or high-dimensional model internals. Instead, it consumes only auditable finite evidence (threshold 

atoms, bounded retrieved sets, and bounded proof objects). HITL uses this evidence to (i) validate/approve actions, 

(ii) request additional evidence/provenance, or (iii) revise policy parameters (e.g., threshold signatures) under 

explicit authorization and version control. 

A concise proposal of HITL triggers and corresponding auditable artifacts (the operational governance interface 

for AGL) is summarized in Table 3. It makes the escalation mechanism explicit: the core outputs verifiable reasons 

for escalation, while HITL produces a governance-grade decision record linked to finite evidence. This supports 

traceability, accountability, and the controlled evolution of thresholds, granules, and procedures. 

 

 

11.5. Towards Interactive Granular Computing (IGrC) 

 

 

• Main Remark A key engineering signal is the discrepancy between expected and observed action outcomes: 

the rule/procedure core may predict that a certain action should achieve a target state, while the operational 

environment yields a different observation. IGrC provides a vocabulary for handling such mismatches 

through physical semantics (linking symbols to measurable outcomes) and through c-granules (complex 

granules) that encapsulate richer, composite evidence structures. Practically, this supports adaptive re-

sponses such as re-granulation, threshold recalibration, or revising the finite threshold signature 𝑅Ψ under 

explicit governance. 

• Vision. Extend AGL toward Interactive Granular Computing (IGrC) [12, 17], enabling controlled, auditable 

interaction of experts and environments with granulation processes and reasoning, in extended AGL variants 

aligned with IGrC. 

• What is interactive (without losing auditability). Interaction is not ad-hoc “manual rule editing,” but 

formally described operations on AGL artifacts: (i) updating granules (e.g., redefining linguistic concepts), 

(ii) tuning thresholds/preference relations, (iii) prioritizing rules and resolving conflicts, (iv) introducing 

fixes via versioned change requests. Every modification generates an audit trail (who, what, when, why, 

with what effect). 

• Benefits for agent control. IGrC enables real-time feedback: experts can adjust procedural granules and 

verification parameters in a controlled way, increasing adaptability of hybrid agents and facilitating updates 

of symbolic safety boundaries as operational conditions change (e.g., procedure updates, new evidence, data 

drift). 

• Metrics. Evaluate: time and number of iterations required to stabilize policy, impact on allow/revise/escalate 

rates, and consistency measures for versioned rules (e.g., conflict reduction across versions and decreased 

escalation without safety loss). 

 

 

 

12. Conclusions and future work 

 
In this paper, we have introduced AGL (Actionable Granular Logic), a formal framework designed to bridge 

the gap between stochastic AI agents and the rigorous requirements of clinical decision-making. By implementing 

a Decidability Split and utilizing the guarded profiles (GF/RGF), we have created a symbolic wrapper capable of 

grounding Large Language Model outputs in verifiable procedural structures. 
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The unique positioning of AGL compared to existing knowledge representation frameworks is summarized in 

Table 4. Unlike traditional logic fragments, AGL is specifically designed to handle the "hallucination" risks of 

generative AI by acting as a formal verifier that ensures procedural compliance. 

The practical utility of AGL is already being explored within the OnkoBot prototype, developed in collaboration 

with NIO-PIB. Preliminary findings suggest that AGL does not merely act as a safety filter, but as a sophisticated 

clinical advisor. For instance, it can suggest missing diagnostic prerequisites when an LLM proposes a treatment 

plan prematurely. 

 

Locality and Computational Budgeting. To address the theoretical complexity of the RGF profile, our 

implementation relies on the principle of data locality enforced by guards. Furthermore, we employ a "computational 

budgeting" strategy: if a verification task exceeds predefined time limits, the system triggers a mandatory HITL 

escalation. This ensures that safety is never compromised by hardware limitations. 

 

Long-term outlook: solver progress and specialized computing. While AGL is defined inde-

pendently of hardware, advances in solver technology and specialized computing (including emerging quantum-

computing paradigms) may expand the practical verification budget for richer granular interfaces. We therefore 

treat hardware acceleration as a research direction rather than an assumption for near-term deployments. 

 

IGrC outlook. Future work will leverage Interactive Granular Computing (IGrC) to manage discrepancies 

between expected and observed action results through adaptive re-granulation and controlled updates of threshold 

signatures, strengthening the link between formal decisions and their physical semantics in deployments. 
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This annex summarizes acronyms and abbreviations used in the paper, with emphasis on clinical/medical and 

IT/AI terms. 

Table 1: Acronyms and abbreviations used in the paper. 

 

Acronym Meaning Notes / context in this paper 
 

ADT Androgen Deprivation Therapy Prostate cancer therapy abbreviation (medical). 

AGL Actionable Granular Logic Proposed framework for verifiable specifications and 

reasoning in decision–action systems. 

AI Artificial Intelligence Umbrella term for learning and reasoning components. 

AKB Algebraic Knowledge Base Rule/knowledge-base notion referenced as a verifiable core 

style. 

API Application Programming 

Interface 

System integration interface (services, modules, subsystems). 

AS Active Surveillance Prostate cancer management strategy (medical). 

ASP Answer Set Programming Logic programming / nonmonotonic KR paradigm (KR/ATP 

context). 

ATP Automated Theorem Proving Proving in first-order and related logics; solver/ATP context. 

CQ Conjunctive Query Database/KR query form; central in DL/ontology and DB 

theory. 

CSP Constraint Satisfaction Problem Constraint-based reasoning/optimization; solver context. 

CT Computed Tomography Imaging modality referenced in illustrative examples. 

DB Database Data management context for KR/queries; appears in 

KR/DB/ATP comparisons. 

DL Description Logic Family of decidable FOL fragments used in ontologies; OWL 

foundations. 

DSL Domain-Specific Language Expert-facing specification layer that compiles to a verifiable 

core. 

EAU European Association of Urology Maintains regularly updated European urology guidelines 

(e.g., prostate cancer). 

EHR Electronic Health Record Clinical data source (raw data layer). 

ESMO European Society for Medical 

Oncology 

EU AI Act European Union Artificial 

Intelligence Act 

FO-PDL First-Order Propositional 

Dynamic Logic 

Maintains regularly updated European oncology clinical 

practice guidelines. 

Governance context for high-risk AI systems (if referenced). 

 

Procedural layer with first-order state predicates; tests are 

restricted to GF/RGF. 

FOL First-Order Logic Classical predicate logic; the verifiable core is constrained by 

decidable fragments. 

GDPR General Data Protection 

Regulation 

EU data protection regulation (privacy/security context). 

GF Guarded Fragment Decidable fragment of FOL used as a verifiability profile. 

GNS- 

Align 

Grounded Neuro-Symbolic 

Alignment 

Risk-governed architecture notion referenced as a broader 

alignment/governance perspective. 

HITL Human-in-the-Loop Workflow pattern where human experts 
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review/approve/escalate decisions. 
 

continued on next page 
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Acronym Meaning Notes / context in this paper 
 

ILP Inductive Logic Programming Learning logical rules from examples; ML/KR bridge. 

KB Knowledge Base Repository of formalized knowledge (rules, facts, ontologies). 

KR Knowledge Representation General area: logics, ontologies, rule bases used to represent 

domain knowledge. 

LIS Laboratory Information System Laboratory data source (raw data layer). 

LKB Lattice Knowledge Base Lattice-valued knowledge representation notion referenced for 

graded evidence modeling. 

LLM Large Language Model Class of generative models that may require verifiable 

wrappers in mission-critical settings. 

MDT Multidisciplinary Team Clinical decision forum (workflow escalation / review context). 

ML Machine Learning Models in the computation layer (outside the verifiable core). 

MRI Magnetic Resonance Imaging Imaging modality referenced in illustrative examples. 

MT-FOGL Multi-Typed First-Order Granular 

Logic 

NIO-PIB National Oncology Institute, 

Poland (Państwowy Instytut 

Badawczy) 

Conceptual computation layer for soft typing and graded 

(fuzzy/probabilistic) granules. 

Clinical partner organization referenced in the OnkoBot 

context. 

OnkoBot OnkoBot program/project Collaborative clinical+engineering program referenced as a 

motivating deployment context. 

OS Overall Survival Standard oncology endpoint (medical). 

PACS Picture Archiving and 

Communication System 

Imaging archive/source (raw data layer). 

PAN Polish Academy of Sciences The national academy of sciences in Poland, involved in 

high-level research in logic and computer science. 

PDL Propositional Dynamic Logic Modal/procedural logic for reasoning about programs 

(actions). 

PET Positron Emission Tomography Imaging modality (medical). 

PET-CT PET combined with CT Combined imaging modality (medical). 

PFS Progression-Free Survival Standard oncology endpoint (medical). 

PoC Proof of Concept Prototype implementations validating feasibility of 

subsystems/ideas. 

PSA Prostate-Specific Antigen Example laboratory variable used to illustrate granules and 

threshold atoms. 

PSAD PSA Density PSA normalized by prostate volume; used as an example 

feature/granule. 

QALY Quality-Adjusted Life Year Health economics/clinical outcome metric (general medical 

abbreviation). 

QoL Quality of Life Clinical outcome category (medical). 

RAG Retrieval-Augmented Generation Architecture pattern for grounding generation in retrieved 

sources (if referenced). 

RDF Resource Description Framework Graph-based KR data model; Semantic Web context. 

RGF Regular Guarded Fragment Guarded fragment with regular/path-shaped guards for data 

anchoring. 

RP Radical Prostatectomy Surgical treatment abbreviation (medical). 
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Acronym Meaning Notes / context in this paper 
 

RT Radiotherapy Common oncology treatment abbreviation (medical). 

FitRP Fit for Radical Prostatectomy Schematic domain predicate used in Example 7.6: patient 

eligible for RP (non-normative). 

FitRT Fit for Radiotherapy Schematic domain predicate used in Example 7.6: patient 

eligible for RT (non-normative). 

FitADT Fit for Androgen Deprivation 

Therapy 

Schematic domain predicate used in Example 7.6: patient 

eligible for ADT (non-normative). 

SAT Boolean Satisfiability Solver setting for verification/decision procedures (KR/ATP 

context). 

SMT Satisfiability Modulo Theories Solver-based reasoning over background theories. 

SPARQL SPARQL Protocol and RDF 

Query Language 

Query language for RDF graphs; KR/DB context. 

SQL Structured Query Language Relational database query language; DB context. 

UCQ Union of Conjunctive Queries DB/KR query form; used in ontology-mediated querying. 

UWM University of Warmia and Mazury 

in Olsztyn 

Research/engineering partner organization referenced in the 

OnkoBot context. 

XAI Explainable AI Transparency/interpretability methods; complements 

auditability and verification. 

 

 

 

16. Figures and Tables 

 

 
Table 2: Extended comparison of FOL fragments relevant in AI/IT (prac-

tical view; KR/DB/ATP context). 

 

Fragment / 

family 

Restriction / idea Typical AI/IT applications + inference complexity 

Horn logic At most one positive 

literal per clause; 

if–then rules 

Logic programming, expert/business rules, fact-based inference. 

Complexity: propositional Horn inference is P-complete; first-order 

variants depend on further restrictions but are typically well 

supported in practice. 

Datalog No function symbols; 

fixpoint over finite data 

Recursive queries, graph analytics, program analysis, 

access-control policies. Complexity: data complexity PTIME; 

combined complexity typically high (classically 

EXPTIME-complete). 

NAF / Datalog 

with negation 

Negation as failure; 

stratified / well-founded 

/ stable semantics 

Rules with exceptions, defaults, exception-aware policies; analytics 

with exceptions. Complexity: depends on the class; for stratified 

programs often PTIME (data); full stable semantics moves toward 

ASP. 

Continued on the next page 
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Table 2: Continued 

Fragment / 

family 

Restriction / idea Typical AI/IT applications + inference complexity 

ASP Rules + 

minimality/non-

monotonicity; solutions 

as answer sets 

Planning, scheduling, configuration, diagnosis, combinatorial 

tasks. Complexity: without disjunction typically NP-complete 

(answer-set existence); with disjunction usually higher in the 

polynomial hierarchy. 

DL / OWL Class/role constructors; 

TBox/ABox; decidable 

dialects 

Ontologies, semantic web, classification, consistency, semantic 

search. Complexity: dialect-dependent; typically EXPTIME and 

above (for expressive dialects even N2EXPTIME). 

CQ (conjunctive 

queries) 

∃ + ∧ over atoms; no ¬, 

no ∨ 

SQL core (WHERE), OMQ, query optimization, data mappings. 

Complexity: evaluation (data) in PTIME; combined typically 

NP-complete; CQ containment NP-complete. 

UCQ (union of 

CQs) 

Disjunction of multiple 

CQs (UNION) 

Data integration, rewriting, OMQ, views and mediators. 

Complexity: as for CQ; evaluation (data) in PTIME; UCQ 

containment typically NP-complete. 

EPFO 

(existential-

positive FO) 

∃, ∧, ∨ without ¬, ∀ Positive querying, data transformations, rewriting to positive 

normal forms. Complexity: close to CQ/UCQ in practice: data 

PTIME, combined grows (often around NP for typical classes). 

TGDs / 

Datalog± 

Rules with ∃ in the 

head; chase; decidable 

classes 

QA under constraints, data integration, data exchange, data 

completion, inference rules. Complexity: can be undecidable in 

general; for major decidable classes typically very high (often 

EXPTIME–2EXPTIME). 

GF (Guarded 

Fragment) 

Quantification only 

under a guard (variable 

locality) 

Design of decidable “data+rules” formalisms; query theory over 

relational structures. Complexity: GF satisfiability is classically 

2EXPTIME-complete. 

GNFO 

(Guarded 

Negation FO) 

Negation allowed only 

in guarded contexts 

Queries/rules with controlled negation, data validation, 

exception-aware policies. Complexity: satisfiability typically 

2EXPTIME-complete (as a reference point). 

FO2 

(two-variable 

FO) 

Only two variable 

names; reuse via 

quantification 

Complexity control for binary relations; KB/DB patterns; links to 

DL. Complexity: FO2 satisfiability (with equality) is classically 

NEXPTIME-complete. 

Bernays–

Schönfinkel / 

EPR 

Prenex ∃∗∀∗ without 

function symbols 

Automated theorem proving (ATP), constraint solving in “almost 

propositional” form, a target for grounding + SAT/SMT pipelines. 

Complexity: decidable; satisfiability is classically 

NEXPTIME-complete. 

Function-free 

FOL 

No functions (often 

without =); facts and 

relations 

Relational/graph data, RDF as facts, rule-based querying over 

databases. Complexity: absence of functions alone does not 

guarantee decidability; complexity depends on the selected 

fragment (e.g., EPR, GF, FO2, CQ/UCQ). 

Propositional 

logic (SAT) 

No quantifiers; 

structureless atoms 

Constraint solving, verification, constraint compilation, foundation 

of SMT. Complexity: SAT is NP-complete. 

SMT (SAT + 

FOL theories) 

Theories: EUF, 

LIA/LRA, arrays, 

bitvectors, datatypes, 

etc. 

Formal verification, program analysis, symbolic execution, 

constraint synthesis. Complexity: theory-dependent; often 

NP–EXPTIME in theory, yet highly efficient in practice. 
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Thresholds appear only as threshold atoms in rules 

and tests; arithmetic is not part of the verifiable core. 

 

Figure 1: An example of AGL architecture as a compilation–verification pipeline (Decidabil-

ity Split). Surface rules and AGL programs are translated into a GF/RGF-bounded FO-PDL 

verification core. Graded premises (numerical, probabilistic, vague) are computed outside the 

core as Information Granules and enter the core only via Boolean threshold atoms. Verification 

results drive the operational decision policy (accept/abstain/escalate) and yield auditable evi-

dence artifacts (proofs, counterexamples, execution traces). For a step-by-step reading guide, 

see Section 1. 

Surface layer 

(rules + AGL 

programs) 

Grammar-grounded 

translation 

Optional: parallel 

composition ∥ 

(recommended) 

in base profile) 

Verification core 

FO-PDL in 
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Evidence artifacts 

(proofs / counterexam-

ples / execution traces) 

Φ-constraints 

(GF/RGF tests) 
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Trigger (when 

to escalate) 

Core-level signal 

(auditable) 

HITL action / role Evidence artifact recorded 

Borderline 

admissibility 

(“uncertainty 

band”) 

 

 

Conflicting rules 

/ inconsistent 

evidence 

 

 

 

Missing 

provenance / 

incomplete 

evidence 

 

Out-of-profile 

formula / 

undecidability 

risk 

 

High-impact 

action class 

 

 

 

Expected vs. 

observed 

mismatch 

(closed-loop 

control) 

Verification outcome is 

“near boundary” (e.g., a 

threshold atom is within a 

policy-defined margin; or 

minimal counterexample 

exists) 

Detected conflict 

(incompatible obligations, 

mutually exclusive actions, 

or inconsistent 

preconditions) 

 

Required predicate cannot 

be evaluated as finite 

evidence (e.g., missing 

retrieval justification; 

missing data quality flags) 

Compiled verification 

condition exceeds declared 

GF/RGF profile or violates 

the safe compilation 

constraints 

Action belongs to a 

policy-defined 

high-severity class (e.g., 

irreversible or legally 

sensitive action) 

Observed outcome violates 

the expected post-action 

granule beyond tolerance 

(IGrC-style signal) 

Approve allow / 

request revise / 

confirm escalate 

policy for this band 

 

 

Classify conflict 

type; select 

priority/resolution 

rule; request 

additional evidence 

if needed 

Request additional 

provenance; defer 

decision; initiate 

data-quality 

workflow 

Reject the artifact 

for production use; 

request 

re-compilation into 

the accepted profile 

Mandatory expert 

sign-off (dual 

control if required) 

 

 

Trigger adaptation: 

re-granulation, 

threshold 

recalibration, or 

workflow revision 

under governance 

Proof/counterexample trace + 

boundary explanation + chosen 

operational mode 

 

 

 

Conflict certificate + resolution 

decision + justification note 

 

 

 

 

Missing-evidence report + 

provenance request ticket 

 

 

 

Profile-violation report + 

compilation log + 

accepted/rejected fragment tag 

 

 

Sign-off record + role/identity + 

time stamp + linked evidence 

 

 

 

Drift/mismatch report + 

adaptation decision + versioned 

change request 

 
 

Table 3: HITL triggers and auditable artifacts (operational governance interface for AGL). 
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Table 4: Comparison of AGL with selected reasoning frameworks (focus: clinical deployment). 
Framework Output 

verifiability / 

grounding 

Support for 

graded clinical 

notions 

Decision–action 

integration 

Typical failure 

mode / limitation 

Pure LLM Low: no native 

proof/trace; 

grounding depends 

on prompting and 

post-hoc checks 

High (linguistic 

coverage), but 

weak handling of 

explicit thresholds, 

uncertainty and 

audit constraints 

Low: generates 

text; 

execution/policy 

requires external 

orchestration 

Non-grounded 

confident outputs; 

prompt injection / 

data 

contamination; 

non-auditable 

reasoning chain 

OWL / DL Medium–High: 

model-theoretic 

semantics; 

consistency 

checking; limited 

to the modeled 

vocabulary/axioms 

Low: primarily 

crisp concepts; 

graded notions 

require extensions 

or external layers 

Low: descriptive 

inference; 

action/workflow 

typically external 

Coverage gaps and 

modeling 

brittleness; high 

engineering cost; 

limited support for 

procedural 

workflows 

Datalog / 

ASP 

High: explicit 

rules; derivations 

can be traced; 

deterministic (or 

stable-model) 

semantics 

Low–Medium: 

mostly crisp; 

uncer-

tainty/vagueness 

requires additional 

formalisms (e.g., 

weights, 

probabilities, fuzzy 

layers) 

Medium: supports 

consequences and 

constraints; 

workflow still 

usually external 

Boolean rigidity; 

knowledge 

acquisition 

bottleneck; scala-

bility/maintenance 

issues for large rule 

sets 

AGL (Pro- 

posed) 

High: verifiable 

core (GF/RGF-

bounded) + 

auditable 

evidence artifacts; 

uncertainty 

isolated as 

granules 

High: graded 

premises handled 

via information 

granules and 

threshold atoms; 

clinically tunable 

interfaces 

High: explicit 

policy + workflow 

(FO-PDL) 

enabling accept/ 

abstain/ escalate 

and controlled 

execution 

Up-front design of 

granules/ 

thresholds and 

governance 

procedures; 

integration 

overhead; 

requires 

continuous 

calibration 
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PSA≥𝑟 

PI-RADS≥𝑟 

Age-HR≥𝑟 

CoresPos≤𝑟 

 

Figure 2: Layered epistemic structure of AGL and the decidability boundary. Formal verification 

applies only to the logical-procedural core (GF/RGF profile), while the granule layer provides 

an auditable interface that safely encapsulates complex computations outside the verifiable core. 

For a step-by-step reading guide, see Section 1. 

 

Table 5: A bridge from clinical data to auditable threshold atoms. Thresholds 𝑟 are illustra-

tive (non-normative); in AGL arithmetic remains in the granule computation layer, while the 

rule/procedure core operates exclusively on threshold atoms. 

Granule (type) Meaning (clinical intuition)   Typical data source Atom in the core 

Φ𝐺PSA (𝑢) (fuzzy) “How elevated PSA is” after 

normalization 

Φ𝐺PSAD (𝑢) (fuzzy) “How elevated PSAD is” (PSA 

LIS / laboratory results (PSA) 𝐺Φ (𝑢) 

 

LIS (PSA) + MRI/US (volume) 𝐺Φ (𝑢) 

/ prostate volume) 

Φ𝐺PI-RADS (𝑢) (fuzzy) “Strength of lesion suspicion in 
MRI” (granular view) 

PSAD≥𝑟 

 

MRI report (PI-RADS) 𝐺Φ 
 

(𝑢) 

Φ𝐺Age-HR (𝑢) (fuzzy) “Age as a risk factor” (gradual) EHR / registration 𝐺Φ (𝑢) 

Φ𝐺Gleason≥7 
(𝑢) (crisp) “Whether Gleason meets the 

threshold” (0/1) 

Histopathology / pathology re-

port 

Φ 
Gleason≥7 

(𝑢) 

𝑃𝐺Compliance (𝑢) (prob.) “Probability of adherence” 

(stochastic uncertainty) 

EHR + interview + mod-

els/surveys (local calibration) 

𝑃 
Compliance≥𝑟 
𝑃 
Compliance<𝑟 

(𝑢)  or 

(𝑢) 

𝑃𝐺LN+ (𝑢) (prob.) “LN+ risk from a 

model/nomogram” 

EHR + histopath/biopsy + vali-

dated predictive model 

𝑃 
LN+≥𝑟 (𝑢) 

Φ𝐺CoresPos 
(𝑢) (fuzzy/crisp) “Share of positive biopsy cores / burden” 

 

Content: raw data (EHR, LIS/PACS), predictive models (ML/statistical), numerical 

analyses and simulations. 

Nature: continuous, high-dimensional, or heuristic computations. 

Status: deliberately excluded from formal verification. 

 

Content: Information Granules (Φ𝐺, 𝑃𝐺, 𝑋low,𝐵) and threshold atoms. 

Function: maps vague, uncertain, and numerical premises to Boolean predicates 

admissible in the core. 

Role: an explicit decidability boundary (Decidability Split). 

 

Content: FO-PDL-style programs, atomic actions 𝑎, tests 𝜑? based on threshold 

atoms, modalities [𝜋] 𝜑, ⟨𝜋⟩𝜑. 

Verification: bounded to the GF/RGF profile. 

Status: decidable algorithmic verification with evidence artifacts. 

𝐺 

𝐺 

𝐺 

𝐺 
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Histopatholo

gy / biopsy 

report

 

𝐺Φ 

(𝑢) 

𝑋low,𝐵(𝑢) (rough) “Certainly satisfies concept 𝑋 
under attributes 𝐵” 

𝑋bd,𝐵(𝑢) (rough) “Boundary zone: requires re- 

fining attributes” 

Attributes 𝐵 as “observation 

glasses” 

Missingness / ambiguity in at-

tributes 𝐵 

𝑋low,𝐵 (𝑢) 

 

𝑋bd,𝐵 (𝑢) 

 
 


