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A b s t r a c t

Large-scale deployment of AI in oncology is constrained less by standalone algorithmic 
performance than by system-level safety, accountability, interoperability, and regulation-aware 
governance. Grounded in approximately one year of practical pre-deployment work within the 
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OnkoBot project, this paper specifies a deployment- and governance-first reference model for 
integrated oncology AI platforms under the EU AI Act and the Medical Device Regulation (MDR).

The paper introduces Architecture for Medical AI Collaboration (AMAC), an implementation-
neutral, system-level envelope that enforces strict online/offline separation between clinical operation 
and model/knowledge learning and evolution, gate-controlled releases via a Clinical Governance 
Gateway (CGG) with explicit human-in-the-loop (HITL) escalation, and tamper-evident auditability 
across clinical, technical, and interoperability boundaries. AMAC is anchored by the Community 
of Collaborative Evolving Medical Assistants (CEMA), a supervised multi-agent computational 
core that performs coordinated clinical reasoning under bounded autonomy.

Concrete deliverables include: (i) a reference architecture outline with explicit responsibilities 
and auditable control points; (ii) a phase-gated deployment pathway (Preparation → Prototype → 
Pilot → Integration → AMAC operation) with required evidence packs, decision gates, and rollback/
suspension mechanisms; and (iii) enforceable socio-technical gate criteria, including Socio-Technical 
Readiness Levels (STRL), readiness metrics, and accountability mapping (RACI). The model is 
intentionally non-normative and does not encode clinical guidelines; it provides a minimal, auditable 
governance architecture designed to make large-scale clinical AI integration feasible, controllable, 
and regulation-compatible in complex oncology environments.

Introduction and Context

Large-scale deployment of AI in oncology increasingly depends not only on 
algorithmic accuracy, but on system-level safety, accountability, interoperability, 
and regulation-aware governance. In large oncology centers in EU, AI solutions 
are introduced into complex socio-technical environments that combine 
heterogeneous IT infrastructures, evolving clinical workflows, and strict regulatory 
constraints under the EU AI Act and the Medical Device Regulation (MDR). 
As a result, the central challenge is no longer how to design isolated AI models, 
but how to deploy, govern, and evolve integrated AI platforms in a controlled, 
auditable, and compliance-oriented manner.

This shift aligns with broader observations that the main obstacles to clinical 
AI adoption increasingly include organizational, workflow, governance, and 
safety constraints alongside purely technical performance considerations (Jiang 
et al. 2021).

Recent AI maturity models in healthcare highlight organizational readiness, 
governance dimensions, and compliance constraints (e.g., Filipovic et al. 2026). 
Building on this perspective, the present work shifts attention from assessing 
readiness to operationalizing governance in regulated clinical environments 
through an explicit reference architecture, decision gates, and auditable 
deployment pathways.

This paper proposes the Architecture for Medical AI Collaboration (AMAC) as 
a deployment- and governance-oriented reference model for such platforms. AMAC 
is a reference architecture paradigm that establishes a stable system- 
-level envelope for the coordinated deployment, clinical governance, 
and gate-controlled lifecycle evolution of collaborative, multi-agent 
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AI components within complex oncology environments. It is understood 
as a structured combination of (i) a reference system architecture outline, 
(ii) a reference system deployment pathway with explicit decision gates, and 
(iii) a set of auditable pre-requisites, roles, and responsibilities. The model is 
grounded in nearly one year of practical, pre-deployment experience from the 
OnkoBot project, including the development of preparatory mock-ups and proof-
of-concept prototypes for multiple subsystems. Importantly, these artifacts were 
created during a preparatory phase; no clinical studies or clinical deployments 
are reported in this Part I. Instead, the experience serves as an engineering 
and governance basis for generalizing architectural boundaries, deployment 
prerequisites, and operational responsibilities.

Accordingly, references to the EU AI Act, MDR, and related standards 
are used in a compliance-oriented sense: they motivate the design of controls, 
roles, gates, and auditable artifacts, but do not constitute authoritative legal 
interpretation or a claim of regulatory conformity. In practice, compliance 
remains a validation-driven, site-specific outcome supported – rather than 
guaranteed – by the proposed mechanisms.

This paper was motivated by and abstracted from an extensive internal 
project charter developed jointly by NIO-PIB and UWM within a formal Letter 
of Intent (Dąbkowski et al. 2025). The scope of this work is system-level  
deployment principles, safety-by-design mechanisms, and measurable 
operational indicators. Table 1 presents OnkoBot’s main functional subsystems 
and the current status of work on mock-ups and prototypes.

Position within the three-part series. This article constitutes Part I 
of a three-part series. Part I establishes the foundational scope, definitions, 
architectural outline, and deployment pathway that are a necessary precondition 
for the more technical and formal developments addressed in Part II and Part III. 
In particular, Part II focuses on formal and algorithmic mechanisms for trust, 
evaluation, and decision gating, while Part III addresses extended validation, 
monitoring, and evolution under real-world operational constraints. Without 
the reference layer introduced here, such developments would lack a stable 
system-level context.

Key Scientific and Engineering Contributions:
Core contribution (Part I): Part I operationalizes EU AI Act/MDR 

constraints as a minimal, auditable online/offline governance contract – formalized 
as the AMAC reference architecture – and as a phase-gated deployment pathway 
applicable to integrated oncology AI platforms.

AMAC as an Auditable Governance Reference Architecture: Formal 
specification of the Architecture for Medical AI Collaboration (AMAC) as an 
implementation-neutral, system-level governance reference architecture that 
explicitly defines online/offline boundaries, auditable control points, and release 
conditions for clinical AI outputs.
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CEMA as a Bounded Multi-Agent Clinical Engine: Formalization 
of the Community of Collaborative Evolving Medical Assistants (CEMA) as 
a supervised, multi-agent computational core in which specialized agents 
collaborate under explicitly bounded autonomy, with all agent outputs released 
to end users only after centralized validation and governance gating.

Integrated Supervisory and Validation Stack: Definition of a centralized 
supervisory triad – OnkoTrust (symbolic grounding and internal consistency), 
QUANT services (statistical plausibility, uncertainty, and contradiction 
assessment), and the Quality Audit Agent (QAA) (offline governance, drift 
detection, and post hoc analysis) – providing a layered validation mechanism 
that is independent of individual agent implementations.

Regulation-to-Control Translation: Operational translation of EU AI Act 
and MDR requirements into concrete, enforceable engineering controls, including 
strict runtime immutability via online/offline separation, tamper-evident, append-
only audit logging across system interactions, and mandatory human-in-the-loop 
(HITL) escalation paths bound to defined release and decision points.

Evidence-Driven, Phase-Gated Deployment Logic: Specification 
of a phase-gated deployment pathway (Preparation → Prototype → Pilot → 

Table 1
OnkoBot subsystem portfolio and proof-of-concept artifacts (illustrative, non-normative)

Subsystem Primary purpose Current PoC 
artifacts

Technical emphasis (interfaces / 
risk / governance)

OnkoBot.P Patient/caregiver 
informational support

P1–P3 mock-ups/
prototypes

Strict audience policies; safe tem-
plates; higher gating thresholds; 
provenance enforcement; HITL for 
high-risk queries.

OnkoBot.L Clinician decision-
support and workflow 
acceleration

L1–L4 mock-ups/
prototypes

High-risk; interoperability depend-
ence; OnkoTrust gating and HITL- 
-first operation; traceable evidence.

OnkoBot.E Education and 
adoption enablement

E1 prototypes Sandbox and curriculum; controlled 
simulations; produces evaluation 
artifacts; supports safe usage 
patterns.

OnkoBot.B R&D backbone for AI/
KR methods

B1–B3 concept/
prototype work

GraphRAG/KR pipelines; method 
evaluation; quantitative models; 
supports validated modules.

OnkoBot.K Care coordination 
workflow support

Concept and early 
design work

Workflow integration; conservative 
policy-driven behavior due to 
operational impact.

OnkoBot.A Audit, quality, and 
safety control

A1–A6 mock-ups/
prototypes

Operational home of OnkoTrust: 
execution/auditing, regression tests, 
monitoring, incident workflows.

OnkoBot.D Pathway analytics and 
organizational KPIs

Early planning 
work

Data pipelines and governance; 
aggregated analytics with strict 
interpretation constraints.
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Integration → AMAC operation) in which progression is conditioned on predefined 
decision gates, mandatory evidence packs, and explicit rollback or suspension 
criteria, preventing uncontrolled transitions into higher-risk operational modes.

Socio-Technical Readiness as a Gate Condition: Introduction of Socio-
Technical Readiness Levels (STRL) as measurable, enforceable gate-passage 
criteria that bind organizational preparedness, clinical workflow alignment, 
and governance maturity directly to deployment decisions, rather than treating 
readiness as informal background context.

Empirical Calibration from Pre-Deployment Engineering Practice: 
Calibration of auditable prerequisites, gate definitions, and evidence-pack struc-
tures using artifacts derived from approximately one year of pre-deployment 
engineering work within the OnkoBot project, including mock-ups and proof-
of-concept systems, without making clinical or regulatory performance claims.

Clinical Governance Gateway (CGG) as a Release Authority: 
Specification of a dedicated Clinical Governance Gateway (CGG) that binds 
software releases, agent updates, and knowledge changes to documented clinical 
approval, safety verification, and accountability assignment, thereby separating 
technical evolution from clinical authorization.

Paper roadmap. Section (System Assumptions and Requirements for Large 
Oncology Centers) introduces system assumptions and requirements characteristic 
of large oncology centers. Section (Socio-Technical Readiness as a Deployment 
Prerequisite) addresses socio-technical challenges, organizational readiness, 
and human-in-the-loop aspects. Sections (Case-Guided Instantiation: OnkoBot) 
and (OnkoBot Reference Architecture Outline: The AMAC Framework) present 
the OnkoBot case-guided instantiation and the resulting reference architecture 
outline. Sections (Transferability to Smaller Centers) and (Reference Deployment 
Pathway) discuss transferability considerations and the reference deployment 
pathway. Finally, Sections (Discussion and Limitations)–(Further Research 
Directions) summarize limitations, conclusions with pointers to Parts II and III, 
and directions for further research.

For an alphabetically ordered list of abbreviations, see Table 2.

Table 2
List of abbreviations used in this interdisciplinary paper  

(informatics, clinical oncology, governance, and regulation)

Abbreviation Meaning / explanation
1 2

AI Artificial Intelligence
AI Act EU Artificial Intelligence Act: Regulation (EU) 2024/1689
AMAC Architecture for Medical AI Collaboration (AMAC) is a reference architecture 

paradigm that establishes a stable system-level envelope for the coordinated 
deployment, clinical governance, and gate-controlled lifecycle evolution 
of interoperable, collaborative, multi-agent AI components within complex 
oncology environments
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1 2
CEMA Community of Collaborative Evolving Medical Assistants (intelligent multi-

agent collective forming the clinical computational core of AMAC in clinical 
decision-support environments)

CER Clinical Evaluation Report (MDR documentation artifact)
CGG Clinical Governance Gateway (CGG) is a clinical governance function and 

architectural checkpoint that enforces evidence-based review and gate- 
-controlled approval of AI component updates and data/knowledge releases. 
CGG enables auditable, criteria-driven release decisions based on predefined 
governance controls and verifiable evidence. If the available evidence is 
insufficient, inconclusive, or conflicting, CGG mandates a formal HITL 
escalation and grants authorization only upon documented clinical governance 
approval.

DICOM / 
DICOMweb

Digital Imaging and Communications in Medicine (imaging standard and web 
access)

EU European Union
FHIR Fast Healthcare Interoperability Resources (HL7 interoperability standard)
HIMSS Healthcare Information and Management Systems Society. 
GraphRAG Graph Retrieval-Augmented Generation (RAG with graph-structured retrieval 

and provenance)
HIS Hospital Information System
HITL Human-in-the-Loop (formal human oversight workflow with auditable artifacts)
HL7 Health Level Seven (healthcare interoperability standards organization)
IAS Identity, Access & Security: An identity-bound access control and security 

framework ensuring least privilege, accountability, and continuous auditability 
across the AI/IT ecosystem.

ID Identifier (generic; e.g., patient, encounter, evidence)
IEC International Electrotechnical Commission (standards body)
IEC 62304 Medical device software lifecycle processes standard
LIS Laboratory Information System
LLM Large Language Model
mCODE minimal Common Oncology Data Elements (oncology data model on FHIR)
MDR Medical Device Regulation: Regulation (EU) 2017/745
NIO-PIB Maria Skłodowska-Curie National Research Institute of Oncology (Poland)
OnkoTrust Trust layer concept (risk-aware gating, contradiction/grounding checks, 

escalation)
PACS Picture Archiving and Communication System (imaging storage and retrieval)
PoC Proof of Concept
QUANT Quantitative/statistical consistency-check services (Quantitative & Statistical 

Gate)
RACI Responsible, Accountable, Consulted, Informed (role assignment matrix)
RAG Retrieval-Augmented Generation
RIS Radiology Information System
RIS/PACS Combined reference to radiology workflow system and imaging archive
RMF Risk Management File (ISO 14971 documentation artifact)

cont. Table 2
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1 2
SaMD Software as a Medical Device (regulatory concept)
SBOM Software Bill of Materials (software supply-chain documentation artifact)
SecOps Security & Operations (technical enforcement function for security controls)
SIB Secure Integration Bus: A secure integration layer mediating data and control 

flows across system components through policy-based routing, secure transport, 
and tamper-evident audit logging.

STRL Socio-Technical Readiness Levels (maturity scale used for deployment gating)
UWM University of Warmia and Mazury in Olsztyn (Poland)
XAI Explainable AI (explainability methods / requirements)

Related Work

Research on artificial intelligence in healthcare spans a broad spectrum, 
ranging from algorithmic performance and explainability to ethical, legal, and 
organizational aspects of deployment. Early and influential surveys emphasize 
the importance of transparency, interpretability, and responsibility in AI systems, 
particularly in high-stakes domains such as medicine (Barredo Arrieta et al. 
2020, Holzinger et al. 2019). These works establish conceptual foundations for 
trustworthy AI, yet largely remain at the level of principles, taxonomies, and 
design desiderata rather than operational deployment architectures.

A complementary stream of literature focuses on the ethical, legal, and liability 
implications of AI-assisted clinical decision-making. Studies by Gerke et al. 
(2020) and Price et al. (2019) highlight unresolved questions of responsibility, 
accountability, and risk allocation between clinicians, institutions, and technology 
providers. From a regulatory perspective, these concerns are formalized through 
binding legal frameworks such as the Medical Device Regulation (MDR) and 
the Artificial Intelligence Act, which impose strict requirements on lifecycle 
management, human oversight, traceability, and post-market surveillance for 
high-risk medical AI systems (European Parliament and Council 2017, 2024).

Another relevant body of work addresses interoperability and system 
integration in healthcare IT ecosystems. Standards such as HL7 FHIR and 
SMART on FHIR provide widely adopted mechanisms for secure data exchange 
and modular application integration (Bender, Sartipi 2013, Mandel et al. 2016). 
While these standards are indispensable enablers of scalable AI integration, 
they do not by themselves define governance mechanisms, clinical decision gates, 
or accountability structures required for safe AI deployment.

More recently, maturity models for AI adoption in healthcare have been 
proposed to assess organizational readiness and critical success factors. 
Notably, Filipovic et al. (2026) identify core dimensions such as strategy, 

cont. Table 2
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data, governance, and skills as prerequisites for effective AI use in healthcare 
institutions. These models offer valuable high-level assessment frameworks; 
however, they stop short of specifying how AI components should be operationally 
governed, validated, and released within regulated clinical environments.

Parallel advances in multi-agent and collaborative AI systems demonstrate 
the growing technical feasibility of coordinated, evolving AI ecosystems (Chang 
2025, Li et al. 2024, Air 2024). While these works illustrate the potential 
of collective intelligence and agent-based architecture, they typically assume 
research or experimental settings and do not address the regulatory, clinical 
governance, and risk-management constraints characteristic of large oncology 
centers.

Finally, granular computing and interactive computation frameworks provide 
a theoretical basis for structuring complex decision processes, uncertainty 
management, and explainable abstractions in intelligent systems (Pedrycz 
et al. 2008, Polkowski 2009, Jankowski 2017, Skowron et al. 2025). These 
foundations inform the design of auditable, threshold-based decision mechanisms 
but require explicit architectural embedding to support real-world clinical 
deployment.

In contrast to maturity assessment frameworks and principle-driven 
governance models, the present work focuses on a deployment-oriented reference 
architecture for medical AI. By integrating regulatory constraints, clinical 
governance checkpoints, gate-controlled lifecycle evolution, and auditable 
accountability mechanisms, the proposed approach aims to bridge the gap between 
conceptual readiness models and the practical realities of deploying AI systems 
in high-risk oncology environments.

System Assumptions and Requirements  
for Large Oncology Centers

This section specifies the system assumptions that underlie the proposed 
reference model. These assumptions are not presented as descriptive background, 
but as explicit deployment prerequisites that must be verified before advancing 
through successive stages of the deployment pathway introduced later in this 
paper. Failure to satisfy non-negotiable assumptions blocks progression beyond 
preparatory or pilot phases and requires corrective organizational or technical 
action.

Scope and hierarchy of assumptions. The reference model is intentionally 
scoped to large oncology centers, characterized by complex multi-specialty clinical 
workflows, heterogeneous IT infrastructures, and sustained regulatory oversight. 
Accordingly, assumptions are organized into two categories: (i) non-negotiable 
prerequisites, required for any compliance-oriented deployment of an integrated 
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AI platform, and (ii) context-dependent assumptions, which may be adapted 
based on institutional scale, maturity, and resource constraints. This distinction 
enables later transferability analysis without weakening baseline safety and 
governance requirements.

Non-negotiable organizational and governance prerequisites. 
At an organizational level, deployment assumes the existence of clearly assigned 
ownership for AI governance, including decision authority over model updates, 
deployment gates, and escalation procedures. Explicit roles for clinical experts, 
IT personnel, and compliance stakeholders must be defined, together with auditable 
processes for approval, documentation, and accountability. Human-in-the-loop 
(HITL) oversight is treated as a mandatory capability rather than an optional 
safeguard: qualified personnel must be available to review, override, or suspend 
AI-supported outputs whenever predefined conditions are met or exceeded.

In the reference setting, the oncology center is treated as the primary deployer 
of the integrated platform, while provider responsibilities for specific modules 
(e.g., AI services, monitoring, or integration components) may be assumed by 
an external vendor or the hospital IT unit, depending on the site’s governance 
and procurement model. This role split is intentionally left configurable, as it 
varies across deployments and determines the allocation of accountability and 
documentation duties.

Technical and interoperability requirements. From a system perspective, 
the reference model assumes a baseline level of IT interoperability and operational 
maturity. This includes stable interfaces for data exchange, explicit separation 
of offline training and evaluation environments from online clinical operation, 
version-controlled deployment and rollback mechanisms, and centralized logging 
that supports traceability and auditability. These requirements do not prescribe 
specific technologies, but define functional conditions that must be satisfied for 
safe integration into clinical workflows.

Interoperability Requirements and Operational Continuity. 
Interoperability is a first-order feasibility determinant for integrated AI 
systems in large oncology centers. In practice, such systems must interface with 
hospital information systems and electronic documentation modules (HIS/EDM), 
radiology information systems and imaging archives (RIS/PACS), laboratory  
information systems (LIS), and a variety of specialized oncology subsystems. These 
environments are typically heterogeneous and partially legacy. Consequently, 
interoperability should not be treated as an incidental integration task, but 
rather as a dedicated subsystem with explicit security boundaries, reliability 
mechanisms, and governance.

As a pragmatic baseline in typical European hospital IT landscapes, the 
interoperability layer often needs to handle HL7 v2/v3, FHIR, and DICOM/
DICOMweb; the reference model remains implementation-neutral and does 
not mandate specific technologies.
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Core functions include protocol translation, schema validation, policy 
enforcement (authentication, authorization, consent management, audit logging), 
and quality gates that prevent malformed or semantically inconsistent data from 
propagating into AI-supported workflows. Operational reliability mechanisms – 
such as bounded retries, dead-letter queues, and reconciliation jobs – are required 
to ensure predictable behavior under load and failure conditions.

Operational continuity further requires that the integrated AI platform 
degrades gracefully under partial failures. Temporary unavailability of upstream 
systems, delayed data feeds, or subsystem outages should not result in silent 
failure or undefined system behavior. End-to-end observability, including 
correlation identifiers across system boundaries, is assumed to be available to 
support auditing, incident response, and post hoc analysis of AI-assisted decisions.

Interoperability failure modes and mitigations are captured as auditable 
artifacts within the same gate-based deployment and release governance used 
across the platform (e.g., interface contracts, data-quality checks, incident 
runbooks, and integration test evidence). The resulting evidence packs consumed 
by governance review minimally include traceable log excerpts with correlation 
IDs (including SIB logs), integration and regression test reports, incident 
summaries (if any), and release-candidate configuration identifiers (version/
hash) to enable reproducible audits.

Oncology-Specific Interoperability Profiles. Beyond generic HL7/
FHIR and DICOM interfaces, oncology workflows benefit from domain-specific 
interoperability profiles that standardize data elements and clinical semantics 
across institutions. In particular, the mCODE initiative provides a structured 
oncology data model built on FHIR, enabling consistent representation of cancer 
diagnoses, staging, treatments, and outcomes. At the European level, the HL7 
Europe FHIR Common Implementation Guide offers guidance on representing 
oncology concepts within FHIR-based exchanges.

The reference model assumes compatibility with such oncology-specific profiles 
where available. While local adaptations and extensions are often unavoidable, 
alignment with shared profiles improves portability, reduces integration friction, 
and supports secondary uses such as quality assessment and cross-institutional 
evaluation. 

Regulatory framing as system requirements. Regulatory obligations 
under the EU AI Act and MDR are translated here into system-level requirements 
rather than legal claims. In particular, requirements for traceability motivate 
comprehensive logging and documentation artifacts; requirements for human 
oversight motivate explicit HITL roles and escalation paths; and lifecycle 
obligations motivate gated deployment, controlled change management, and 
post-deployment monitoring. The reference model is designed to support such 
compliance-oriented deployment, while recognizing that formal conformity 
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assessment and clinical validation remain site-specific activities. Table 3 presents 
selected standards and regulations relevant to the proposed reference model.

Assumptions and deployment pathway integration. All assumptions 
introduced in this section are explicitly checked and enforced through decision 
gates in the reference deployment pathway presented in Section (Reference 
Deployment Pathway). Their role is therefore operational rather than descriptive: 
they determine whether a system may progress from preparatory work to pilot 
studies, integration, and compliance-oriented operation, or whether remediation 
is required before further deployment steps are permitted.

These assumptions are regulation-informed but implementation-neutral: they 
translate EU AI Act and MDR obligations – and the engineering expectations 
reflected in relevant ISO standards – into system-level prerequisites without 
prescribing particular technologies or organizational realizations. Detailed 
article-level mappings to the EU AI Act, MDR, and specific ISO clauses are 

Table 3
Non-normative reference mapping of selected standards  

and regulations relevant to the proposed reference model

Standard / 
Regulation Primary focus Relevance to Part I

EU AI Act Governance of high-risk AI 
systems, role separation 
(provider/deployer), and 
documentation and oversight 
obligations

Provides the governance framing for 
deployment-first design and accountability 
assumptions, without legal interpretation 
or conformity claims.

MDR (Regulation 
(EU) 2017/745)

Regulatory framework for 
medical devices and software 
as a medical device (SaMD)

Motivates lifecycle discipline, risk 
awareness, and documentation readiness 
for AI-supported medical software, without 
asserting device classification or compliance.

ISO 14971 Risk management for medi-
cal devices

Informs the identification of clinical risk 
hotspots, hazard analysis, and the linkage 
between risks and mitigation artifacts in the 
reference model.

IEC 62304 Software lifecycle processes 
for medical device software

Guides assumptions regarding controlled 
evolution, versioning, maintenance, and 
change management of AI assistants.

ISO 13485 Quality management 
systems for medical device 
organizations

Provides organizational context for roles, 
responsibilities, and documented processes, 
without implying certification or QMS 
implementation.

ISO 27001 / ISO 
27799

Information security 
management and protection 
of health information

Supports assumptions related to secure 
interoperability, auditability, and operational 
continuity in integrated AI platforms.

GDPR 
(Regulation (EU) 
2016/679)

Personal data protection, 
lawful processing, and data 
subject rights

Constrains data governance following 
GDPR, access control, consent/authorization 
practices, and auditability for patient-related 
data flows in CGG-enabled systems.
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intentionally outside the scope of Part I and are addressed in later parts 
and supporting materials, once the foundational reference architecture and 
deployment pathway introduced here are fixed.

Socio-Technical Readiness  
as a Deployment Prerequisite

The deployment of AI systems in large-scale oncology centers is fundamentally 
a socio-technical transformation. Beyond algorithmic performance, the success 
and safety of the clinical mission depend on the alignment of human roles, 
organizational culture, and technical governance. This section operationalizes 
“organizational readiness” through quantifiable metrics and structured maturity 
levels, treating these factors as enforceable deployment prerequisites rather 
than contextual background.

The Centrality of Human Factors  
and Common Institutional Barriers

Even when AI models demonstrate high technical performance, systemic 
failures frequently arise from misaligned roles, opaque governance, or inadequate 
organizational readiness. In the context of Central and Eastern European 
(CEE) healthcare institutions, specific socio-technical barriers are particularly 
pronounced and can critically impede AI initiatives if not proactively managed:

•	 Lack of Executive Sponsorship: Insufficient “anchoring” of the project 
within the organization’s top management, leading to resource constraints and 
strategic misalignment.

•	 Motivation and Incentive Gaps: Low engagement among clinical staff 
due to misaligned incentives, perceived threat to professional autonomy, or lack 
of visible benefit.

•	 Communication and Silo Breakdowns: Poor information flow and 
collaboration barriers between clinical, technical, administrative, and compliance 
departments.

•	 Competency and Digital Literacy Gaps: A misalignment between the 
required skills for AI-augmented workflows and the current capabilities of the 
workforce.

To navigate these complexities, this reference model adopts principles  
of socio-technical systems engineering. We refer to the Basic Principles of CSE 
Project Development (BPCD) as a non-normative but practical framework for 
governing the substantial organizational change inherent in AI-driven clinical 
transformation (Jankowski 2017).
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Socio-Technical Readiness Levels (STRL)

To provide a structured, auditable path for organizational preparation, we 
introduce Socio-Technical Readiness Levels (STRL), inspired by established 
organizational maturity models in the CMU/SEI tradition. This scale ensures 
that the organizational environment matures in parallel with the technical 
infrastructure. Progress through the subsequent deployment pathway (Section 
(Reference Deployment Pathway)) is conditional upon reaching specific STRL 
milestones.

•	 STRL 1 (Initial): AI awareness exists at an individual level, but roles, 
responsibilities, and decision authority are ad-hoc and undocumented. No formal 
governance structure is in place.

•	 STRL 2 (Defined): STRL 1 + Governance ownership is formally assigned 
(e.g., a designated AI Steering Committee). Basic AI literacy and SaMD safety 
training programs for clinical staff are defined and implemented.

•	 STRL 3 (Managed): STRL 2 + Formal Human-in-the-Loop (HITL) roles 
and escalation paths are documented and verified through drills, establishing 
operational readiness without yet being exercised in live clinical decision- 
-making. Interoperability protocols with key hospital systems (HIS/RIS) are 
established and operationally tested, providing an ontological basis for 
a shared semantic and operational context across clinical departments, 
supporting consistent human communication as well as machine-to- 
-system integration.

•	 STRL 4 (Predictable): STRL 3 + Processes for monitoring and mitigating 
automation bias are active. Key Performance Indicators (KPIs) for AI safety, 
clinician burden, and system performance are regularly collected and reviewed 
by governance bodies (e.g., monthly), with documented thresholds and action 
triggers.

•	 STRL 5 (Optimizing): STRL 4 + The feedback loop is closed. Insights 
derived from CGG-controlled governance decisions, post-deployment monitoring 
evidence, and structured end-user feedback directly and systematically inform 
the iterative evolution of the platform, its workflows, and training programs.

Quantitative Readiness Metrics  
and the AI Ambassador Program

To support the EU AI Act requirements for human oversight (Art. 14) and 
institutional accountability, the reference model mandates the tracking of specific, 
quantifiable Socio-Technical KPIs. These metrics must be verified at each decision 
gate in the deployment pathway. Table 4 provides examples of such mandatory 
indicators. To actively mitigate the institutional barriers identified in Section 
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(The Centrality of Human Factors and Common Institutional Barriers), the model 
institutionalizes an AI Ambassador Program. This program designates 
respected clinical champions and operational facilitators who:

•	 Bridge communication between technical teams and clinical units.
•	 Lead peer-to-peer training and change management efforts.
•	 Gather and channel frontline feedback to the governance committee.
•	 Model safe and effective use of the AI system in daily practice.

Table 4
Exemplary Socio-Technical Readiness Metrics for Deployment Gate Review

Metric ID Indicator Threshold for 
Gate Passage Rationale & Measurement Method

M-SOC-01 Stakeholder
Alignment Index

> 85% positive 
engagement

Survey of clinical department heads 
regarding project goals, governance, 
and expected impact.

M-SOC-02 AI Literacy & Safety 
Certification

100% completion 
for HITL roles

Verifiable completion of mandatory 
training on SaMD fundamentals, 
limitations, and safety procedures.

M-SOC-03 Mean Escalation 
Response Time

< 5 minutes 
for high-risk 
triggers

Measured from system alert to clinician 
acknowledgment in the HITL interface 
during readiness drills.

M-SOC-04 Automation Bias 
Factor

< 0.15 (15% 
uncritical 
acceptance)

Rate of uncritical acceptance of seeded, 
simulated AI errors in controlled testing 
scenarios with clinical staff.

M-SOC-05 Audit Trail 
Completeness

100% of pilot 
interactions

Percentage of AI-assisted decisions in the 
pilot phase with a complete, retrievable 
log of input, context, evidence, and 
outcome.

Operationalizing Human-in-the-Loop (HITL) Oversight

Human oversight is operationalized not as a passive fail-safe but as an 
active, integral component of the workflow with defined triggers and artifacts. 
In clinical oncology, such HITL patterns are widely recognized as necessary 
to manage uncertainty, workflow risk, and safe escalation in real-world settings 
(Yang et al., 2022). The system architecture (see Section (OnkoBot Reference 
Architecture Outline: The AMAC Framework)) is designed to enforce HITL 
interception based on explicit Escalation Triggers. Table 5 defines these triggers 
and the corresponding auditable artifacts that must be generated.

The effectiveness of these triggers and the vigilance of HITL personnel are 
validated through periodic “Red Teaming” exercises, where synthetic failures 
and edge cases are introduced into the test system.
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Table 5
Operational Governance Interface:  

HITL Escalation Triggers and Auditable Artifacts

Trigger 
Category Condition for Human Escalation Auditable Artifact (Log)

Technical 
Uncertainty

Model confidence score below 
established threshold τ.

Evidence snapshot + raw model output.

Evidence 
Conflict

Discrepancy between RAG-retrieved 
clinical guidelines and LLM synthesis.

Conflict report + source document 
citations.

Safety/Risk 
Boundary

Detection of red-flag clinical indicators 
(e.g., life-threatening toxicity).

Full trace of safety-constraint 
violation.

Contestability Manual override or ‚disagree’ flag 
raised by the clinician.

Rationale for override + clinician ID

Ambiguity Input data (e.g., pathology report) is 
corrupted or incomplete.

Data quality flag + missing field report

Accountability Mapping: The RACI Framework

Sustainable deployment requires unambiguous accountability. For every  
AI-supported workflow and output, a clear human agent must be accountable 
for the final clinical decision. This reference model adopts a RACI matrix 
(Responsible, Accountable, Consulted, Informed) to map accountability across 
all roles involved in AI-assisted care.

Critically, for any advisory output generated by the AMAC system, the 
Accountable (A) role is always assigned to a qualified clinical professional 
(e.g., the treating oncologist). The AI system and its operators may be 
Responsible (R) for generating the advice, but never Accountable (A) for 
the clinical outcome. This explicit mapping is a non-negotiable prerequisite for 
advancing from the Pilot to the Integration phase in the deployment pathway.

Integration with Architecture and Deployment Pathway

The socio-technical mechanisms specified here – STRL, metrics, Ambassador 
Program, HITL triggers, and RACI mapping – are not standalone recommen-
dations. They are explicitly instantiated within the reference architecture 
(e.g., HITL triggers are enforced by OnkoTrust and QUANT Services) and are  
enforced as verification criteria at the decision gates of the reference deployment 
pathway (Section (Reference Deployment Pathway)). This integration ensures 
that organizational readiness is assessed with the same rigor as technical read-
iness before any progression to more advanced stages of clinical deployment.
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Case-Guided Instantiation: OnkoBot

This section presents OnkoBot as a case-guided instantiation used to 
inform the proposed reference model. The purpose of this case is not to report 
a clinical deployment or clinical study, but to ground system-level design decisions 
in practical, pre-deployment experience. All OnkoBot elements discussed here 
correspond to preparatory mock-ups and proof-of-concept (PoC) prototypes 
developed during a preparatory phase; no clinical studies or clinical deployments 
are reported in this Part I. For orientation, we summarize the OnkoBot 
subsystem portfolio and representative mock-ups/prototypes developed across 
the program (Table 1). The table is illustrative and non-normative: it documents 
the decomposition used for engineering traceability and governance planning, 
without implying clinical readiness, regulatory classification, or deployment status.

Methodological role of the case. The case-guided approach adopted 
here serves to extract system-level regularities relevant to deployment and 
governance, rather than to generalize clinical outcomes. In particular, the 
OnkoBot experience is used to identify architectural boundaries, role allocation, 
auditable artifacts, and decision gates that recur across subsystems and use 
cases. This methodology is appropriate for constructing a reference model whose 
primary aim is to support controlled deployment under regulatory constraints, 
rather than to validate medical effectiveness.

Scope of preparatory work. Over nearly one year of preparatory work, 
multiple OnkoBot subsystems were explored through mock-ups and PoC 
prototypes, as summarized in Table 1. These artifacts were intentionally 
developed in a pre-deployment context to probe feasibility, governance 
implications, and integration challenges. They do not constitute medical devices, 
nor do they provide evidence of clinical effectiveness. Their role in this paper is 
illustrative and non-normative: they function as engineering probes that expose 
constraints and dependencies relevant to system-level design.

Extracted system-level lessons. The preparatory OnkoBot work yielded 
a set of recurring design insights that directly inform the reference model 
developed in this paper, including:

•	 the necessity of clear separation between offline training and evaluation 
environments and online clinical operation;

•	 the central role of auditable logging, documentation, and traceability across 
subsystem boundaries;

•	 the need for explicit human-in-the-loop (HITL) gating and escalation 
mechanisms to manage uncertainty and operational risk;

•	 the importance of clearly assigned decision authority for deployment, 
rollback, and exception handling;

•	 the operational relevance of continuous evaluation and monitoring activities 
beyond initial deployment.
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OnkoBot as a narrative benchmark. Within this work, OnkoBot is 
treated as a narrative benchmark and design probe rather than as a reference 
implementation. Its value lies in anchoring abstract governance and deployment 
concepts in concrete preparatory experience, thereby reducing ambiguity when 
generalizing toward a reference architecture and deployment pathway applicable 
to large oncology centers.

Transition to the reference architecture. The observations and lessons 
summarized in this section directly inform the reference architecture outline 
introduced in Section (OnkoBot Reference Architecture Outline: The AMAC 
Framework). In the next section, these experience-grounded insights are 
consolidated into a structured architectural view that abstracts from individual 
prototypes while preserving the system-level constraints identified during the 
OnkoBot preparatory phase.

OnkoBot Reference Architecture Outline:  
The AMAC Framework

This section presents the core architectural contribution of this work: the 
Architecture for Medical AI Collaboration (AMAC) reference architecture. 
AMAC is a multi-agent, governance-first framework designed to enable the 
safe, compliant deployment of integrated AI platforms in oncology. Its design 
is explicitly shaped by two constraints: (1) lessons from the OnkoBot preparatory 
phase, and (2) the non-negotiable requirements of the EU AI Act and MDR for 
safety, predictability, and auditability.

OnkoBot Architecture visualization (case-guided illustration). 
To provide a comprehensive top-level overview, the OnkoBot architecture 
is presented through two complementary perspectives:

•	 User-Oriented Architecture – focuses on the functional aspects and 
how the system meets the needs of patients and clinicians. This perspective 
is analyzed from two distinct angles:

–	 User Journeys: Mapping the end-to-end experience and interaction 
paths for both patients and medical professionals, as illustrated 
in Figure 1. The hospital IT/AI user-oriented architecture places 
a strong emphasis on the comprehensive patient journey, spanning 
from prehabilitation (preparation for treatment), through the 
hospitaliza-tion phase, to long-term rehabilitation and post-clinical 
follow-up.

–	 Functional Packages: Categorizing the system’s capabilities into logical 
modules of user-facing features, which are detailed in the Core User 
Subsystems Table 1.
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Fig. 2. Minimal system-level decomposition of the OnkoBot reference architecture.  
Co-operating agents and services are connected through an event-driven internal 

communication bus and bounded interfaces to external hospital systems (HIS/RIS/PACS/LIS 
and specialized subsystems). The AMAC community is governed via explicit trust and quality 

gates, including decision-time supervision (OnkoTrust and QUANT Agent/Services) and offline 
governance in the Training & Evaluation Environment (Quality Audit Agent).  

This online/offline separation supports auditable decision boundaries and controlled evolution 
through versioned releases rather than online self-modification during clinical operation
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Fig. 1. OnkoBot closed-loop oncology pathway (illustrative, nodes 1–9). The diagram 
emphasizes unavoidable interactions among patients, clinicians, laboratories, medical 

equipment, and knowledge resources. Nodes (1–8) represent an illustrative patient journey 
from home support and consultation through diagnostics, therapy planning and delivery, 

and recovery support. Node (9) denotes the central orchestration core coordinating information 
flow and governance across stages. The dashed return arrow indicates the relapse/suspected- 

-recurrence loop routing the case back to verification under governance control.  
The figure is a non-normative map of risk and validation focus rather than an exhaustive 

clinical taxonomy or a complete IT blueprint
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•	 System-Level Architecture – details the technical framework, including 
component interactions, data processing, and infrastructure requirements. 
This perspective emphasizes the underlying functionalities that ensure the 
reliable operation of the user-facing features. For OnkoBot, these top-level system 
functions and their dependencies are visualized in Figure 2.

From OnkoBot Experience to Generalized Architecture

The AMAC framework generalizes system-level insights gained from 
developing the OnkoBot portfolio of mock-ups and proof-of-concept prototypes 
(summarized in Table 1). Key design decisions in AMAC are direct responses 
to challenges encountered during this preparatory work:

•	 The need for strict role separation emerged from prototyping both patient-
facing (OnkoBot.P) and clinician-facing (OnkoBot.L) subsystems, where failure 
modes and risk profiles differed significantly.

•	 The central importance of auditability was crystallized during the 
development of the OnkoBot.A (Audit) subsystem, which necessitated 
comprehensive logging and traceability across all components.

•	 The requirement for explicit, gated human oversight (HITL) was informed 
by early testing where ambiguous outputs required clear escalation paths to 
clinical experts.

Thus, AMAC does not describe a specific implementation but provides 
an implementation-neutral blueprint that distills these practical lessons into 
a reusable reference model for large oncology centers.

Architectural Overview and Core Principles

As noted above, the AMAC framework is visually summarized through two 
complementary perspectives that connect the clinical mission with technical 
execution.

The Clinical Pathway Perspective

Figure 1 illustrates the closed-loop oncology pathway that AMAC is designed 
to support. It maps the integrated patient journey from prehabilitation through 
treatment to follow-up (Nodes 1–8), emphasizing the unavoidable interactions 
between patients, clinicians, data sources, and AI orchestration (Node 9).  
This figure is not an exhaustive clinical protocol but a map of risk and validation 
focus. It identifies where in the patient journey specific AI functions (e.g., decision 
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support in Node 4, therapy monitoring in Nodes 5–6) are deployed and, conse-
quently, where architectural safeguards (like OnkoTrust gates) and validation 
efforts must be concentrated. The dashed “relapse/recurrence” loop underscores 
the system’s role in continuous, longitudinal care under governance control.

The System Architecture Perspective

Figure 2 provides a minimal system-level decomposition of the AMAC 
reference architecture. It translates the clinical deployment pathway into 
a technical blueprint built around four core reference-architecture principles:

A. Strict Online/Off line Separation: The Clinical Operational 
Environment (online, right side of Fig. 2) is fixed at runtime. All learning, 
tuning, and updates occur exclusively within the isolated Training & Evaluation 
Environment (offline, left side). This makes the deployed system a predictable, 
fixed-function component and supports MDR-aligned evidence traceability to 
a specific software version.

B. Governance-by-Design: Auditability and human oversight are engineered 
as first-class system capabilities. Centralized supervisory gates – OnkoTrust 
and QUANT Services – enforce policy checks and safety constraints before any 
AI output can influence patient care.

C. Multi-Agent Collaboration with Centralized Supervision: The 
clinical computational core of AMAC is the Community of Collaborative Evolving 
Medical Assistants (CEMA), operating within the AMAC governance envelope 
under CGG-controlled gated approval of releases. CEMA is conceived as a set of 
specialized AI agents orchestrated by a central Clinical Interaction Agent (Fig. 
2), whose autonomy is explicitly bounded by the Governance & Risk Management 
framework. All agent outputs are routed through the centralized validation stack 
(Audit/QAA, OnkoTrust, and QUANT Services), ensuring that clinical advice 
is validated, traceable, and verifiable prior to release to end users. This design 
is inspired by Chang’s (2025) principles of regulated collective intelligence, 
adapted here to the constraints of large oncology centers under EU AI Act and 
MDR expectations.

D. Integrated Governance & Risk Management: AMAC consolidates 
risk-based controls, security governance, and compliance-oriented oversight 
through an integrated governance module. It integrates Security & Operations 
(SecOps) as the enforcement layer, within which Identity, Access & Security 
(IAS) delivers identity-bound access control, accountability, and auditability. 
Operational interactions between clinical and IT subsystems are mediated by 
a Secure Integration Bus (SIB), which enforces identity-validated access, secure 
transport, and policy-based routing. To support high-risk clinical use, the SIB 
maintains tamper-evident, append-only event logs, providing a transparent audit 
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trail for system interactions. The Clinical Governance Gateway (CGG) serves 
as the clinical sign-off authority. It ingests auditable evidence packs (including 
SIB-derived logs) to enforce gated approval at review and transition checkpoints 
and to trigger formal escalation pathways when required.

AMAC Component Decomposition and Responsibilities

Operational Plane Components (Online)

Clinical Interaction Agent (CIA): The primary interface orchestrator. 
It receives user queries, decomposes them, and coordinates workflows among 
specialized sub-agents (e.g., for retrieval, summarization). It is responsible for 
context management and final answer synthesis.

OnkoTrust (Trust & Consistency Gate): The core safety module 
performing symbolic and rule-based checks:

•	 Grounding Verification: Ensuring statements are traceable to retrieved 
sources (guide-lines, records).

•	 Contradiction Detection: Identifying logical conflicts within the output 
or against trusted knowledge.

•	 Policy Enforcement: Applying institutional rules (e.g., “escalate all 
off-label sugges-tions”).

•	 Escalation Triggering: Blocking outputs that fail checks and routing 
them to HITL with a conflict report.

QUANT Services (Quantitative & Statistical Gate): Provides data-
driven checks:

•	 Confidence Scores: Based on model certainty and retrieval quality.
•	 Statistical Plausibility: Comparing suggestions against population 

norms.
•	 Data Completeness Flags: Assessing if available data is sufficient for 

reliability.
Interoperability Layer: A dedicated subsystem handling secure, reliable 

connections to hospital IT (HIS, RIS/PACS, LIS), performing protocol translation, 
validation, and resilience management.

Governance & Evolution Plane Components (Offline)

Quality Audit Agent (QAA): The central offline governance module. 
It analyzes logs from the operational plane, conducts periodic audits using 
synthetic and real dialogue logs, identifies performance drift, and generates 
evidence packs for regulatory audits and CGG-controlled evidence-based reviews.
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Simulation & Training Engine: A sandboxed environment for training 
and evaluating new versions of agents, knowledge graphs (GraphRAG), and 
prompts against comprehensive test suites and simulated clinical scenarios.

Release Governance Module: Manages the gated pipeline for promoting 
changes from offline to online. It enforces that all updates pass regression 
testing, safety validation, and formal approval.

A brief summary of the proposed responsibility allocation across the Online/
Offline separation in AMAC is provided in Table 6.

Table 6
Responsibility allocation across the Online/Offline separation in AMAC

Aspect Operational Plane (Online) Governance & Evolution Plane 
(Offline)

Primary Purpose Execute clinical decision-support 
tasks in real-time.

Evolve system knowledge, models, 
and policies under controlled 
conditions.

Key Modules Clinical Interaction Agent, 
OnkoTrust, QUANT Services.

Quality Audit Agent, Simulation 
& Training Engine.

Learning/Adaptation Prohibited. All parameters, 
prompts, and knowledge graphs 
are frozen.

Permitted via controlled cycles. 
Includes updating GraphRAG, 
fine-tuning, prompt engineering.

Change Mechanism Changes only via versioned, 
audited releases from the offline 
plane.

Managed via gated release pipeline 
with validation suites and approval 
workflows.

Output Clinical recommendations 
with associated confidence and 
evidence.

New software versions, updated risk 
files, validation reports, training 
datasets.

The Controlled Evolution Cycle and Transition Gate

AMAC replaces risky “online learning” with a formalized, auditable 
Controlled Evolution Cycle. This cycle, governed by a strict Transition Gate 
(Table 7), ensures that system evolution is both safe and compliant.

1.	 Offline Development: New models or knowledge graphs are developed 
in isolation.

2.	 Shadow Mode Validation: The candidate system runs in parallel with 
the stable version, processing real historical cases. Its outputs are logged and com-
pared but not shown to clinicians, providing a risk-free performance assessment.

3.	 CGG-controlled Review & Authorization: Validation evidence and 
release artifacts are subject to review through the Clinical Governance Gate-
way (CGG) against predefined success criteria (e.g., non-inferiority on safety 
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metrics). When automated checks are insufficient, inconclusive, or conflicting, 
CGG triggers a formal HITL escalation and issues authorization for clinical 
deployment and use only after documented clinical governance approval.

4.	 Gated Deployment: Upon approval, the new configuration is frozen, 
hashed, and deployed as a new immutable version. Rollback procedures are 
always maintained.

Table 7
Transition Gate Requirements for moving a new AMAC version  

from Offline to Online operation

Gate Checkpoint Verification Activity Auditable Output
Functional
Non-Regression

Automated testing against a curated “Golden
Dataset” of complex clinical scenarios.

Behavioral Stability
Report with pass/fail
metrics.

Safety & Rule
Compliance

Formal verification of adherence to all OnkoTrust 
rules. Execution of adversarial “Red Team” tests.

Updated Risk
Management File
(RMF) annex. Safety
Test Report.

Clinical Validation Blinded expert review of the new version’s
reasoning on challenging clinical vignettes.

Clinical Evaluation
Report (CER)
Addendum.

Configuration
Lock & Sign-off

Final freeze and cryptographic hashing of the
software bundle. Formal sign-off by the
accountable governance body.

Signed Release
Certificate (vX.Y.Z).
Software Bill 
of Materials (SBOM).

Positioning AMAC within the Regulatory  
and Research Landscape

AMAC offers a pragmatic synthesis of two trends:
The Research Trend toward Agentic AI: It embraces multi-agent 

collaboration and long-term system evolution (Institute for AI Industry Research 
2024), (Li et al. 2024).

The Regulatory Imperative for Safety: It strictly bounds autonomy 
within a governance framework that enforces determinism, auditability, and 
human oversight, directly addressing EU AI Act (European Parliament and 
Council 2024) and MDR (European Parliament and Council 2017) requirements. 
By institutionalizing the separation of operation and evolution, and by mandating 
CGG-controlled, evidence-based transition gating with formal HITL escalation 
where required, AMAC provides a reference blueprint for the compliant 
deployment of high-risk, evolving AI systems in clinical environments.

The AMAC architecture forms the foundation for the formal trust mechanisms 
(Part II) and long-term monitoring strategies (Part III).
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Offline Evolution Cycle

To support the predictability, repeatability, and safety expectations associated 
with high-risk AI systems under the EU AI Act and MDR, the AMAC reference 
model mandates strict online/offline separation and runtime immutability of the 
Clinical Operational Environment.

Operationally, this separation requires controlled pathways for transferring 
validated changes from the offline environment into the online clinical workflow 
without compromising determinism at runtime, implemented through:

The Knowledge Transfer Mechanism: Transition Gates The migration 
of an “evolved” version of the AMAC from the offline environment to the online 
clinical workflow is governed by a formal Transition Gate. Under the framework 
of IEC 62304, any modification to agent logic or knowledge representation 
is treated as a new software release, requiring revalidation (see Table 7).

Shadow Mode and Clinical Benchmarking As an additional safety 
layer, the reference model introduces a “Shadow Mode” Deployment. Before 
an evolved AMAC version is permitted to provide active advice to patients 
or clinicians, it must operate in parallel with the stable version. In this mode, 
the new version generates recommendations that are logged, auditable, and 
subject to CGG-controlled review (with HITL escalation where required), while 
remaining invisible to end users. Access to the active clinical interface is granted 
only after no observed safety incidents above predefined thresholds and meeting 
predefined safety and governance criteria.

Regulatory Justification This modular-deterministic approach ensures 
that while the system remains “agentic” in its internal orchestration, it remains 
a “fixed-function” medical device during its operational lifecycle. This design 
supports MDR-aligned evidence traceability to a specific, immutable software 
version and enables human oversight over a predictable operational configuration, 
consistent with the governance expectations of the EU AI Act.

Reference Deployment Pathway

This section introduces a reference deployment pathway that operationalizes 
the reference architecture outlined in Section (OnkoBot Reference Architecture 
Outline: The AMAC Framework). The pathway is designed to support controlled, 
compliance-oriented rollout of an integrated AI platform by structuring 
deployment into staged phases separated by explicit decision gates. Progression 
through the pathway is conditional and auditable: advancement is permitted 
only when predefined organizational, technical, and governance pre-requisites 
are satisfied.



Technical Sciences	 28, 2025

	 A Proposed Reference Model for the Deployment of an Integrated AI System… 	 333

Pathway rationale and scope. The deployment pathway reflects the central 
premise of this Part I: large-scale AI deployment in oncology is primarily a systems 
and governance challenge rather than a purely technical one. Accordingly, the 
pathway emphasizes readiness verification, accountability, and controlled change 
over speed of adoption. It does not prescribe specific timelines or technologies, 
but defines a sequence of phases and gates that must be respected regardless 
of local implementation choices.

Phase Model with Explicit Review Gates The proposed reference model 
treats the deployment pathway not merely as a project plan, but as the conceptual 
backbone for designing, evolving, and governing both the integrated AI platform 
(OnkoBot) and its constituent sub-systems. In particular, the entire system as 
well as each user-facing and governance-facing subsystem is conceptualized 
through a shared phase model:

Preparation ⇒ Mock-up/Prototype ⇒ Pilot ⇒ Integration ⇒ AMAC.

Successive versions of subsystems traverse this pathway as modular, versioned 
building blocks metaphorically, “LEGO blocks” – that are incrementally built, 
tested, validated, and integrated under explicit governance and release gates. 
The pathway therefore unifies system architecture, development methodology, 
and organizational change within a single deployment logic.

Hospital-scale AI deployment should proceed through explicit phases with 
controlled scope expansion and formal exit criteria. Each phase concludes with 
a review gate evaluating readiness across four dimensions: safety, quality, 
interoperability, and governance. Advancement is conditional rather than 
automatic.

•	 Preparation establishes scope boundaries, assigns roles and responsibili-
ties, identifies high-risk contexts, and assesses data availability, interoperability 
constraints, and security baselines.

•	 Mock-up/Prototype validates interaction patterns and architectural 
assumptions in controlled environments, typically limited to non-clinical or low-
risk scenarios.

•	 Pilot introduces supervised, real-context use with mandatory human- 
-in-the-loop control, exercising interoperability and operational continuity 
mechanisms.

•	 Integration embeds AI assistants into routine workflows across 
departments while preserving the same trust, safety, and audit constraints.

•	 AMAC operation supports long-term use and evolution of agents under 
controlled, auditable release cycles and explicit online/offline separation. AMAC 
is a multi-layer, agent-oriented reference architecture.

Each phase ends with a formal review gate that determines whether the 
next phase may begin.
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Iterative Development and the Modular “LEGO” Principle Within the 
deployment pathway, each functional subsystem is treated as an independent, 
versioned module. Subsystems can progress through phases at different speeds, 
depending on risk profile and organizational readiness, while remaining 
interoperable through shared platform services.

The modular “LEGO” principle yields several operational benefits: failures are 
localized rather than systemic, validation efforts are focused, and integration is 
driven by governance readiness rather than technical enthusiasm. Importantly, 
modularity applies not only to technical components, but also to organizational 
artifacts such as training materials, procedures, and audit documentation.

Change Management: Ambassadors, Training, and Adoption Metrics 
Sustainable AI deployment requires structured change management alongside 
technical development. The reference model therefore embeds organizational 
adoption mechanisms directly into the deployment pathway.

Key elements include designated clinical and organizational ambassadors, 
role-specific platform literacy and training programs, sandbox environments 
for safe experimentation, and feedback loops capturing adoption metrics and 
trust dynamics.

Decision gates and verification. Transitions between phases are governed 
by explicit decision gates that evaluate whether required prerequisites have 
been met. These include verification of system assumptions, availability of HITL 
capacity, completeness of logging and audit artifacts, and readiness of escalation 
and rollback mechanisms. Decision outcomes are documented and traceable, 
ensuring that progression through the pathway produces auditable evidence 
rather than implicit acceptance.

Offline – online separation and change control. Consistent with the 
architectural principles defined in Section (OnkoBot Reference Architecture 
Outline: The AMAC Framework), all model updates, parameter changes, and 
policy adjustments are performed exclusively in offline environments. Online 
operation is restricted to execution under fixed, versioned configurations. Changes 
are introduced into operation only through gated releases following success-
ful offline evaluation and formal approval, preventing uncontrolled adaptation 
during clinical use.

Integration of HITL and CGG. HITL oversight and CGG-controlled 
governance are enforced across all phases of the deployment pathway. HITL 
interception points are specified prior to pilot operation and may be tightened or 
relaxed only through documented, auditable governance decisions. CGG maintains 
a continuous governance feedback loop based on monitoring signals, incident 
reviews, and performance observations, which informs offline updates and gate- 
-controlled release decisions without directly modifying online clinical behavior.

Rollback, suspension, and controlled degradation. The pathway 
explicitly incorporates mechanisms for rollback, suspension, and controlled 
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degradation of automation. Trigger conditions for these actions are defined 
in advance and linked to monitoring and HITL inputs. The ability to revert 
to earlier phases or reduced functionality is treated as a core safety requirement 
rather than as an exceptional failure mode.

Pathway as a governance instrument. Beyond its procedural role, the 
reference deployment pathway functions as a governance instrument. It structures 
accountability, documents decision authority, and generates a traceable history 
of system evolution. In this way, it complements the reference architecture 
by ensuring that technical components, organizational roles, and regulatory 
expectations are aligned throughout the system lifecycle.

Transferability to Smaller Centers

This section addresses the transferability of the proposed reference 
model to smaller oncology centers. Transferability is not treated as free-form 
simplification, but as a controlled relaxation of assumptions defined in Section 
(System Assumptions and Requirements for Large Oncology Centers), performed 
under explicit constraints on safety, governance, and auditability. The objective 
is to preserve a non-negotiable core while permitting context-aware adaptation 
of scale-dependent elements.

Non-negotiable core (STRL ≥ 4 aligned). Independent of institutional 
size, the following elements are mandatory and must remain unchanged for any 
clinical deployment at STRL ≥ 4 (“Predictable”):

•	 minimum organizational readiness at STRL ≥ 4 (“Predictable”), ensuring 
documented, repeatable operational processes, deterministic online behavior, 
and auditable change control;

•	 mandatory adherence to the Reference Deployment Pathway, including 
phase-gated progression with explicit decision gates for deployment, rollback, 
and escalation;

•	 explicit assignment of governance ownership and decision authority for 
deployment, rollback, and escalation;

•	 enforceable, runtime human-in-the-loop (HITL) oversight with the ability 
to suspend or override automation;

•	 auditable logging, traceability, and version control across the system 
lifecycle;

•	 gated change management separating offline updates from online operation, 
with no ungoverned modifications in the clinical runtime environment;

•	 continuous evaluation and monitoring activities as an operational 
governance loop, including documented triggers for escalation, rollback, and 
release suspension.



Technical Sciences	 28, 2025

336	 Mateusz Dąbkowski et al.

Relaxation of these elements is not permitted, as it would undermine system- 
-level safety and accountability. Transferability is therefore achieved exclusively 
by scaling the remaining components and organizational arrangements while 
preserving the non-negotiable core.

Scalable and adaptable elements. Other aspects of the reference model 
may be adapted to reflect reduced scale or resource availability. These include the 
depth of system integration, the number of automated components, the granularity 
of monitoring, and the organizational distribution of roles. Such adaptations are 
permitted provided that they do not weaken the non-negotiable core and remain 
verifiable through auditable artifacts.

HITL under resource constraints. In smaller centers, HITL capabilities 
need not be locally replicated in full. The model permits federated, shared,  
or centralized arrangements, including cross-institutional expert pools or external 
service models, provided that escalation paths, response times, and decision 
authority remain clearly defined and auditable. In all cases, insufficient HITL 
capacity constitutes a blocking condition for increased automation.

Risk–cost–complexity trade-offs. Transferability entails explicit trade-offs 
along axes of cost, automation level, HITL workload, and audit coverage, while 
maintaining a fixed clinical risk budget. Here, a “fixed clinical risk budget” 
denotes institutionally approved safety thresholds and escalation policies that are 
not relaxed when capacity is reduced; instead, automation and gating strictness 
are adjusted. Reductions in local capacity must therefore be compensated by more 
conservative automation, stronger gating, or shared governance arrangements, 
rather than by relaxing safety or oversight requirements.

Architectural and pathway implications. The reference architecture 
outlined in Section (OnkoBot Reference Architecture Outline: The AMAC 
Framework) supports modular scaling, allowing components to be included, 
simplified, or externally provided without violating core constraints. Likewise, 
the reference deployment pathway presented in Section (Reference Deployment 
Pathway) remains applicable across institutional scales, although smaller centers 
may require longer preparatory phases and more conservative progression through 
deployment gates.

Discussion and Limitations

This section discusses the scope, strengths, and limitations of the proposed 
reference model, with particular emphasis on its intended role as a deployment- 
and governance-oriented foundation rather than a clinical or regulatory validation 
study.

Scope and intended use. The reference model introduced in this Part I 
is designed to support controlled deployment, governance, and evolution 
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of integrated AI platforms in large oncology centers. Its primary contribution 
lies in structuring architectural boundaries, organizational responsibilities, 
and deployment decision gates under regulatory constraints. Accordingly, the 
model targets system-level safety, accountability, and auditability, rather than 
algorithmic novelty or optimization of clinical performance.

Non-claims and deliberate exclusions. Several aspects are intentionally 
outside the scope of this work. First, this Part I does not establish clinical 
effectiveness, diagnostic accuracy, or therapeutic benefit of any AI component. 
Second, it does not by itself demonstrate regulatory compliance under the EU AI 
Act or MDR, as such compliance requires site-specific implementation, formal 
conformity assessment, and documented validation procedures. Third, detailed 
algorithmic specifications, parameter choices, and mathematical formalizations 
are deferred to subsequent parts of this series. These exclusions are deliberate 
and reflect a separation of concerns necessary for rigorous system design.

Experience-grounded but non-clinical basis. The reference architecture 
and deployment pathway are grounded in nearly one year of pre-deployment 
experience from the OnkoBot project, including the development of preparatory 
mock-ups and proof-of-concept artifacts. While this experience provides valuable 
insight into system-level constraints and governance challenges, it does not 
substitute for clinical studies or post-market surveillance. The model should 
therefore be understood as experience-informed rather than empirically validated 
in clinical practice.

Generalizability and context dependence. Although the reference model is 
intended to be applicable across large oncology centers, its instantiation necessarily 
depends on local context, including organizational maturity, IT infrastructure, 
staffing, and regulatory environment. Transferability to smaller centers requires 
controlled relaxation of assumptions, as discussed in Section (Transferability to 
Smaller Centers), and may involve federated or shared governance arrangements. 
Consequently, the model provides a structured framework for adaptation rather 
than a one-size-fits-all solution.

Implications for subsequent parts. The limitations identified here directly 
motivate the structure of Parts II and III. Formal trust mechanisms, evaluation 
criteria, and decision gating logic are addressed in Part II, while extended 
validation, monitoring strategies, and lifecycle evolution under operational 
conditions are explored in Part III. Together, these parts aim to complement 
the reference layer established in this work without overloading Part I with 
premature formal or clinical claims.

Architectural interpretation and evolution perspective. The proposed 
reference model deliberately separates architectural stability from the 
accumulation of system intelligence. AMAC defines a stable deployment and 
governance envelope whose role is to enforce controlled operation, accountability, 
and traceability, rather than to evolve into an autonomous clinical system. Within 
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this envelope, clinical intelligence is progressively accumulated within the 
CEMA multi-agent core through controlled, offline updates and increasing agent 
collaboration. Crucially, lifecycle evolution never bypasses clinical governance: 
all clinically relevant outputs and releases remain subject to CGG-controlled, 
evidence-based review and gate-controlled authorization, with formal HITL 
escalation when automated checks are insufficient, inconclusive, or conflicting. 
In this sense, the Clinical Governance Gateway (CGG) functions as the permanent 
clinical governance function and architectural checkpoint governing all CEMA- 
-driven outputs within AMAC, ensuring that increasing system intelligence 
remains bounded by invariant safety, accountability, and regulatory constraints.

Conclusions

The Architecture for Medical AI Collaboration (AMAC) defines an enforceable, 
system-level governance and deployment framework for integrated AI platforms 
in large oncology centers. It reframes the deployment challenge from isolated 
algorithmic performance to auditable architectural controls that constrain 
autonomy, regulate change, and operationalize safety, accountability, and 
interoperability requirements aligned with the EU AI Act and the Medical 
Device Regulation (MDR).

At the computational level, AMAC formalizes the Community of Collaborative 
Evolving Medical Assistants (CEMA) as the core clinical AI engine. CEMA 
instantiates a supervised, multi-agent architecture in which specialized AI 
agents perform coordinated clinical reasoning under explicitly bounded autonomy. 
This design deliberately aligns with contemporary multi-LLM collaborative 
intelligence paradigms – such as those articulated by Chang (2025) – while 
translating them into a governance-controlled clinical setting in which all agent 
outputs are subject to centralized trust, consistency, and release gating.

From a system perspective, AMAC establishes the following enforceable 
control principles:

(i) Runtime immutability and controlled evolution, achieved through strict 
online/offline separation that preserves deterministic clinical operation while 
confining model and knowledge evolution to gated offline environments;

(ii) Governed multi-agent operation, in which CEMA-generated outputs are 
admissible for clinical use only after passing centralized trust-and-consistency 
controls and explicit human-in-the-loop escalation paths;

(iii) Release accountability and traceability, implemented through a Clinical 
Governance Gateway (CGG) that binds deployment decisions to evidence packs, 
auditable approvals, and clearly assigned clinical responsibility;
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(iv) Gate-based deployment conformance, preventing uncontrolled transitions 
between operational modes by enforcing phase-specific entry, rollback, and 
suspension criteria; and

(v) Socio-technical readiness as a mandatory condition, operationalized via 
Socio-Technical Readiness Levels (STRL), readiness metrics, and accountability 
mappings as formal gate-passage requirements.

Importantly, AMAC positions regulated multi-agent clinical systems as 
a realistic next step beyond single-model decision support. In this respect, it is 
consistent with emerging “AI hospital” initiatives – such as large-scale virtual 
hospital environments developed in China – while making a critical design 
choice: multi-agent clinical intelligence is acceptable only when embedded 
within a governance envelope that enforces auditability, bounded autonomy, 
and escalation-safe clinical accountability.

In summary, AMAC provides the system-level envelope required to make 
large-scale clinical AI integration feasible, controllable, and regulation-compatible 
in complex oncology environments. As Part I of this series, the present work fixes 
the architectural, governance, and deployment baseline. Subsequent parts build 
on this foundation by formalizing trust evaluation mechanisms, quantitative 
monitoring, and lifecycle feedback controls necessary for sustained, long-term 
clinical operation.

Further Research Directions

The reference model established in this Part I defines a stable system-
level foundation for the deployment and governance of integrated AI platforms 
in oncology. Several directions for further research naturally follow from the 
scope delimitations and limitations discussed earlier, and are essential for 
completing the proposed framework across technical, formal, and operational 
dimensions.

Formal trust, evaluation, and decision gating. A primary direction 
for further research concerns the formalization of trust, evaluation, and 
decision gating mechanisms within the reference architecture. This includes 
the development of quantitative and logical models for confidence estimation, 
abstention, escalation, and acceptance under uncertainty, as well as their 
integration with human-in-the-loop oversight. Such mechanisms are addressed 
in Part II, where algorithmic and formal tools are introduced to operationalize 
these concepts without weakening governance constraints.

Advanced mathematical and statistical modeling. Further work is 
required to support rigorous analysis of robustness, calibration, and sensitivity 
across heterogeneous clinical contexts. This includes advanced mathematical and 
statistical modeling for uncertainty propagation, drift detection, and stress testing 
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under varying data distributions and operational conditions. These methods 
are critical for moving from experience-grounded assumptions to quantitatively 
supported deployment decisions.

Extended validation and lifecycle governance. Beyond initial deployment, 
further research must address long-term validation and lifecycle governance 
of integrated AI platforms. This includes post-deployment monitoring, incident 
analysis, model update strategies, and mechanisms for managing concept drift 
and emerging risks under regulatory oversight. These topics are the focus of Part 
III, which examines how the reference architecture and deployment pathway 
can sustain safe operation over extended time horizons.

Cross-institutional and federated deployment models. Finally, 
additional investigation is needed into cross-institutional and federated 
deployment scenarios, particularly for smaller oncology centers. Such models 
raise new challenges related to shared governance, distributed HITL and 
AMAC functions, and coordinated auditability across organizational boundaries. 
Addressing these challenges is essential for scaling the proposed reference model 
beyond single institutions while maintaining safety and accountability.

Further research directions (deployment-first). Several issues merit 
further research: (i) systematic multi-center transfer studies with explicit capacity 
planning for HITL workloads and audit coverage; (ii) Interactive Granular 
Computing (IGrC) mechanisms for auditable, human-guided evolution of granules, 
thresholds, and operational policies over time (Pedrycz et al. 2008, Polkowski 
2009, Skowron et al. 2025); (iii) advanced mathematical modeling for quantitative 
robustness, calibration, and heterogeneity analyses across cohorts and clinical 
practice patterns (e.g., uncertainty calibration, shift/transfer diagnostics, and 
pre-defined statistical acceptance criteria for model updates); (iv) standardized 
psycho-oncological quality auditing protocols (synthetic and real-world) and 
their integration into post-market surveillance; and (v) long-term monitoring 
of drift, security threats, and governance effectiveness under evolving EU AI 
Act/MDR guidance.

Roadmap for future research on IGrC. The reference model motivates 
a transition from static granular representations toward interactive granular 
computing (IGrC), enabling auditable, human-guided evolution of knowledge 
granules, thresholds, and policies over time. Research in this direction aims to 
preserve traceability and control while allowing structured adaptation in response 
to new evidence, changing guidelines, or evolving organizational constraints. 
We plan to link the modeling of the AI systems discussed in the paper to the 
IGrC (Jankowski 2017, Skowron et al. 2025). For more information, see https://
dblp.uni-trier.de/pers/hd/s/Skowron:Andrzej. This will enable us to design and 
analyze AI systems based on the solid computational foundation of the IGrC and 
consider interactive granular computations over abstract and physical objects. 
The IGrC model can facilitate a more general approach than LLMs have thus 
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far employed. For instance, it could enable us to examine the effectiveness 
of languages found in nature. Inspired by biology and other natural phenomena, 
these languages can advance reasoning tools for steering granular computations. 
This will also make AI systems more trustworthy and explainable (Barredo 
Arrieta et al. 2020) by providing explanations for suggested decisions, for 
example. Furthermore, applying the lifelong learning paradigm to AI systems 
will lead to continuous learning and the accumulation of past knowledge to assist 
with future learning and problem solving. This makes systems adaptable to new 
discoveries (e.g., outliers) and learning from past mistakes. One challenge of 
rough sets based on IGrC is developing high-quality classifiers that can determine 
whether information provided by LLMs is a hallucination and classify it with 
different degrees of risk accordingly. This will require advanced dialogue methods 
with domain experts. Another possibility is using IGrC to model c-granule 
control. This would make computational modeling of learning more similar 
to how the brain generates granular computations, constructing approximate 
solutions for given specifications.

Closing perspective. Together, these research directions delineate a coherent 
agenda that extends the foundational work presented in Part I. By progressively 
enriching the reference model with formal mechanisms, quantitative validation, 
and long-term governance strategies, future work can support the responsible 
and sustainable integration of AI into oncological practice.
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