ACCEPTED MANUSCRIPT

Techinical

SCIENCES

Title AGL: actionable granular logic for verifiable specifications and reasoningin Al decision—action
systems

Authors: Andrzej Jankowski

To appear in: Technical Sciences

Received 16 December 2025;
Accepted 22 December 2025;
Available online 22 December 2025.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting,
typesetting, and review of the resulting proof before it is published in its final form. Please note that during
the production process errotrs may be discovered which could affect the content, and all legal disclaimers
that apply to the journal pertain.

AGL: ACTIONABLE GRANULAR LOGIC FOR VERIFIABLE

SPECIFICATIONS AND REASONING
IN AI DECISION-ACTION SYSTEMS

Andrzej Jankowski
ORCID: 0000-0002-0725-6354

Department of Mathematics and Computer Science
University of Warmia and Mazury in Olsztyn, Olsztyn, Poland

Keywords: Actionable Granular Logic; LLM Hallucinations; Guarded Fragments; Neuro-symbolic Al;
Clinical Decision Support; Verifiable Al; OnkoBot.

Abstract

Decision—action systems in high-stakes domains, such as oncology, facea critical barrier:
the inherent unpredictability and “hallucination” risks associated with Large Language Mod-
els (LLMs). We introduce AGL (Actionable Granular Logic) as a formal logical framework
designed to serve as a verifiable symbolic wrapper for generative Al. AGL bridges the gap
between stochastic model outputs and rigorous clinical protocols by employing a Decidabil-
ity Split. This architecture encapsulates vague or probabilistic evidence into Information
Granules (MT-FOGL), exposing them to a verifiable core exclusively via discrete threshold
atoms.

Unlike traditional rigid logics;-AGL. formalizes a flexible spectrum of operational re-
sponses (actions based on medical and expert knowledge)—ranging from hard procedural
stops to adaptive clinical recommendations, such as flagging missing diagnostic prereq-
uisites. To ensure rigorous control, we restrict the reasoning core to guarded profiles
(GF/RGF), guaranteeing decidability while addressing computational complexity through
data locality and strategic computational budgeting. The framework’s practical viability is
demonstrated through a prototype of the OnkoBot system, developed in collaboration with
the Maria Sklodowska-Curie National Research Institute of Oncology (NIO-PIB). While
comprehensive performance metrics are deferred to a subsequent report currently being
prepared by the OnkoBot team from NIO-PIB, UWM, and collaborating partners, initial
results indicate that AGL effectively mitigates hallucinations by grounding agentic propos-
als in auditable, formal specifications, providing a scalable and trustworthy foundation for

Al in mission-critical deployments.

*Corresponding: Andrzej Jankowski, Katedra Metod Matematycznych Informatyki, Wydziat Matematyki I Informatyki, Uniwersytet
Warminsko-Mazurski w Olsztynie, ul. Stoneczna 54, 10-710 Olsztyn, e-mail: andrzej.jankowski@uwm.edu.pl.

1. Introduction and motivation

Al systems deployed in high-stakes (mission-critical) domains face requirements that differ qualitatively from
typical applications: decisions have operational consequences, therefore auditability (the ability to reconstruct
premises and the structure of reasoning) and bounded verifiability of the decision core become essential. Rely-ing
exclusively on empirical safeguards (quality testing, red-teaming, safety filters) does not establish a formal
correctness contract at critical points.

Modern agentic systems based on large language models offer high expressivity, yet create deployment barriers
related, among others, to hallucinations and limited logical accountability (the difficulty of formally justifying why
a particular recommendation was produced). In practice, decision—action systems must also represent vague/and
uncertain notions, predictive model outputs, risk assessments, decision thresholds, and missing data.

The central premise of this paper is to couple (i) an auditable description of the knowledge state and.(ii) a formal
description of procedures (workflows), while keeping the verification interface within a profile that supports meta-
theoretic analysis (decidability, complexity). To this end, we propose MT-FOGL (knowledge state and granularity)
and AGL (procedures with regular-program syntax), with an explicit separation between the.computation layer and
the verifiable layer (the Decidability Split).

Remark 1.1 (Naming convention). In this paper, AGL denotes the canonical action-oriented formalism. The terms
GF/RGF refer exclusively to the verifiability profile (restrictions ensuring decidability), and not to the name of the

framework nor to paper titles.

For a complete list of acronyms and abbreviations used in the paper (clinical and IT/AI), see Annex A.

2. Problem setting and design goals

We consider systems that (i) maintain a knowledge state-about objects (e.g., a case, a process, a patient), (ii)
produce reasoning in the form of conclusions/qualifications (when a rule is applicable), and (iii) execute workflows
consisting of decision and execution steps.«-The system must be auditable: it should support answering which
premises and which logical structure led to.a decision or recommendation.

We capture the design requirements as follows:
G1. Auditability: the reasoning core operates on explicit, discrete predicates and rules, inspectable by design.
G2. Bounded verifiability: core properties are subject to algorithmic verification within a decidable fragment.

G3. Separation of responsibility: complex computations (statistical/ML models, numerical methods) are en-
capsulated outside the core.

G4. Action orientation: the formalism describes not only “what is true” but also “what to do” via pro-
grams/procedures.

GS. . Deployability: constructs map naturally to system components (KB-state, execution, audit trail).

Remark 2.1 (Disclaimer: illustrative nature of medical examples). All medical-context examples (formulas, rules,
procedures, thresholds) are strictly illustrative (non-normative) and serve to demonstrate the formal constructions
of AGL. They are not clinical recommendations nor medical advice and must not be interpreted as a formalization
of any particular guideline. In real deployments, the content of rules, thresholds, and procedures requires validation
by qualified experts and adaptation to local standards and data.

2.1. An example application of AGL architecture and the Decidability Split

We explain the intuition behind the AGL architecture and the Decidability Split using Figures 1-2, step by step.

Reading guide for Figure 1 (step-by-step). Figure 1 presents the operational mechanism of AGL as a
compilation—verification pipeline that produces explicit audit evidence. The workflow can be read as follows:

Step 1 (Surface layer). A domain expert (e.g., a clinician) or an engineer specifies human-meaningful rules and
AGL programs that describe decision conditions and workflow steps (actions, branching, iteration, escalation).

Step 2 (Grammar-grounded translation). The specification is translated by a grammar-grounded compiler into
a formal representation accepted by the verification core. This step makes the mapping from the surface language
to the verifiable core explicit and auditable.

Step 3 (®-constraints / verifiability filters). During translation, all tests and constraints used in programs
are forced to belong to the selected verifiability profile, i.e., the Guarded Fragment / Regular Guarded Fragment
(GF/RGF). This does not automatically guarantee global consistency of all domain assumptions; rather, it ensures
that the verification tasks posed to the core remain algorithmically decidable and thus_suitable for systematic
checking.

Step 4 (Decidability Split via threshold atoms). Numerical, probabilistic, and vague premises are not processed
inside the core. They are computed outside the core as Information Granules and exposed to the core only through
Boolean threshold atoms (e.g., a computed risk score of 0.82 is mapped to the two-valued fact “risk > 0.8”). This
is the Decidability Split: complex computation is encapsulated, while the core teasons over two-valued predicates.

Step 5 (Verification core). The verification core reasons about the compiled FO-PDL-style workflow under
GF/RGF tests and produces machine-checkable outcomes (e.g., satisfiable/unsatisfiable, property holds/violated)
together with evidence artifacts.

Step 6 (Decision policy). Verified outcomes are mapped to an operational policy such as accept / abstain /
escalate. For example, the system may accept an.action when the verified conditions hold, abstain when evidence
is insufficient, and escalate when the risk or uncertainty triggers expert review.

Step 7 (Evidence artifacts / audit trail). For every decision and executed workflow, AGL can generate auditable

artifacts: (i) proofs or proof sketches supporting the decision under the core assumptions, (ii) counterexamples
when a property fails, and (iii) execution traces. documenting which tests/rules fired and which actions were taken.
Key takeaway. Figure 1 illustrates theistrict separation between the expressive layer and the verifiable core:
decision thresholds appear only.as Boolean threshold atoms in rules and tests; arithmetic is not part of the verifiable

core.

Clinical reading guide for Figure 2 (three-level view). Figure 2 explains why the AGL approach can
remain auditable and verifiable even when it uses complex Al components. It can be read as a three-level structure
in which information becomes progressively more precise and suitable for formal checking.

Level 1 (bottom, blue: computation outside the core). This is where raw hospital data and complex models
live (EHR, LIS/PACS, ML/statistics, simulations). Outputs here are typically numerical and uncertain (e.g.,
probabilities, scores). This layer is intentionally not subject to formal verification.

Level 2 (middle, green: auditable granulation interface, MT-FOGL). This is the key safety boundary (De-
cidability Split). It translates graded outputs into explicit Boolean threshold atoms that the core can use. For
example, a computed risk of 0.82 is mapped into a two-valued premise such as “risk > 0.8”. Because thresholds
and mappings are explicit, they can be reviewed, versioned, and audited (e.g., which threshold was used and when
it was crossed).

Level 3 (top, yellow: logical-procedural core). This is the only layer where formal verification is performed.
The core reasons over two-valued premises and FO-PDL-style workflows with GF/RGF-bounded tests. As a result,

verification tasks remain algorithmic (decidable) and can produce evidence artifacts (proofs, counterexamples, and
execution traces).

Practical implication. 1f a clinician asks “why did the system recommend action A?”, the audit trail can point
to the specific threshold atoms and workflow steps used in the core. Errors or uncertainty in numerical estimation
affect which threshold atoms are supplied, but they do not break the verifiability of the core itself.

Thus, Figure 1 shows the end-to-end compilation and verification pipeline, while Figure 2 makes explicit the
decisibility boundary that preserves auditability and algorithmic verification in the AGL core.

3. MT-FOGL: soft typing, Information Granules, and threshold atoms

3.1. Soft typing over a single universe

Definition 3.1 (MT-FOGL (soft typing)). Let L be a first-order signature containing a distinguished family of unary
predicates {Type; (-)}ier (soft types), where I is an index set enumerating available soft types and any additional
symbols. An MT-FOGL theory is a set of first-order sentences over L, optionally extended by typing axioms that

constrain admissible arguments of relations and functions.

Intuition. Soft types let us describe a single underlying universe U while still writing typed constraints and
workflows. They behave like auditable “labels” (unary. predicates) rather than a commitment to many-sorted
semantics, which keeps the verifiable core close to standard first-order reasoning while remaining engineering-
friendly.

Typed variables as syntactic sugar. For readability we use the notation:
Vu : Patient @(u) .asshorthand for Vu (Patient(u) — ¢(u)),

3t : Therapy Y (t) as shorthand for 3t (Therapy(t) A (t)).

3.2. Information Granules

In practical decision—action systems, the notions used by rules are rarely fully crisp. Concepts with vague
boundaries, partial observability, and stochastic uncertainty are common. In MT-FOGL we capture these phe-
nomena via Information Granules, and then expose them to the rule/procedure layer through auditable threshold

atoms.
3.2.1. Fuzzy and probabilistic granules

Definition 3.2 (Information Granule (fuzzy/probabilistic)). Let U be a non-empty universe of objects. A fuzzy
information granule is a function @ : U — [0, 1] (membership degree), a probabilistic information granule is a

function P : U — [0, 1] (probabilistic score), and a crisp information granule is a function C¢ : U = {0, 1}

Intuition. An information granule summarizes a potentially complex, model-based assessment (fuzzy mem-
bership, probability, or a crisp indicator) into a single score that can be logged, calibrated, and versioned. The
verifiable core never manipulates this score numerically; it only consumes discrete facts derived from it (threshold
atoms).

Remark 3.3 (Vagueness vs. probability). @¢(u) denotes a degree of membership (concept vagueness), whereas
Pc (u) denotes the probability of satisfying a criterion (stochastic uncertainty). Although both values lie in [0, 1],
their interpretation and data sources differ.

3.2.2. A unified scoring symbol and threshold atoms

From the perspective of auditability and verifiability of the rule core, a discrete interface is essential: Therefore,
numerical and probabilistic comparisons are compiled into atomic threshold predicates, which can be usedin rules
(GF/RGF) and in AGL program tests.

Definition 3.4 (Unified scoring symbol). Let G be an information granule and let ¥ € {®, P, C} denote the scoring
family: W = @ for a fuzzy membership degree, W = P for a probabilistic score, and W =-C for a crisp score with
codomain {0, 1} € [0, 1]. Then W¢ : U — [0, 1] denotes @ or Ps or Cq, respectively.

Definition 3.5 (Audit-bounded threshold set (granular signature)). For each application and each scoring family
W e {®, P, C}, we fix a finite set of rational thresholds Ry < [0, 1] N Q called the granular signature. Only
threshold predicates with r € Ry are admitted in the verifiable core.

Intuition. Without an explicit bound, the family {G*¥ (-)}; e[o,1] iSuncountable and cannot be treated as a practical
predicate signature. The granular signature makes the interface finite, reviewable, and stable under audit: it is an

explicit design choice that can be justified clinically/organizationally and version-controlled.

Intuition. The symbol W is a notational unification: it lets us write common interface rules without committing
to whether a score is fuzzy (®¢), probabilistic (P¢), or crisp (Cs). This improves readability and supports uniform

compilation into threshold atoms.

Definition 3.6 (Threshold atoms for fuzzy/probabilistic granules). For any threshold r € Ry we introduce unary
predicate symbols:
G* () ¥ () G () G¥ () G¥()

2r <r <r >r =1

with the intended semantics (for u € U):

M |=GY (u) €= PM(u) =2, M|=GY (W) = WMu)<r,

>r G <r G
and analogously for <, >, and =.

Intuition. Threshold atoms are the only way numerical evidence enters the verifiable core. They act like a
discretization boundary: the computation layer may change (models, calibration, population statistics), but the core
sees only a finite, auditable set of two-valued facts.

Parameterized atoms and provenance (auditable evidence carriers). In the surface specification
(e.g., an expert-facing DSL) one often writes parameterized conditions such as “W¢ (1) = r” with a configurable
threshold . In AGL this is compiled into the fixed predicate signature determined by the granular signature Rw:
only comparisons at r € Ry become atoms in the verifiable core. The choice of Ry, as well as the construction of

6

W (expert-defined, learned/calibrated from data, or hybrid), must be recorded with provenance metadata (version,

data window, calibration method, responsible role), so that every threshold fact used in a decision—action workflow

is traceable.

Remark 3.7 (Decidability Split). The complex estimation mechanisms behind ®¢, Pg, and Cs (numerical/ML
models, calibration, population-level analysis) are isolated outside the verifiable core. The rule and procedure layer
operates solely on discrete threshold atoms, which stabilizes auditability and supports the GF/RGF verifiability
profile.

3.2.3. Approximation granules in the Pawlak tradition

In Pawlak’s classical approach, the starting point for rough-set granules is an information/decision system
based on a fixed set of attributes. These are used to construct lower and upper approximations of vague concepts.
Intuitively, such approximations arise from observability: attributes (our “glasses”) induce an indiscernibility

relation.

Definition 3.8 (Attribute language and atomic facts). Let U be a universe of objects and let A be a set of attributes.
Each attribute a € A has a value domain V (a). Atomic facts are expressions of the form a(x) = vy where x € U
andv €V (a).

Intuition. The attribute language isolates what can be observed (auditable atomic facts) from how it is computed.
It provides a stable vocabulary for rules and program tests, so that verification coneerns only this discrete interface,

not the underlying estimation pipelines.

Definition 3.9 (Indiscernibility w.r.t. an attribute set). Let B S{A. Define the indiscernibility relation ~5 on U by:

x~py &= NbE€B b(x)=>b(y).

3.2.4. Elementary granules and crisp granules in Pawlak’s view

Let [x] 5 denote the equivalence class of % w.r.t:~p. This is the indiscernibility class induced by B.

In particular, [x] s is the basic unit of granulation induced by ~ 5 and describes the finest level of distinguishability
available under observation limited to the attribute set B.

Intuitively: an elementary granule groups objects that cannot be distinguished using observable attributes from
B.

Foraconcept X € U:
XB={x€U|[x]zS X}, X ={xeU]|[x]znX +0).

In the auditable'core we use predicates X'O%58, X5 xbd5,
For a fixed attribute set B, the class [x] s can be described by a conjunction of atomic conditions that crisply
fix attribute values. In this perspective, crisp concepts are naturally described as alternatives (disjunctions) of
. IR . k
elementary-granule descriptors, i.e., as unions of indiscernibility classes, corresponding to a set € = *_ [xi] 5.
This is an important semantic distinction: an elementary granule describes a single indiscernibility class, whereas

a crisp granule (a crisp concept) can be a composition of many such classes via disjunction.

Remark 3.10 (Relevance for the auditable interface). The above view aligns well with the AGL architecture:
descriptors of elementary granules and crisp granules are classical formulas, hence they can feed the auditable rule
core without introducing arithmetic into the verifiable layer. Rough approximations X# and)?B can then be
understood as operations over families of such granules arising from limited observability (i.e., from the choice of
B).

Remark 3.11 (Rough atoms as an auditable interface). The atomic interface for rough granules is two-valued (crisp)

and has three key predicates:

XovB(x) =x € XE, XWF (x)=xeX, X¥F (x)=xeX \X’.

3.3. From clinical data to threshold atoms

The table identified as Table 5 illustrates the bridge: clinical data/source — granule (fuzzy/probabilistic/rough)
— threshold atom used in a rule or a program test. It shows how clinical inputs and predictive model outputs are
mapped to information granules and then to discrete predicates that form the only interface to the auditable rule

core.

4. AGL: a procedural extension in the style of FO-PDL

4.1. Regular programs, tests, and (optionally) parallelism

In AGL we introduce a workflow/program language with regular-program syntax in the sense of PDL, with an

additional (optional) parallel-composition constructor:
m = a|ngm| muUm | wt | e? | mll mo.

Operator intuition (short, “for system users”).
«a (atomic action): a single step in.a procedure (e.g., ordering a test, starting therapy, updating the KB-state).
+ @? (test): checks a condition without changing the KB-state; if ¢ fails, the execution path is blocked.
Ty M2 (Sequence): execute mp first, then 1.
« m Umy (choice): allow alternative paths (the system chooses one).
+ m* (iteration): repeat the program zero or more times (follow-up / retry pattern).

« 1y || 2 (parallelism): two subprocesses may progress concurrently (“two tracks at once”).

Tests as the verifiability interface (base profile). In practice, tests ¢? are the key interface between
the MT-FOGL knowledge state and the procedural layer. Hence, in the base profile we assume that formulas ¢ used
in tests belong to a core restricted to GF/RGF, to preserve control over decidability and complexity. Additionally,
all numerical and probabilistic comparisons are admissible only through threshold atoms.

Why || is optional (expressivity vs. verifiability). The operator || increases language expressivity, but
typically complicates semantics and worsens meta-theoretic properties of the verifiable core, in particular
complexity and often decidability of verification problems. For this reason, we recommend not using || in the base
AGL profile.

Two safe alternatives to || in the base profile.

1. Interleaving when order does not matter:

(a; B) U (B;).

2. Atomic action as a bundled protocol: when two actions are treated as one “package,” introduce a new atomic

action Acombo.

Remark 4.1 (Engineering takeaway). In this paper we focus on the base profile (without ||), because it offers the best
trade-off between expressivity and verifiability. Extensions with concurrency are treated as specialized variants
and a direction for future work.

A note on decidability (base profile). Here we combine the procedural core (regular programs without
explicit parallelism) with tests in a GF/RGF profile, which preserves decidability of verification-relevant problems
(albeit with high worst-case complexity). If stronger verification guarantees are required in a‘given application,
one can adopt an even more restrictive test subprofile (e.g., more constrained guarded variants), at the cost of
expressivity.

4.2. Modalities and operational meaning

The modalities [rr] ¢ and ()¢ express properties that holdafter executing a procedure. From an engineering
viewpoint, programs are interpreted as transitions between knowledge-base states (KB-states): actions update facts
in the KB, and tests filter admissible execution paths.. This yields readable, auditable procedures with explicit

sequencing and branching structure.

4.3. Formal semantics of AGL (core)

Definition 4.2 (KB-state as an MT=FOGL structure). A KB-state (knowledge-base state) is an MT-FOGL structure
M with a non-empty universe UM and an interpretation of the signature L (in particular, type predicates and
application predicates). Additionally, for each information granule G the structure provides external scoring

functions @M : UM — [0, 1](fuzzy) and/or PN, : UM — [0, 1] (probabilistic), which are not part of the
first-order signature'and may be computed by external, validated modules.

Definition 4.3 (Atomic actions as state transformers). Each atomic action a is interpreted as a binary relation

a
=4, on KB-states. We write M = M'iff (M, M) €=.. In the base profile, actions may update the fact
layer (extensions of selected predicates), while the granule scoring functions @M, PM are treated as external and
G G

recomputed after updates.

Definition 4.4 (Program semantics and satisfaction of dynamic modalities). Let [r] € M x M denote the relation
induced by program m on the set of KB-states M, defined inductively by:

[a]l :===q, [nml:=[m] ° [m], [mUml:=[mluUlml, [:=(xl),

and for tests:
[7 :={(M,M) | M |= ¢}.

10

Then satisfaction of dynamic modalities is defined by:
M |=[r]le &= VM (M,M) € [z] = M |= ¢),

M |= (m)p = IAM' ((M,M) € [l AM’ |= ¢).

Remark 4.5 (Profile restriction for verifiability). In the base AGL profile, tests ¢? are restricted to formulas from
GF/RGF, and all numerical/probabilistic comparisons appear only via threshold atoms.

4.4. Why procedures are essential

A purely rule-based description may suffice for classification, yet is often insufficient when decisions require
sequencing, alternatives, or control loops (follow-up, retry). AGL models workflow as regular programs, and tests
¢@? act as auditable checkpoints, to which we apply GF/RGF profile restrictions.

5. Verifiability profile: Guarded Fragment (GF) and Regular Guarded Fragment (RGF)

5.1. Guarded Fragment (GF)

Definition 5.1 (Guarded quantification (informal)). An occurrence 3y @(x,y) is guarded if it has the form
Ay (a(x, y) A @(x,y)), where the guard atom a(x, y) contains all free variables of ¢. Analogously, Vy ¢(x, y) is
guarded if it has the form Vy (a(x, y) — @(x, ¥)). A formula belongs to GF if all quantifiers occur in guarded

form.

The guard as a data relation (“patient-centered” perspective). In practice, a guard corresponds
to a relation that anchors new variables in the data: e.g., Haslmaging(p, img), HasLab(p, lab), HasReport(p, 7).
Thus quantification ranges over explicit links rather than over arbitrary objects in the database. For example, the
condition “there exists-an imaging study for the patient” is guarded:

3img(Haslmaging(p, img) A StudyType(img, CT)),

where Haslmaging(p, img) serves as the guard anchoring img to the patient context p.

5.2. RGF (Regular Guarded Fragment) as a controlled enrichment

In practice, a guard may be path-based: instead of a single relational atom, we want to refer to a regular pattern
of links. Such constructs are captured by the RGF profile, which preserves decidability of satisfiability with typical
2ExpTime complexity [3].

11

Example 5.2 (Why RGF matters: anchoring along a path (schematic)). Consider a situation in which an ob-
ject of interest is related to a patient only through an intermediate record. Let PatientHasRecord(p, r) and
RecordHasSample(r, s) be binary relations. In many data models, samples s are not linked to the patient directly
but via records r. A path-guard can be expressed as a regular relation

1 .= PatientHasRecord - RecordHasSample,

which anchors s in the context of p through r. Intuitively, it enables quantification “along a data path,” rather than

using a single guard atom.

Theorem 5.3 (Decidability facts (GF/RGF profile)). Satisfiability of GF is decidable [1] and is 2ExpTime-complete
with the finite model property [10]. Satisfiability of RGF is decidable and is 2ExpTime-complete in sstandard
formulations [3].

Practical verification pipeline (fragment selection — compilation —» SAT —)auditable
result). Inpractice, the decidability facts above can be used as an engineering pipeline: (i) selectthe verifiability
profile (GF or RGF) for all rule conditions and program tests; (ii) compile the chosen fragment of the specification
(tests ?, guards, and rule antecedents) into a normal form suitable for automated checking; (iii) reduce the resulting
bounded satisfiability/consistency checks to a propositional encoding and run.a SAT solver (or an SMT solver if
a fixed, safe background theory is used outside the verifiable core); (iv) return an-auditable certificate: the set
of fragment assumptions, the compiled fragment identifier, the solver-outcome, and (when available) a witness
model/counterexample trace. This keeps numerical evidence outside the core (only threshold atoms appear in the
compiled fragment) while providing a concrete, repeatable verification path for deployments.

Remark 5.4 (Computational perspective: asymptotic complexity vs. practical feasibility). The 2ExpTime-completeness
results concern the worst case for the full class of formulasin the given fragment. In AGL, verification targets a
restricted core (GF/RGF profile and specific procedures), and-granule estimation is isolated outside the core (the De-
cidability Split), preventing arithmetic from being pulled into the verification problem. In practical decision—action
systems, verification typically concerns constrained classes of queries and programs, often over highly structured

data, which tends to reduce instance difficulty.

6. Elementary clinical Information Granules (non-normative)

6.1. Clinical acronyms used in illustrative examples

Toavoid ambiguity, Table I lists the clinical abbreviations used in the illustrative examples of this paper. They
are included only to keep the examples readable; the examples remain non-normative and are not intended as
guideline encodings.

Acronyms. For a complete, alphabetically ordered list of clinical and IT acronyms used throughout the paper
(including those used in the illustrative examples), see Annex A (Table 1).

This section is didactic: it shows how Information Granules (the computation layer) may look in practice, and
how we move from numerical scores to auditable threshold atoms used in the rule/procedure core. All examples

are non-normative and do not constitute a formalization of any specific guideline.

12

In particular, we treat these snippets as narrative benchmarks for illustrating the Decidability Split, rather than as
a clinically binding encoding of standards of care. This distinction matters because European oncology guidelines
are regularly updated by leading scientific societies—for example, EAU for prostate cancer and ESMO for lung and
chest tumours [6, 8].

6.2. Basic diagnostic granules (prostate cancer, schematic)

Example 6.1 (Elementary clinical granules (schematic)). Let u denote a patient. We illustrate several fiizzy granules

@¢ (u) € [0, 1] and one crisp granule.
(1) PSA granule (fuzzy):

0, if PSA(u) < 4
PSA(uw) — 4 .
f, lf 4 < PSA(U) <10

1, if PSA(w) > 10

PGpsa () =

(2) PSA granule (fuzzy):
®Gpgap(u) = min (L%)
0, if Age(u) <70
(3) Age as risk-factor granule (fuzzy) PGpge _ HR(W) = {%OHO if 70,< Age(u) < 80
1, if Age(u) > 80
(4) Gleason threshold crisp)
0, ifAge(u) < 70
A -70
q)GGleason =7 = %, if 70 < Age(u) < 80
1, if Age(u) > 80

(4) Adherence (probabilistic)

PGeomplinnce () = P(adherence | History(u), FamilySupport(u)).

Example 6.2 (Probabilistic granule: risk of lymph-node metastases (LN+)). Consider a probabilistic granule Gin+
that assigns to a patient u a pre-operative estimate of the risk of lymph-node metastases. Let

PGLN+ (u) € [0: 1]

denote aprobabilistic score computed by an external, validated module (e.g., the Briganti nomogram; 4). For
instance, given a set of clinical features one may use a logistic model of the form:

Pen, (w) = (1 +exp - (-1.78 + 035 - In(PSA(w)) + 1.15 - GSprimary (1)

-1
+0.73 - cT(u) +0.02 - PBxpos(u))) -

13

where GSprimary(1) is the dominant Gleason pattern, cT(u) is the clinical stage, and PBxpos(u) is the fraction
of positive biopsy cores.

In accordance with the Decidability Split, the computation above is not part of the verifiable core. The AGL
core sees only a discrete interface in the form of threshold atoms, e.g., for a chosen policy threshold r € [0, 1]:

G II_)N+ZT (u)

Such an atom can then feed qualification rules or program tests ¢? within the GF/RGF profile.

6.3. From numerical scores to auditable threshold atoms

In line with the Decidability Split, comparisons such as @¢ (u) 2 r do not enter the rule core. Instead; we use

threshold atoms as discrete predicates employed in rules and in program tests.

Example 6.3 (Threshold atoms for multi-level decisions (schematic)). For illustrative thresholds ri, 7> € [0, 1]
define atoms:

o o ®
GPSAZT] (u)' G PSADz=r2 (u)' G Gleason>7 (u’)

A simple qualification condition (in the classical core) can be written as:

()

() A GO (W V Gpsapsr, W)

PSAzr1

)
G Gleason27
All arithmetic remains encapsulated in @¢ and is not part of the verifiable core.

Remark 6.4 (Where to place richer clinical example libraries). If a broader library of examples (diagnostic/therapeutic/follow-
up) is needed, a natural place is an appendix/Or a separate application-focused paper. In P1 we keep them intentionally

short so as not to dilute the formal contribution of AGL.

6.4. Canonical clinical formulas using threshold atoms (non-normative)

In this subsection'we show how typical “clinical formulas” can be expressed in the classical core (MT-FOGL +
GF/RGF profile) exclusively via threshold atoms. All numerical comparisons are encapsulated in the definitions of

®¢ and P and exposed as discrete predicates G, (u).

Example 6.5 (Qualification for biopsy (multi-level, threshold-atom style)). Let u denote a patient. Introduce the
following threshold atoms (illustrative thresholds):

@ @ @
Gpirapss09 (W, Gpirapss07 (W) Gprrapssos (W

)))
Gpsapsos (W) Gpsapsos (W), Gpsases (W
Define three decision conditions in the classical core:

o D @
Yurgent (W) 1= Gprraps»09 (W) V Gpsapsos (W)

14

Yrecommendea W) = GPpi_papszo07W) V (G Ppi_raps=z03W) A GPpsap =05 (u)),

Yoptionat(W) 1= GPpsaz03w) A (G¢FamilyRisk =1(W) V GPpge_nr=05 (u)).

15

Example 6.6 (Qualification for Active Surveillance (AS) (threshold-atom style)). Let u denote a patient. Assume
the following atoms (illustratively):

@ @ @ @
G Gleasonsse Wy G 110001 (W, Gpsacos (W), G Corespossoss (W)

Qualification condition in the core:

— o (o] (0] [
¢AS-qual (u) =G Gleason<6 (u) A GcT1—2a=1 (u) A GPSA<0.5 (u) A GCoresPosSO.SS (u)

Optionally, a conservative exclusion:

o P (0]
lp“OAs(u) T ﬂlpAS’qual(u) v G({)/olume>0.5 (u) v GCompliance<0.7 (u) v GLifeExpectancy>10y=0 [u)

Example 6.7 (Follow-up: detecting biochemical recurrence (BCR) and triggering the next'step). Let u denote a

patient after definitive treatment. Introduce atoms:

o o
Gpsazox (W, G psa-confirmed=1 (W:
Define the BCR condition: W
Yecr(U) = GPgpsgr (W) A GI?SA-conﬁmled=l
Optionally, a trigger for imaging: (W VG
@
Yriggerimaging (W) := Per (W) A (G?’SA>O.2 psa-pr<em (W) -

A follow-up procedure (orders, dterations; stop conditions) is naturally expressed in AGL programs, and the

predicates above serve as tests/@?.

7. Examples: decision—action patterns (non-normative)

7.1. End-to-end hero example: from granules to a verifiable workflow

This example illustrates the full pipeline targeted by AGL: a computation layer produces graded evidence, the
evidence is exposed to the verifiable core via a finite threshold signature, and a profiled rule core drives an
actionable FO-PDL workflow. The example is schematic and non-normative.

Computation layer (granules). Assume three graded outputs for a patient u: (i) a biochemical suspicion

score Dpa(u) € [0, 1], (ii) an imaging suspicion score Ping(u) € [0, 1], (iii) a fitness score D (u) € [0, 1].
Assume a finite, auditable threshold signature Rpsa = {0.6, 0.8}, Rimg = {0.6}, Rsc = {0.4}.

16

Auditable interface (threshold atoms). The computation layer emits only two-valued facts such as:
G(Dpsa (u)’ G‘Dimg (u)’ Gq)ﬁt (u)’

20.8 =0.6 <04

together with crisp observations (e.g., BiopsyAvailable(u)).

17

Verifiable rule core (profiled to GF/RGF). Introduce two action-relevant predicates: HighRisk(u) and
EscalateToMDT(u) (MDT = multidisciplinary team). A simple, guarded-style rule (written here in a classical

implication form) can be:

vu (Patient(u) A G W) AGT™ (W) - HighRisk(w)) ,
208 206

and an escalation rule driven by risk and low fitness:

vu (Patient(u) A HighRisk(u) A G®T* (1) — EscalateToMDT(u)) .
<04

The essential point is that the core reasons only over two-valued atoms, while all graded computation remains
outside.

Action workflow (FO-PDL style). Let collect, compute, applyRules, requestEvidence, and escalate be

primitive actions. A schematic workflow specification is:

collect; compute; applyRules; (EscalateToMDT(u)?; escalate U ~EscalateToMDT (u)?; requestEvidence).

Since the tests are built from profiled predicates (including threshold atoms), the verification boundary remains
explicit.

In this section we present six short examples illustrating typical decision—action patterns in AGL. Examples
are demonstrative (non-normative). The canonical principle remains-unchanged: numerical and probabilistic

comparisons are encapsulated as threshold atoms, and the rule/procedure core operates on discrete predicates.

Audit trail generation. A deployment can log: (i) provenance identifiers for the computed granule values
(or the values themselves where permitted), (i) which threshold atoms from the finite signature Ry were asserted
for patient u, (iii) which profiled rules/tests fired/in the verifiable core, and (iv) which workflow branch/action was
executed (including escalation). For example, the'log may state that u was escalated because a specific rule fired
based on a threshold atom such as G®'sk (), fogether with the compiled fragment identifier and verification

outcome.

7.2. Static patterns: threshold atoms as the rule interface

Example 7.1 (E1: Fuzzy thresholds as auditable atoms (PSA + PI-RADS, schematic)). Let u denote a patient.
Assume two fuzzy granules @cpg, (1) and Depzaps (4). The exposed interface:

@ o
Gpsasos (W), G prrADSs08 (W-

Qualification condition in the classical core:

o @
Gpsasos (W A Gprpapssos (W)

Example 7.2 (E2: A probabilistic threshold as a decision interface (LN+ risk, schematic)). Let Pg;y, (1) € [0, 1]
be a probabilistic granule estimating LN+ risk. For a policy threshold r € [0, 1] define the atom:

G I}_)N+2r (u)

18

Such an atom can then feed qualification rules or tests ¢? in procedures.

7.3. Procedural patterns: AGL programs (FO-PDL)

Example 7.3 (E3: Branching “verify, then act” (schematic)). Let Patient(u) be a type predicate. Consider an
action Qconfirm, after which predicate MarkerConfirmed(u) may become available in the KB-state. Let @ear and

Queatalt be alternative actions. A branching program:

7 := Patient(u)?; dconfirm; (MarkerConfirmed(u)?; ayea U “MarkerConfirmed(w)?; Gucatalt)-

Interpretation. The program makes the decision point auditable by separating verification tests from actions.
In particular, the system can record which test succeeded (MarkerConfirmed(u)? or “MarkerConfirmed(u)?), and
therefore which branch enabled Gircat VErsus Qireatals-

Example 7.4 (E4: Follow-up loop with a stop condition (iteration)). Let agiow be a follow-up action and let
Stop(u) be a stop condition expressed in the verifiable profile. A loop pattern:

= (-Stop(u))?; apuow and

Example 7.5 (ES: Order-insensitive steps via safe interleaving). If two steps « and S are order-insensitive, model

interleaving:

(a; B) U (B).
This is a substitute for || in the base profile.
Interpretation. Instead of introducing true parallel composition in the base profile, we encode permissible

interleavings explicitly. This keeps verification within standard program constructs while still capturing the intended
independence of steps.

7.4. Complex decision rules with quantifiers (MT-FOGL + GF/RGF style)

Example 7.6 (A'high-specialization center policy (schematic, auditable)). This example emphasizes that the AGL
core is (profiled) first-order predicate logic (GF/RGF), while complex risk criteria are supplied via threshold atoms.

(1) AlLhigh-risk patients must be discussed at an MDT. Let Guignrisk be a granule (e.g., fuzzy)
describing “high risk,” and let G(I;ligh—riskzos (u) be its threshold atom in the core. Let MDT(u) denote the fact

“patient u’s case is referred/discussed at an MDT.” In the classical core:

vu (Patient(u) A G® (w) —» MDT(w)).
high-risk=0.8

19

(2) If the patient has contraindications to all options, consider best supportive care. Let
FitRP(u), FitRT(u), and FitADT(u) be schematic predicates expressing clinical eligibility for three treatment
options: radical prostatectomy (RP), radiotherapy (RT), and androgen deprivation therapy (ADT), respectively.
(These predicates are used here only to illustrate how domain predicates enter the verifiable core; they are non-
normative and require clinical definition and governance in any real deployment.) Let BSC(u) mean “consider best
supportive care.” Then:

vu (Patient(u) A -FitRP(u) A ~FitRT(u) A -FitADT(u) — BSC(u)).

(3) There exist patients for whom AS is safer than treatment (canonical variant). Let
Gvery-low-risk be a granule (crisp or fuzzy) describing “very low risk” in the sense of eligibility for a conservative
strategy. In the auditable profile assume its interface as:

0]
G very-low-risk=1 (u)

Moreover, the risk comparison (e.g., “AS vs treatment”) is computed outside the core as'a probabilistic granule

PG squtermnanrs () € [0, 1] and exposed only via a threshold atom G, o r o () fora chesen policy threshold

r € [0,1]. Then:
(WAG ,

Ju Patient(u) A G® AT (u).
very-low-risk=1
Remark 7.7 (Clinical interpretation and compliance with the Decidability Split). The formulas above show that AGL
keeps the decision core as first-order predicate logic (profiled to GE/RGF), supporting auditability and verifiability.
Vagueness and probability are modeled in the granule layer; the-core sees only Boolean predicates (threshold atoms

or crisp atoms) that serve as the interface to rules-and program tests.

8. Related work

The choice of GF as a verifiability profile builds on classical results on guarded fragments of first-order logic,
including decidability and-the finite model property [1, 10]. The procedural layer of AGL relies on ideas from
dynamic logics (PDL) and regular-program syntax [11], which enables a formal description of sequencing, choice,

and iteration of actions.

GF/RGF as a mechanism for controlling verifiability. Full first-order dynamic logic is often unde-
cidable; AGL therefore imposes engineering restrictions: (1) program tests ¢? are restricted to the GF/RGF profile,
(2) arithmetic, probability, and vagueness are exposed to the core solely via threshold atoms, which stabilizes

semantics and keeps the verification interface within two-valued logic.

Probabilistic reasoning, inductive logic, and epistemic background. Threshold atoms in AGL
deliberately decouple the verifiable two-valued core from graded evidence (probability / fuzziness), which connects
naturally to classical probabilistic KR and inductive-logical perspectives on evidential support (Bayesian networks
and probabilistic inference in particular) [7, 14, 18]. Moreover, since AGL is intended for workflow-like decision—
action systems deployed in multi-agent settings (human experts, services, and automated components), epistemic
notions and reasoning about knowledge form an important meta-theoretic backdrop [9].

RGF and path-based data anchoring. The regularization of guards [3] is motivated by the need to
20

express data-link patterns in quantifier guards and tests (e.g., patient—record—sample relations) that are typical for
workflow systems.

W\
&3
O
S

21

Granular computing as a computation layer and an auditable interface. The concept of
Information Granules and granular views of vagueness and uncertainty have deep roots in the literature on granular
computing and information granulation [2, 19-21], while rough sets [13] provide a natural model of concept
boundaries driven by observability. In AGL these mechanisms are deliberately separated from the verifiable core
(the Decidability Split).

Meta-theoretic background: non-classical logics and algebraic approaches. The classical
monographs of Rasiowa and Sikorski [16] and Rasiowa [15] provide reference points for a broad spectrum of non-
classical logics. In this paper, however, such logics are not the core: instead, we use a two-valued verification
interface and move “gradedness” into the granule layer.

9. Discussion: expressivity vs. verifiability

The richer the description language, the harder it becomes to achieve algorithmic verification.and complexity
control. AGL adopts a profiled approach: we allow expressivity in the surface layer (e.g.;-an expert-facing DSL),
provided that it has an explicit mapping to a controlled verifiability interface. The verifiable core is restricted to the
GF/RGF profile and to auditable predicates (threshold atoms).

In practice, we realize this via two mechanisms: (i) the Decidability Split—all arithmetic and probability are
encapsulated in Information Granules and exposed as threshold atoms, (ii) restricting program tests ¢? to GF/RGF,

which stabilizes the properties of the verifiable core. The architectural rationale is illustrated in Fig. 1.

Parallelism as an illustration of the trade-off. Extending the program language with || increases
expressivity (concurrent action tracks), but typically worsens verification properties (complexity and, in many
variants, decidability). Therefore, in the base/profile we recommend avoiding || and using safe substitutes:
interleaving (a;) U (f; @) when order does not.matter, or treating a bundle of actions as a single atomic action.
Figure 2 clarifies where the decidability boundary lies in AGL and how the granule layer acts as an auditable

interface between computations and the verifiable core.

10. Engineering applications of AGL in AI/IT

The AGL logic presented. in this paper has broad potential for engineering applications in Al/IT, because it is
designed as an auditable control and verification layer for decision—action systems.

The OnkoBot project is a year-long collaboration between clinical experts at NIO-PIB and engineering and
research teams.at UWM, conducted under a formal Letter of Intent and consolidated in a comprehensive internal
project charter document for the OnkoBot program [5]. During this period, the team iteratively advanced proof-of-
conceptprototypes across multiple platform subsystems and formalized successive milestones via mutually agreed
project charters.

From a deployment viewpoint, it is crucial that AGL does not compete with mature technologies based on
fragments of FOL (Datalog, DL/OWL, SAT/SMT), but complements them with actionable granules: threshold-
based, auditable interfaces between rich input information and a classical, verifiable rule core.

We distinguish two complementary application directions:

(1) Enriching existing FOL-fragment applications in AI/IT with AGL mechanisms (guardrails, audit, verifiability

profiling, decision correction and escalation).

22

(2) A layered view of non-classical logics, including modal and temporal logics.: temporal, deontic, and “possibil-
ity/necessity” properties are captured procedurally in FO-PDL (workflow), without introducing many-valued
truth into the fact core.

10.1. Examples of potential AGL applications in AI/IT around key FOL fragments

From the perspective of engineering practice in AI/IT, the most important FOL fragments are those that
combine: (a) natural modeling (rules, classes, relations), (b) decidability and controlled complexity, (¢) mature
implementations (Datalog/ASP engines, DL reasoners, SAT/SMT solvers).

In data technologies, CQ/UCQ/EPFO and Datalog (with recursion) dominate, while knowledge systems rely on
DL/OWL. When inference must generate new facts under constraints, the family TGDs/Datalog+ appears. When
exceptions and defaults are essential, NAF and ASP enter practice. For controlled negation and locality inrelations,
GNFO and the guardedness principle (GF) are particularly relevant. Finally, when systems touch arithmetic and
data structures at the level of code and constraints, SAT/SMT provides the computational backbone for verification
and analysis.

Table 2 summarizes these fragments in a practical view: what is restricted, what is gained, and where they
dominate in AI/IT. Note: FO-PDL (procedural modal logic) is discussed in this paper-as the procedural layer of
AGL in Subsection 1; the table below concerns FOL fragments dominating in KR/DB/ATP.

Engineering note: complexity regimes (data vs. combined). InTable2 we listinference complexity

in a compact form because AI/IT practice commonly uses two standard regimes:

+ Data complexity: treat the query/rules/ontology (TBox) as fixed and vary only the size of input data (ABox,
database instance). This is the dominant perspective-in database systems (e.g., for CQ) and analytics

pipelines.

+ Combined complexity: treat both data and the problem description (query, rules, TBox) as variable. This
typically yields higher bounds but better reflects costs when logic/ontologies/rules are generated or frequently
modified (e.g., for Description Logics and guarded logics).

Hence the complexity classes in Table 2 should be interpreted in the context of the dominant use cases of each

fragment.

10:2. Potential AGL applications related to non-classical predicate logics

For many years, various areas of potential applications of non-classical logics in AI/IT have been intensively

studied; in particular:
+ many-valued logics (e.g., Lukasiewicz, Post) — allowing more than two truth/assessment values,
+ modal logics — enabling necessity and possibility,
+ intermediate logics — modeling intermediate states and varying degrees of non-constructiveness,
+ paraconsistent logics — tolerating inconsistencies without trivialization,

+ temporal logics — describing time-dependent properties (e.g., disease progression),

23

+ deontic logics — describing obligations and prohibitions (norms, procedures, policies).

In decision—action systems, these classes matter because data and domain knowledge may be: (i) vague/graded,
(i) stochastically uncertain, (iii) incomplete or inconsistent, and (iv) embedded in time and, crucially, in proce-
dures. Formally, one can also generalize MT-FOGL constructions to predicate calculi with algebraic semantics,
opening broad perspectives for integration with non-classical logics. Interested readers are referred to the classical
monographs by H. Rasiowa and R. Sikorski [16] and H. Rasiowa [15].

In this paper, however, we adopt a classical core because it offers the most transparent engineering compromise

between expressivity and verifiability. In particular, a classical approach provides:

(1) mature meta-theoretic foundations (including decidability results for selected profiles),
(2) broad availability of automated reasoning and verification tools,

(3) asimple, auditable interpretation in the rule/procedure core,

(4) straightforward mapping to existing decision-support architectures.

Crucially, the key distinction that drives the AGL architecture is: uncertainty, gradedness, and probabilistic
aspects are not encoded as degrees of truth in the logical core. Instead, they are encapsulated at the Information
Granules level and exposed to the core only via threshold atoms. This keeps therule/procedure core within classical
two-valued first-order logic, profiled to GF/RGF, simplifying audit, stabilizing semantics, and enabling algorithmic
verification while retaining rich inputs (the Decidability Split). Temporal and deontic properties are handled as
workflow properties in FO-PDL, without introducing many-valued truth into the fact core.

11. Planned next steps for AGL (Next steps)

11.1. The key.value of AGL in mission-critical systems

We assume that AGL provides a formal core for constructing auditable, interpretable, and verifiable decision
mechanisms under vagueness:and uncertainty. In mission-critical contexts (clinical decision support, agent control,
autonomous systems), the key is not prediction alone but the ability to document and enforce procedural constraints:
from inputs, through/granulation, to a verifiable verdict. Below we indicate priority, directly measurable next steps.

11.2. Auditable procedural knowledge models as safety boundaries

+ Lead goal. Develop a methodology for building symbolic, auditable models of procedural knowledge (e.g.,
action rules, dynamic constraints, eligibility conditions) that can serve as a safety boundary (safety policy /
guardrail) for decision systems in complex operational environments.

+ Role of AGL. Use native granulation mechanisms to construct procedural granules (conditions—actions—
constraints) with a full audit trail: (i) input conditions, (ii) granule assignment, (iii) rules/procedures fired,

(iv) a formal justification of the verdict, and (v) identification of critical rules and boundary points (vagueness
thresholds).

24

+ Benchmark and metrics. Validate on domains requiring strict procedural compliance, in particular: (a)
NSCLC scenarios (e.g., histopathology-driven diagnostics, diagnostic—therapeutic pathways as a narrative
benchmark independent of guideline versions), and (b) simulations of autonomous agents/systems. Evaluate
using measurable indicators: coverage (fraction of cases for which AGL produces a procedural verdict),
conflict rate (number of detected rule conflicts and their classification), audit completeness (ability to
reconstruct the full decision path), and explainability fidelity (agreement between explanations and the
formal reasoning trace).

11.3. Online verification of LLM agents: symbolic control, correction, and escalation

+ Application goal. Integrate AGL as a verifiable control mechanism (verifier) for LLM-based agents operating
in mission-critical environments. The agent proposes an action (or recommendation), while AGL enforces

procedural safety constraints.

* Role of AGL in online control. AGL maps imprecise and uncertain agentoutputs.(e.g., proposed actions,
textual rationales, plan parameters) to linguistic/procedural granules, then verifies them in real time against
formal procedural rules (see Subsection 2). The verification outcome is always auditable: it includes the

set of active rules, their satisfaction conditions, and a minimal formal justification.

+ Reaction policy. Instead of binary accept/reject, consider three modes: (i) allow (decision admissible), (ii)
revise (AGL computes a correction to the nearest formally admissible decision), (iii) abstain & escalate (hold
and escalate to an expert). This is particularly important in clinical and control settings where borderline

decisions require controlled correction or escalation, not only hard rejection.

+ Boundary verification (uncertainty band). Prioritize cases in which an LLM agent generates decisions
within an uncertainty band (i.e., near admissibility boundaries described by granules and thresholds). The
goal is a mechanism that: (a) identifies the nature of borderline status, (b) generates an auditable correction
(revise) or a formal justification for escalation, and (c) minimizes unnecessary rejections while maintaining
safety.

+ Benchmark and metrics. ,Measure: allow/revise/escalate rates, correction effectiveness (fraction of inad-
missible cases.becoming admissible after revise), time-to-verdict (online cost), and audit latency (time to
produce the audit artifact).

11.4. Human-in-the-Loop (HITL): governance, triggers, and evidence artifacts

In AGL, Human-in-the-Loop (HITL) is not an informal “manual override”, but a controlled governance layer
that is explicitly triggered by verifiable signals produced by the GF/RGF-bounded verification core. Operationally,
HITL is the mechanism that closes the safety loop in mission-critical settings: it routes borderline, inconsistent,
incomplete, or out-of-profile situations to qualified experts and records a traceable justification for the final

operational decision (allow / revise / abstain&escalate).

25

Design principle (Decidability Split + finite evidence). The verifiable core never consumes raw
clinical data or high-dimensional model internals. Instead, it consumes only auditable finite evidence (threshold
atoms, bounded retrieved sets, and bounded proof objects). HITL uses this evidence to (i) validate/approve actions,
(i1) request additional evidence/provenance, or (iii) revise policy parameters (e.g., threshold signatures) under
explicit authorization and version control.

A concise proposal of HITL triggers and corresponding auditable artifacts (the operational governance interface
for AGL) is summarized in Table 3. It makes the escalation mechanism explicit: the core outputs verifiable reasons
for escalation, while HITL produces a governance-grade decision record linked to finite evidence. This supports
traceability, accountability, and the controlled evolution of thresholds, granules, and procedures.

11.5. Towards Interactive Granular Computing (IGrC)

+ Main Remark A key engineering signal is the discrepancy between expected and observed action outcomes:
the rule/procedure core may predict that a certain action should achieve a target state, while the operational
environment yields a different observation. IGrC provides a vocabulary for handling such mismatches
through physical semantics (linking symbols to measurable outcomes) and through c-granules (complex
granules) that encapsulate richer, composite evidence structures. Practically, this supports adaptive re-
sponses such as re-granulation, threshold recalibration, or revising the finite threshold signature Ry under

explicit governance.

Vision. Extend AGL toward Interactive Granular Computing (IGrC) [12, 17], enabling controlled, auditable
interaction of experts and environments with granulation processes and reasoning, in extended AGL variants
aligned with IGrC.

What is interactive (without losing auditability). Interaction is not ad-hoc “manual rule editing,” but
formally described operations on AGL artifacts: (i) updating granules (e.g., redefining linguistic concepts),

(i1) tuning thresholds/preference relations, (iii) prioritizing rules and resolving conflicts, (iv) introducing
fixes via versioned change requests: Every modification generates an audit trail (who, what, when, why,
with what effect).

+ Benefits for agent control. 1GrC enables real-time feedback: experts can adjust procedural granules and
verification parameters in a controlled way, increasing adaptability of hybrid agents and facilitating updates
of symbolic safety boundaries.as operational conditions change (e.g., procedure updates, new evidence, data
drift).

+ Metrics. Evaluate: time and number of iterations required to stabilize policy, impact on allow/revise/escalate
rates, and consistency measures for versioned rules (e.g., conflict reduction across versions and decreased

escalation without safety loss).

12. Conclusions and future work

In this paper, we have introduced AGL (Actionable Granular Logic), a formal framework designed to bridge
the gap between stochastic Al agents and the rigorous requirements of clinical decision-making. By implementing
a Decidability Split and utilizing the guarded profiles (GF/RGF), we have created a symbolic wrapper capable of
grounding Large Language Model outputs in verifiable procedural structures.

26

The unique positioning of AGL compared to existing knowledge representation frameworks is summarized in
Table 4. Unlike traditional logic fragments, AGL is specifically designed to handle the "hallucination" risks of
generative Al by acting as a formal verifier that ensures procedural compliance.

The practical utility of AGL is already being explored within the OnkoBot prototype, developed in collaboration
with NIO-PIB. Preliminary findings suggest that AGL does not merely act as a safety filter, but as a sophisticated
clinical advisor. For instance, it can suggest missing diagnostic prerequisites when an LLM proposes a treatment
plan prematurely.

Locality and Computational Budgeting. To address the theoretical complexity of the RGF profile, our
implementation relies on the principle of data locality enforced by guards. Furthermore, we employ a "computational
budgeting" strategy: if a verification task exceeds predefined time limits, the system triggers a mandatory/HITL
escalation. This ensures that safety is never compromised by hardware limitations.

Long-term outlook: solver progress and specialized computing. While AGLuis defined inde-
pendently of hardware, advances in solver technology and specialized computing (including emerging quantum-
computing paradigms) may expand the practical verification budget for richer granular interfaces. We therefore

treat hardware acceleration as a research direction rather than an assumption for near<term deployments.

IGrC outlook. Future work will leverage Interactive Granular Computing (IGrC) to manage discrepancies
between expected and observed action results through adaptive re-granulation and controlled updates of threshold

signatures, strengthening the link between formal decisions and their physical semantics in deployments.

13. Acknowledgements

The author thanks colleagues and clinical collaborators at NIO-PIB, UWM, and PAN for discussions that helped
clarify the engineering goals of auditable and verifiable decision—action systems. Any remaining errors are the

author’s responsibility.

14. References

References

[1]vAndréka, H.; Németi, 1., van Benthem, J. 1998. Modal Languages and Bounded Fragments of Predicate
Logic. Journal of Philosophical Logic, 27(3), 217-274.

[2] Bargiela, A., Pedrycz, W.2003. Granular Computing: An Introduction. Kluwer Academic Publishers.

[3] Bednarczyk, B., Kieronski, E. 2025. Guarded Fragments Meet Dynamic Logic: The Story of Regular Guards.
In Proceedings of the 22nd International Conference on Principles of Knowledge Representation and
Reasoning (KR 2025), 89-99.

[4] Briganti, A., et al. 2019. A novel tool to predict lymph node metastases in prostate cancer: the 2018 Briganti
nomogram. European Urology Oncology, 2(4), 420—426.

27

(8]

(]
[10]
[11]

[12]

(20]

(21]

Dabkowski, M., Wawrzuta, D., Zartok, E., Jankowski, A., Polkowski, L., Skowron, A., Artiemjew, P. 2025.
OnkoBot: Propozycja Karty Projektu. Projekt Zintegrowanego Systemu Al dla Narodowego Instytutu
Onkologii PIB. Internal project document (NIO-PIB and UWM), Warsaw/Olsztyn, version dated 5 October
2025. Available upon request from the authors (internal circulation).

European Association of Urology (EAU). 2025. EAU Guidelines. 2025 edition (presented at the EAU Annual
Congress, Madrid 2025), available via Uroweb.

Eagle, A. 2025. Probability and Inductive Logic. Cambridge University Press.

European Society for Medical Oncology (ESMO). 2025. ESMO Clinical Practice Guidelines: Lung and Chest

Tumours. Online guideline collection (accessed 2025).

Fagin, R., Halpern, J.Y ., Moses, Y., Vardi, M.Y. 1995. Reasoning About Knowledge. MIT Press.

Grédel, E. 1999. On the Restraining Power of Guards. The Journal of Symbolic Logic, 64(4), 1719-1742.
Harel, D., Kozen, D., Tiuryn, J. 2000. Dynamic Logic. MIT Press.

Jankowski, A. 2017. Interactive Granular Computations in Networks and Systems Engineering: A Practical

Perspective. Springer.
Pawlak, Z. 1982. Rough Sets. International Journal of Computer & Information Sciences, 11, 341-356.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan

Kaufmann.

Rasiowa, H. 1974. An Algebraic Approach to Non-Classical Logics. North-Holland Publishing Company,
Amsterdam.

Rasiowa, H., Sikorski, R. 1963. The Mathematics of Metamathematics. Polish Scientific Publishers (PWN),

Warsaw.

Skowron, A., Jankowski, A., Dutta, S. 2025. Interactive Granular Computing: Toward Computing Model for
Complex Intelligent Systems. In Proceedings of the 20th Conference on Computer Science and Intelligence
Systems (FedCSIS), Bolanowski, M., Ganzha, M., Maciaszek, L., Paprzycki, M., Sl@zak, D. (Eds.).

Williamson, J. 2017: Lectures on Inductive Logic. Oxford University Press.

Yao, Y.Y.2004. Granular Computing: Basic Issues and Possible Solutions. In Proceedings of the 5th Joint

Conference on Information Sciences.
Zadeh; L.A. 1965. Fuzzy Sets. Information and Control, 8(3), 338-353.

Zadeh, L.A. 1997. Toward a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning
and Fuzzy Logic. Fuzzy Sets and Systems, 90(2), 111-127.

15. Annex A. Acronyms and abbreviations

28

This annex summarizes acronyms and abbreviations used in the paper, with emphasis on clinical/medical and

IT/AI terms.
Table 1: Acronyms and abbreviations used in the paper.
Acronym Meaning Notes / context in this paper
ADT Androgen Deprivation Therapy Prostate cancer therapy abbreviation (medical).
AGL Actionable Granular Logic Proposed framework for verifiable specifications and
reasoning in decision—action systems.
Al Artificial Intelligence Umbrella term for learning and reasoning components.
AKB Algebraic Knowledge Base Rule/knowledge-base notion referenced as a verifiable core
style.
API Application Programming System integration interface (services, modules; subsystems).
Interface
AS Active Surveillance Prostate cancer management strategy (medical).
ASP Answer Set Programming Logic programming / nonmonotonic KR paradigm (KR/ATP
context).
ATP Automated Theorem Proving Proving in first-order and related logics; solver/ATP context.
CcQ Conjunctive Query Database/KR query form; central in DL/ontology and DB
theory.
CSp Constraint Satisfaction Problem Constraint-based reasoning/optimization; solver context.
CT Computed Tomography Imaging modality referenced in illustrative examples.
DB Database Datamanagement context for KR/queries; appears in
KR/DB/ATP comparisons.
DL Description Logic Family of decidable FOL fragments used in ontologies; OWL
foundations.
DSL Domain-Specific Language Expert-facing specification layer that compiles to a verifiable
core.
EAU European Association of Urology ~ Maintains regularly updated European urology guidelines
(e.g., prostate cancer).
EHR Electronic Health Record Clinical data source (raw data layer).
ESMO European Society for Medical Maintains regularly updated European oncology clinical
Oncology practice guidelines.
EU AT Act European Union Artificial Governance context for high-risk Al systems (if referenced).
Intelligence Act
FO-PDL First-Order Propositional Procedural layer with first-order state predicates; tests are
Dynamic Logic restricted to GF/RGF.
FOL First-Order Logic Classical predicate logic; the verifiable core is constrained by
decidable fragments.
GDPR General Data Protection EU data protection regulation (privacy/security context).
Regulation
GF Guarded Fragment Decidable fragment of FOL used as a verifiability profile.
GNS- Grounded Neuro-Symbolic Risk-governed architecture notion referenced as a broader
Align Alignment alignment/governance perspective.
HITL Human-in-the-Loop Workflow pattern where human experts

29

Acronym Meaning Notes / context in this paper
ILP Inductive Logic Programming Learning logical rules from examples; ML/KR bridge.
KB Knowledge Base Repository of formalized knowledge (rules, facts, ontologies).
KR Knowledge Representation General area: logics, ontologies, rule bases used to represent
domain knowledge.
LIS Laboratory Information System Laboratory data source (raw data layer).
LKB Lattice Knowledge Base Lattice-valued knowledge representation notion referenced for
graded evidence modeling.
LLM Large Language Model Class of generative models that may require verifiable
wrappers in mission-critical settings.
MDT Multidisciplinary Team Clinical decision forum (workflow escalation / review context).
ML Machine Learning Models in the computation layer (outside the verifiable core).
MRI Magnetic Resonance Imaging Imaging modality referenced in illustrative examples.
MT-FOGL Multi-Typed First-Order Granular ~ Conceptual computation layer for soft typing and graded
Logic (fuzzy/probabilistic) granules.
NIO-PIB National Oncology Institute, Clinical partner organization referenced in the OnkoBot
Poland (Panstwowy Instytut context.
Badawczy)
OnkoBot OnkoBot program/project Collaborative clinical+engineering program referenced as a
motivating‘deployment context.
(0N Overall Survival Standard oncology endpoint (medical).
PACS Picture Archiving and Imaging archive/source (raw data layer).
Communication System
PAN Polish Academy of Sciences The national academy of sciences in Poland, involved in
high-level research in logic and computer science.
PDL Propositional Dynamic Logic Modal/procedural logic for reasoning about programs
(actions).
PET Positron Emission Tomography Imaging modality (medical).
PET-CT PET combined with CT Combined imaging modality (medical).
PFS Progression-Free Survival Standard oncology endpoint (medical).
PoC Proof of Concept Prototype implementations validating feasibility of
subsystems/ideas.
PSA Prostate-Specific Antigen Example laboratory variable used to illustrate granules and
threshold atoms.
PSAD PSA Density PSA normalized by prostate volume; used as an example
feature/granule.
QALY Quality-Adjusted Life Year Health economics/clinical outcome metric (general medical
abbreviation).
QoL Quality of Life Clinical outcome category (medical).
RAG Retrieval-Augmented Generation Architecture pattern for grounding generation in retrieved
sources (if referenced).
RDF Resource Description Framework Graph-based KR data model; Semantic Web context.
RGF Regular Guarded Fragment Guarded fragment with regular/path-shaped guards for data
anchoring.
RP Radical Prostatectomy Surgical treatment abbreviation (medical).

31

Acronym Meaning Notes / context in this paper
RT Radiotherapy Common oncology treatment abbreviation (medical).
FitRP Fit for Radical Prostatectomy Schematic domain predicate used in Example 7.6: patient
eligible for RP (non-normative).
FitRT Fit for Radiotherapy Schematic domain predicate used in Example 7.6: patient
eligible for RT (non-normative).
FitADT Fit for Androgen Deprivation Schematic domain predicate used in Example 7.6: patient
Therapy eligible for ADT (non-normative).
SAT Boolean Satisfiability Solver setting for verification/decision procedures (KR/ATP
context).
SMT Satisfiability Modulo Theories Solver-based reasoning over background theories,
SPARQL SPARQL Protocol and RDF Query language for RDF graphs; KR/DB context.
Query Language
SQL Structured Query Language Relational database query language; DB.context.
ucQ Union of Conjunctive Queries DB/KR query form; used in ontology-mediated querying.
UWM University of Warmia and Mazury =~ Research/engineering partnet organization referenced in the
in Olsztyn OnkoBot context.
XAI Explainable Al Transparency/interpretability methods; complements
auditability and verification.
16. Figures and Tables
Table 2: Extended comparison of FOL fragments relevant in AI/IT (prac-
tical view; KR/DB/ATP context).
Fragment/ Restriction / idea Typical AI/IT applications + inference complexity
family
Horn logic At mostone positive Logic programming, expert/business rules, fact-based inference.
literal per clause; Complexity: propositional Horn inference is P-complete; first-order
if—then rules variants depend on further restrictions but are typically well
supported in practice.
Datalog No function symbols; Recursive queries, graph analytics, program analysis,

fixpoint over finite data

access-control policies. Complexity: data complexity PTIME;
combined complexity typically high (classically
EXPTIME-complete).

NAF / Datalog Negation as failure;

with negation stratified / well-founded

/ stable semantics

Rules with exceptions, defaults, exception-aware policies; analytics
with exceptions. Complexity: depends on the class; for stratified
programs often PTIME (data); full stable semantics moves toward
ASP.

Continued on the next page

33

Table 2: Continued

TBox/ABox; decidable
dialects

Fragment/ Restriction / idea Typical AI/IT applications + inference complexity

family

ASP Rules + Planning, scheduling, configuration, diagnosis, combinatorial
minimality/non- tasks. Complexity: without disjunction typically NP-complete
monotonicity; solutions | (answer-set existence); with disjunction usually higher in the
as answer sets polynomial hierarchy.

DL/ OWL Class/role constructors; | Ontologies, semantic web, classification, consistency, semantic

search. Complexity: dialect-dependent; typically EXPTIME and
above (for expressive dialects even N2EXPTIME).

CQ (conjunctive

J + A over atoms; no 1,

SQL core (WHERE), OMQ, query optimization, dataimappings.

queries) no Vv Complexity: evaluation (data) in PTIME; combined typically
NP-complete; CQ containment NP-complete.

UCQ (union of Disjunction of multiple | Data integration, rewriting, OMQ, views and mediators.

CQs) CQs (UNION) Complexity: as for CQ; evaluation (data) in PTIME; UCQ
containment typically NP-complete.

EPFO 3, A, V without -,V Positive querying, data transformations, rewriting to positive

(existential- normal forms. Complexity: close to CQ/UCQ in practice: data

positive FO) PTIME, combined grows (often around NP for typical classes).

TGDs / Rules with 3 in the QA under constraints, data integration, data exchange, data

Datalog+ head; chase; decidable completion, inference rules. Complexity: can be undecidable in

classes general; for major decidable classes typically very high (often

EXPTIME-2EXPTIME).

GF (Guarded Quantification only Design of decidable “‘data+rules” formalisms; query theory over

Fragment) under a guard (variable | relational structures. Complexity: GF satisfiability is classically

locality) 2EXPTIME-complete.

GNFO Negation allowed only Queries/rules with controlled negation, data validation,

(Guarded in guarded contexts exception-aware policies. Complexity: satisfiability typically

Negation FO) 2EXPTIME-complete (as a reference point).

FO? Only two variable Complexity control for binary relations; KB/DB patterns; links to

(two-variable names; reuse via DL. Complexity: FO? satisfiability (with equality) is classically

FO) quantification NEXPTIME-complete.

Bernays— Prenex 3*V* without Automated theorem proving (ATP), constraint solving in “almost

Schonfinkel / function symbols propositional” form, a target for grounding + SAT/SMT pipelines.

EPR Complexity: decidable; satisfiability is classically

NEXPTIME-complete.

Function-free
FOL

No functions (often
without =); facts and

relations

Relational/graph data, RDF as facts, rule-based querying over
databases. Complexity: absence of functions alone does not
guarantee decidability; complexity depends on the selected
fragment (e.g., EPR, GF, FO?, CQ/UCQ).

bitvectors, datatypes,
etc.

Propositional No quantifiers; Constraint solving, verification, constraint compilation, foundation
logic (SAT) structureless atoms of SMT. Complexity: SAT is NP-complete.

SMT (SAT + Theories: EUF, Formal verification, program analysis, symbolic execution,

FOL theories) LIA/LRA, arrays, constraint synthesis. Complexity: theory-dependent; often

NP-EXPTIME in theory, yet highly efficient in practice.

34

Surface layer :
(rules + AGL Grammar-grounded !
programs) translation i

®-constraints
(GF/RGF tests)

Decision policy
accept / ab-
stain / escalate

in base profile)

E 5 Ovtional: el Verification core !

o pRonai P L.l FO-PDLin

' composition || ! |

| (recommended) off | GF/RGF profile :

1 i !

I 1
1

Evidence artifacts

ples / execution traces)

(proofs / counterexam- -

Thresholds appear only as threshold atoms in rules
and tests; arithmetic is not part of the verifiable core.

Figure 1: An example of AGL architecture as a compilation—verification pipeline (Decidabil-
ity Split). Surface rules and AGL programs are translated into a GF/RGF-bounded FO-PDL
verification core. Graded premises (numerical, probabilistic, vague) are computed outside the
core as Information Granules and enter the core only via Boolean threshold atoms. Verification
results drive the operational decision policy (accept/abstain/escalate) and yield auditable evi-
dence artifacts (proofs, counterexamples, execution traces). For a step-by-step reading guide,

see Section 1.

35

Trigger (when
to escalate)

Core-level signal
(auditable)

HITL action / role Evidence artifact recorded

Borderline
admissibility
(“uncertainty
band”)

Conflicting rules

/inconsistent
evidence

Missing
provenance /
incomplete
evidence

Out-of-profile
formula /
undecidability
risk

High-impact
action class

Expected vs.
observed
mismatch
(closed-loop
control)

Verification outcome is
“near boundary” (e.g., a
threshold atom is within a
policy-defined margin; or
minimal counterexample
exists)

Detected conflict
(incompatible obligations,
mutually exclusive actions,
or inconsistent
preconditions)

Required predicate cannot
be evaluated as finite
evidence (e.g., missing
retrieval justification;
missing data quality flags)
Compiled verification
condition exceeds declared
GF/RGF profile or violates
the safe compilation
constraints

Action belongstoa
policy-defined
high-severity class (e.g.,
irreversible or legally
sensitive action)

Obsetved outcome violates
the-expected post-action
granule beyond tolerance
(IGrC-style signal)

Approve allow /
request revise /

confirm escalate
policy for this band

Classify conflict

type; select

priority/resolution

rule; request

additional evidence

if needed

Request additional
provenance; defer
decision; initiate

data-quality
workflow

Reject the artifact
for production use;

request

re-compilation into
the accepted profile
Mandatory expert

sign-off (dual

control if required)

Trigger adaptation:

re-granulation,
threshold
recalibration, or

workflow revision
under governance

Proof/counterexample trace +
boundary explanation + chosen
operational mode

Conflict certificate + resolution
decision + justification note

Missing-evidence report +
provenance request ticket

Profile-violation report +
compilation log +
accepted/rejected fragment tag

Sign-offrecord + role/identity +
time stamp + linked evidence

Drift/mismatch report +
adaptation decision + versioned
change request

Table 3: HITL triggers and auditable artifacts (operational governance interface for AGL).

36

Table 4: Comparison of AGL with selected reasoning frameworks (focus: clinical deployment).

Framework| Output Support for Decision—action Typical failure
verifiability / graded clinical integration mode / limitation
grounding notions

Pure LLM | Low: no native High (linguistic Low: generates Non-grounded
proof/trace; coverage), but text; confident outputs;
grounding depends | weak handling of | execution/policy prompt injection /
on prompting and | explicit thresholds, | requires external data
post-hoc checks uncertainty and orchestration contamination;

audit constraints non-auditable
reasoning chain

OWL /DL | Medium—High: Low: primarily Low: descriptive Coverage gaps and
model-theoretic crisp concepts; inference; modeling
semantics; graded notions action/workflow brittleness; high
consistency require extensions | typically external engineering cost;
checking; limited or external layers limited support for
to the modeled procedural
vocabulary/axioms workflows

Datalog /| High: explicit Low—Medium: Medium: supports | Boolean rigidity;

ASP rules; derivations mostly crisp; consequences and knowledge
can be traced; uncer- constraints; acquisition
deterministic (or tainty/vagueness workflow still bottleneck; scala-
stable-model) requires additional | usually external bility/maintenance
semantics formalisms (e.g., issues for large rule

weights, sets
probabilities, fuzzy
layers)

AGL (Pro- | High: verifiable High: graded High: explicit Up-front design of

posed) core (GF/RGF- premises handled | policy + workflow | granules/
bounded) + via information (FO-PDL) thresholds and
auditable granules and enabling accept/ governance
evidence artifacts; | threshold atoms; abstain/ escalate procedures;
uncertainty clinically tunable | and controlled integration
isolated as interfaces execution overhead;
granules requires

continuous
calibration

37

Content: FO-PDL-style programs, atomic actions a, tests ¢? based on threshold
atoms, modalities [rr] @, (T)¢.
Verification: bounded to the GF/RGF profile.

Status: decidable algorithmic verification with evidence artifacts.

T

Content: Information Granules (®¢, Pg, X'*"B) and threshold atoms.
Function: maps vague, uncertain, and numerical premises to Boolean predicates
admissible in the core.
Role: an explicit decidability boundary (Decidability Split).

A

Content: raw data (EHR, LIS/PACS), predictive models (ML/statistical), numerical
analyses and simulations.
Nature: continuous, high-dimensional, or heuristic computations.
Status: deliberately excluded from formal verification.

Figure 2: Layered epistemic structure of AGL and the decidability boundary. Formal verification
applies only to the logical-procedural core (GF/RGF profile), while the granule layer provides
an auditable interface that safely encapsulates complex computations outside the verifiable core.
For a step-by-step reading guide, see Section 1.

Table 5: A bridge from clinical data to.auditable threshold atoms. Thresholds r are illustra-
tive (non-normative); in AGL arithmetic remains in the granule computation layer, while the
rule/procedure core operates exclusively on threshold atoms.

Granule (type)

Meaning (clinical intuition)

Typical data source

Atom in the core

q)GPSA (u) (fuZZY)

Dipsap (1) (fuzzy)

Dy, pans (W) (fuzzy)

(DGAge-HR (w) (fuzzy)

q)GGleason27 (u) (Crisp)

PGCompliance (u) (prOb)

P GLN+ [u) (prob.)

(DGCoresPos (u)

“How elevated PSA 1s” after
normalization
“How: elevated PSAD is” (PSA

/ prostate volume)

“Strength of lesion suspicion in
MRI” (granular view)

“Age as arisk factor” (gradual)

“Whether Gleason meets the
threshold” (0/1)

“Probability of adherence”
(stochastic uncertainty)

“LN+ risk
model/nomogram”

(fuzzy/crisp)
38

from a

LIS / laboratory results (PSA)

LIS (PSA) + MRI/US (volume)

MRI report (PI-RADS)

EHR / registration

Histopathology / pathology re-
port

EHR + interview + mod-
els/surveys (local calibration)

EHR + histopath/biopsy + vali-
dated predictive model

“Share of positive biopsy cores

G®
PSA2r (u)

G? W
PSAD2r

GPrraDssr (W

GCDAge-HRzr (u)

(0]
G Gleason=7 (u)

GP

Compliancezr

P
G Compliance<r (u)

(u) or

P
G LN+2r (u)

/ burden”
CoresPossr

Histopatholo

gy / biopsy

report

G®

X'°%.B(u) (rough)

X*4B(u) (rough)

(W)

“Certainly satisfies concept X

under attributes B”

“Boundary zone: requires re-

fining attributes”

Attributes B as “observation
glasses”

Missingness / ambiguity in at-
tributes B

Xlow,B (u)

de,B (u)

39

