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Abstract

Large-scale deployment of Al in oncology is constrained less by standalone algorithmic
performance than by system-level safety, accountability, interoperability, and regulation-aware
governance. Grounded in approximately one year of practical pre-deployment work within the
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OnkoBot project, this paper specifies a deployment- and governance-first reference model for
integrated oncology Al platforms under the EU AI Act and the Medical Device Regulation (MDR).

The paper introduces Architecture for Medical AI Collaboration (AMAC), an implementation-
neutral, system-level envelope that enforces strict online/offline separation between clinical operation
and model/knowledge learning and evolution, gate-controlled releases via a Clinical Governance
Gateway (CGG) with explicit human-in-the-loop (HITL) escalation, and tamper-evident auditability
across clinical, technical, and interoperability boundaries. AMAC is anchored by the Community
of Collaborative Evolving Medical Assistants (CEMA), a supervised multi-agent computational
core that performs coordinated clinical reasoning under bounded autonomy.

Concrete deliverables include: (i) a reference architecture outline with explicit responsibilities
and auditable control points; (i1) a phase-gated deployment pathway (Preparation — Prototype —
Pilot — Integration — AMAC operation) with required evidence packs, decision gates, and rollback/
suspension mechanisms; and (iii) enforceable socio-technical gate criteria, including Socio-Technical
Readiness Levels (STRL), readiness metrics, and accountability mapping (RACI). The model is
intentionally non-normative and does not encode clinical guidelines; it provides a minimal, auditable
governance architecture designed to make large-scale clinical Al integration feasible, controllable,
and regulation-compatible in complex oncology environments.

Introduction and Context

Large-scale deployment of Al in oncology increasingly depends not only on
algorithmic accuracy, but on system-level safety, accountability, interoperability,
and regulation-aware governance. In large oncology centers in EU, Al solutions
are introduced into complex socio-technical environments that combine
heterogeneous IT infrastructures, evolving clinical workflows, and strict regulatory
constraints under the EU AI Act and the Medical Device Regulation (MDR).
As a result, the central challenge is no longer how to design isolated AI models,
but how to deploy, govern, and evolve integrated Al platforms in a controlled,
auditable, and compliance-oriented manner.

This shift aligns with broader observations that the main obstacles to clinical
Al adoption increasingly include organizational, workflow, governance, and
safety constraints alongside purely technical performance considerations (Jiang
et al. 2021).

Recent AI maturity models in healthcare highlight organizational readiness,
governance dimensions, and compliance constraints (e.g., FILIPOVIC et al. 2026).
Building on this perspective, the present work shifts attention from assessing
readiness to operationalizing governance in regulated clinical environments
through an explicit reference architecture, decision gates, and auditable
deployment pathways.

This paper proposes the Architecture for Medical AI Collaboration (AMAC) as
a deployment- and governance-oriented reference model for such platforms. AMAC
is a reference architecture paradigm that establishes a stable system-
-level envelope for the coordinated deployment, clinical governance,
and gate-controlled lifecycle evolution of collaborative, multi-agent
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Al components within complex oncology environments. It is understood
as a structured combination of (i) a reference system architecture outline,
(i1) a reference system deployment pathway with explicit decision gates, and
(111) a set of auditable pre-requisites, roles, and responsibilities. The model is
grounded in nearly one year of practical, pre-deployment experience from the
OnkoBot project, including the development of preparatory mock-ups and proof-
of-concept prototypes for multiple subsystems. Importantly, these artifacts were
created during a preparatory phase; no clinical studies or clinical deployments
are reported in this Part I. Instead, the experience serves as an engineering
and governance basis for generalizing architectural boundaries, deployment
prerequisites, and operational responsibilities.

Accordingly, references to the EU AI Act, MDR, and related standards
are used in a compliance-oriented sense: they motivate the design of controls,
roles, gates, and auditable artifacts, but do not constitute authoritative legal
interpretation or a claim of regulatory conformity. In practice, compliance
remains a validation-driven, site-specific outcome supported — rather than
guaranteed — by the proposed mechanisms.

This paper was motivated by and abstracted from an extensive internal
project charter developed jointly by NIO-PIB and UWM within a formal Letter
of Intent (DABKOWSKI et al. 2025). The scope of this work is system-level
deployment principles, safety-by-design mechanisms, and measurable
operational indicators. Table 1 presents OnkoBot’s main functional subsystems
and the current status of work on mock-ups and prototypes.

Position within the three-part series. This article constitutes Part I
of a three-part series. Part I establishes the foundational scope, definitions,
architectural outline, and deployment pathway that are a necessary precondition
for the more technical and formal developments addressed in Part IT and Part III.
In particular, Part II focuses on formal and algorithmic mechanisms for trust,
evaluation, and decision gating, while Part III addresses extended validation,
monitoring, and evolution under real-world operational constraints. Without
the reference layer introduced here, such developments would lack a stable
system-level context.

Key Scientific and Engineering Contributions:

Core contribution (Part I): Part I operationalizes EU AI Act/MDR
constraints as a minimal, auditable online/offline governance contract — formalized
as the AMAC reference architecture — and as a phase-gated deployment pathway
applicable to integrated oncology Al platforms.

AMAC as an Auditable Governance Reference Architecture: Formal
specification of the Architecture for Medical AI Collaboration (AMAC) as an
implementation-neutral, system-level governance reference architecture that
explicitly defines online/offline boundaries, auditable control points, and release
conditions for clinical AT outputs.

Technical Sciences 28, 2025



312 Mateusz Dabkowski et al.

Table 1
OnkoBot subsystem portfolio and proof-of-concept artifacts (illustrative, non-normative)
Subsvstem Primary purpose Current PoC Technical emphasis (interfaces /
¥ y purp artifacts risk / governance)

OnkoBot.P  Patient/caregiver P1-P3 mock-ups/  Strict audience policies; safe tem-

informational support prototypes plates; higher gating thresholds;
provenance enforcement; HITL for
high-risk queries.

OnkoBot.I.  Clinician decision- L1-L4 mock-ups/ High-risk; interoperability depend-
support and workflow prototypes ence; OnkoTrust gating and HITL-
acceleration -first operation; traceable evidence.

OnkoBot.E ~ Education and E1 prototypes Sandbox and curriculum; controlled
adoption enablement simulations; produces evaluation

artifacts; supports safe usage
patterns.

OnkoBot.B  R&D backbone for AI/ B1-B3 concept/ GraphRAG/KR pipelines; method
KR methods prototype work evaluation; quantitative models;

supports validated modules.

OnkoBot.K  Care coordination Concept and early Workflow integration; conservative
workflow support design work policy-driven behavior due to

operational impact.

OnkoBot.A  Audit, quality, and A1-A6 mock-ups/ Operational home of OnkoTrust:
safety control prototypes execution/auditing, regression tests,
monitoring, incident workflows.

OnkoBot.D  Pathway analytics and Early planning Data pipelines and governance;
organizational KPIs  work aggregated analytics with strict
interpretation constraints.

CEMA as a Bounded Multi-Agent Clinical Engine: Formalization
of the Community of Collaborative Evolving Medical Assistants (CEMA) as
a supervised, multi-agent computational core in which specialized agents
collaborate under explicitly bounded autonomy, with all agent outputs released
to end users only after centralized validation and governance gating.

Integrated Supervisory and Validation Stack: Definition of a centralized
supervisory triad — OnkoTrust (symbolic grounding and internal consistency),
QUANT services (statistical plausibility, uncertainty, and contradiction
assessment), and the Quality Audit Agent (QAA) (offline governance, drift
detection, and post hoc analysis) — providing a layered validation mechanism
that is independent of individual agent implementations.

Regulation-to-Control Translation: Operational translation of EU AI Act
and MDR requirements into concrete, enforceable engineering controls, including
strict runtime immutability via online/offline separation, tamper-evident, append-
only audit logging across system interactions, and mandatory human-in-the-loop
(HITL) escalation paths bound to defined release and decision points.

Evidence-Driven, Phase-Gated Deployment Logic: Specification
of a phase-gated deployment pathway (Preparation — Prototype — Pilot —
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Integration — AMAC operation) in which progression is conditioned on predefined
decision gates, mandatory evidence packs, and explicit rollback or suspension
criteria, preventing uncontrolled transitions into higher-risk operational modes.

Socio-Technical Readiness as a Gate Condition: Introduction of Socio-
Technical Readiness Levels (STRL) as measurable, enforceable gate-passage
criteria that bind organizational preparedness, clinical workflow alignment,
and governance maturity directly to deployment decisions, rather than treating
readiness as informal background context.

Empirical Calibration from Pre-Deployment Engineering Practice:
Calibration of auditable prerequisites, gate definitions, and evidence-pack struc-
tures using artifacts derived from approximately one year of pre-deployment
engineering work within the OnkoBot project, including mock-ups and proof-
of-concept systems, without making clinical or regulatory performance claims.

Clinical Governance Gateway (CGG) as a Release Authority:
Specification of a dedicated Clinical Governance Gateway (CGG) that binds
software releases, agent updates, and knowledge changes to documented clinical
approval, safety verification, and accountability assignment, thereby separating
technical evolution from clinical authorization.

Paper roadmap. Section (System Assumptions and Requirements for Large
Oncology Centers) introduces system assumptions and requirements characteristic
of large oncology centers. Section (Socio-Technical Readiness as a Deployment
Prerequisite) addresses socio-technical challenges, organizational readiness,
and human-in-the-loop aspects. Sections (Case-Guided Instantiation: OnkoBot)
and (OnkoBot Reference Architecture Outline: The AMAC Framework) present
the OnkoBot case-guided instantiation and the resulting reference architecture
outline. Sections (Transferability to Smaller Centers) and (Reference Deployment
Pathway) discuss transferability considerations and the reference deployment
pathway. Finally, Sections (Discussion and Limitations)—(Further Research
Directions) summarize limitations, conclusions with pointers to Parts IT and 111,
and directions for further research.

For an alphabetically ordered list of abbreviations, see Table 2.

Table 2
List of abbreviations used in this interdisciplinary paper
(informatics, clinical oncology, governance, and regulation)
Abbreviation Meaning / explanation
1 2
Al Artificial Intelligence
AT Act EU Artificial Intelligence Act: Regulation (EU) 2024/1689
AMAC Architecture for Medical AT Collaboration (AMAC) is a reference architecture

paradigm that establishes a stable system-level envelope for the coordinated
deployment, clinical governance, and gate-controlled lifecycle evolution

of interoperable, collaborative, multi-agent AT components within complex
oncology environments
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cont. Table 2

1 2

CEMA Community of Collaborative Evolving Medical Assistants (intelligent multi-
agent collective forming the clinical computational core of AMAC in clinical
decision-support environments)

CER Clinical Evaluation Report (MDR documentation artifact)

CGG Clinical Governance Gateway (CGG) is a clinical governance function and
architectural checkpoint that enforces evidence-based review and gate-
-controlled approval of AT component updates and data/knowledge releases.
CGG enables auditable, criteria-driven release decisions based on predefined
governance controls and verifiable evidence. If the available evidence is
insufficient, inconclusive, or conflicting, CGG mandates a formal HITL
escalation and grants authorization only upon documented clinical governance

approval.
DICOM / Digital Imaging and Communications in Medicine (imaging standard and web
DICOMweb  access)
EU European Union
FHIR Fast Healthcare Interoperability Resources (HL7 interoperability standard)
HIMSS Healthcare Information and Management Systems Society.

GraphRAG  Graph Retrieval-Augmented Generation (RAG with graph-structured retrieval
and provenance)

HIS Hospital Information System

HITL Human-in-the-Loop (formal human oversight workflow with auditable artifacts)
HL7 Health Level Seven (healthcare interoperability standards organization)

TIAS Identity, Access & Security: An identity-bound access control and security

framework ensuring least privilege, accountability, and continuous auditability
across the AI/IT ecosystem.

ID Identifier (generic; e.g., patient, encounter, evidence)
IEC International Electrotechnical Commission (standards body)

TEC 62304 Medical device software lifecycle processes standard

LIS Laboratory Information System

LLM Large Language Model

mCODE minimal Common Oncology Data Elements (oncology data model on FHIR)
MDR Medical Device Regulation: Regulation (EU) 2017/745

NIO-PIB Maria Sktodowska-Curie National Research Institute of Oncology (Poland)

OnkoTrust  Trust layer concept (risk-aware gating, contradiction/grounding checks,

escalation)

PACS Picture Archiving and Communication System (imaging storage and retrieval)

PoC Proof of Concept

QUANT Quantitative/statistical consistency-check services (Quantitative & Statistical
Gate)

RACI Responsible, Accountable, Consulted, Informed (role assignment matrix)

RAG Retrieval-Augmented Generation

RIS Radiology Information System

RIS/PACS Combined reference to radiology workflow system and imaging archive
RMF Risk Management File (ISO 14971 documentation artifact)
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cont. Table 2

1 2
SaMD Software as a Medical Device (regulatory concept)
SBOM Software Bill of Materials (software supply-chain documentation artifact)
SecOps Security & Operations (technical enforcement function for security controls)
SIB Secure Integration Bus: A secure integration layer mediating data and control

flows across system components through policy-based routing, secure transport,
and tamper-evident audit logging.

STRL Socio-Technical Readiness Levels (maturity scale used for deployment gating)
UWM University of Warmia and Mazury in Olsztyn (Poland)
XAI Explainable AI (explainability methods / requirements)

Related Work

Research on artificial intelligence in healthcare spans a broad spectrum,
ranging from algorithmic performance and explainability to ethical, legal, and
organizational aspects of deployment. Early and influential surveys emphasize
the importance of transparency, interpretability, and responsibility in Al systems,
particularly in high-stakes domains such as medicine (BARREDO ARRIETA et al.
2020, HOLZINGER et al. 2019). These works establish conceptual foundations for
trustworthy Al, yet largely remain at the level of principles, taxonomies, and
design desiderata rather than operational deployment architectures.

A complementary stream of literature focuses on the ethical, legal, and liability
implications of Al-assisted clinical decision-making. Studies by GERKE et al.
(2020) and PRICE et al. (2019) highlight unresolved questions of responsibility,
accountability, and risk allocation between clinicians, institutions, and technology
providers. From a regulatory perspective, these concerns are formalized through
binding legal frameworks such as the Medical Device Regulation (MDR) and
the Artificial Intelligence Act, which impose strict requirements on lifecycle
management, human oversight, traceability, and post-market surveillance for
high-risk medical AT systems (European Parliament and Council 2017, 2024).

Another relevant body of work addresses interoperability and system
integration in healthcare IT ecosystems. Standards such as HLL7 FHIR and
SMART on FHIR provide widely adopted mechanisms for secure data exchange
and modular application integration (BENDER, SARTIPI 2013, MANDEL et al. 2016).
While these standards are indispensable enablers of scalable Al integration,
they do not by themselves define governance mechanisms, clinical decision gates,
or accountability structures required for safe AI deployment.

More recently, maturity models for AT adoption in healthcare have been
proposed to assess organizational readiness and critical success factors.
Notably, FILIPOVIC et al. (2026) identify core dimensions such as strategy,
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data, governance, and skills as prerequisites for effective Al use in healthcare
institutions. These models offer valuable high-level assessment frameworks;
however, they stop short of specifying how AI components should be operationally
governed, validated, and released within regulated clinical environments.

Parallel advances in multi-agent and collaborative Al systems demonstrate
the growing technical feasibility of coordinated, evolving Al ecosystems (CHANG
2025, L1 et al. 2024, AIR 2024). While these works illustrate the potential
of collective intelligence and agent-based architecture, they typically assume
research or experimental settings and do not address the regulatory, clinical
governance, and risk-management constraints characteristic of large oncology
centers.

Finally, granular computing and interactive computation frameworks provide
a theoretical basis for structuring complex decision processes, uncertainty
management, and explainable abstractions in intelligent systems (PEDRYCZ
et al. 2008, POLKOWSKI 2009, JANKOWSKI 2017, SKOWRON et al. 2025). These
foundations inform the design of auditable, threshold-based decision mechanisms
but require explicit architectural embedding to support real-world clinical
deployment.

In contrast to maturity assessment frameworks and principle-driven
governance models, the present work focuses on a deployment-oriented reference
architecture for medical AI. By integrating regulatory constraints, clinical
governance checkpoints, gate-controlled lifecycle evolution, and auditable
accountability mechanisms, the proposed approach aims to bridge the gap between
conceptual readiness models and the practical realities of deploying Al systems
in high-risk oncology environments.

System Assumptions and Requirements
for Large Oncology Centers

This section specifies the system assumptions that underlie the proposed
reference model. These assumptions are not presented as descriptive background,
but as explicit deployment prerequisites that must be verified before advancing
through successive stages of the deployment pathway introduced later in this
paper. Failure to satisfy non-negotiable assumptions blocks progression beyond
preparatory or pilot phases and requires corrective organizational or technical
action.

Scope and hierarchy of assumptions. The reference model is intentionally
scoped to large oncology centers, characterized by complex multi-specialty clinical
workflows, heterogeneous IT infrastructures, and sustained regulatory oversight.
Accordingly, assumptions are organized into two categories: (i) non-negotiable
prerequisites, required for any compliance-oriented deployment of an integrated
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Al platform, and (i1) context-dependent assumptions, which may be adapted
based on institutional scale, maturity, and resource constraints. This distinction
enables later transferability analysis without weakening baseline safety and
governance requirements.

Non-negotiable organizational and governance prerequisites.
At an organizational level, deployment assumes the existence of clearly assigned
ownership for Al governance, including decision authority over model updates,
deployment gates, and escalation procedures. Explicit roles for clinical experts,
IT personnel, and compliance stakeholders must be defined, together with auditable
processes for approval, documentation, and accountability. Human-in-the-loop
(HITL) oversight is treated as a mandatory capability rather than an optional
safeguard: qualified personnel must be available to review, override, or suspend
Al-supported outputs whenever predefined conditions are met or exceeded.

In the reference setting, the oncology center is treated as the primary deployer
of the integrated platform, while provider responsibilities for specific modules
(e.g., Al services, monitoring, or integration components) may be assumed by
an external vendor or the hospital IT unit, depending on the site’s governance
and procurement model. This role split is intentionally left configurable, as it
varies across deployments and determines the allocation of accountability and
documentation duties.

Technical and interoperability requirements. From a system perspective,
the reference model assumes a baseline level of IT interoperability and operational
maturity. This includes stable interfaces for data exchange, explicit separation
of offline training and evaluation environments from online clinical operation,
version-controlled deployment and rollback mechanisms, and centralized logging
that supports traceability and auditability. These requirements do not prescribe
specific technologies, but define functional conditions that must be satisfied for
safe integration into clinical workflows.

Interoperability Requirements and Operational Continuity.
Interoperability is a first-order feasibility determinant for integrated Al
systems in large oncology centers. In practice, such systems must interface with
hospital information systems and electronic documentation modules (HIS/EDM),
radiology information systems and imaging archives (RIS/PACS), laboratory
information systems (LIS), and a variety of specialized oncology subsystems. These
environments are typically heterogeneous and partially legacy. Consequently,
interoperability should not be treated as an incidental integration task, but
rather as a dedicated subsystem with explicit security boundaries, reliability
mechanisms, and governance.

As a pragmatic baseline in typical European hospital IT landscapes, the
interoperability layer often needs to handle HL7 v2/v3, FHIR, and DICOM/
DICOMweb; the reference model remains implementation-neutral and does
not mandate specific technologies.
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Core functions include protocol translation, schema validation, policy
enforcement (authentication, authorization, consent management, audit logging),
and quality gates that prevent malformed or semantically inconsistent data from
propagating into Al-supported workflows. Operational reliability mechanisms —
such as bounded retries, dead-letter queues, and reconciliation jobs — are required
to ensure predictable behavior under load and failure conditions.

Operational continuity further requires that the integrated Al platform
degrades gracefully under partial failures. Temporary unavailability of upstream
systems, delayed data feeds, or subsystem outages should not result in silent
failure or undefined system behavior. End-to-end observability, including
correlation identifiers across system boundaries, is assumed to be available to
support auditing, incident response, and post hoc analysis of Al-assisted decisions.

Interoperability failure modes and mitigations are captured as auditable
artifacts within the same gate-based deployment and release governance used
across the platform (e.g., interface contracts, data-quality checks, incident
runbooks, and integration test evidence). The resulting evidence packs consumed
by governance review minimally include traceable log excerpts with correlation
IDs (including SIB logs), integration and regression test reports, incident
summaries (if any), and release-candidate configuration identifiers (version/
hash) to enable reproducible audits.

Oncology-Specific Interoperability Profiles. Beyond generic HL7/
FHIR and DICOM interfaces, oncology workflows benefit from domain-specific
interoperability profiles that standardize data elements and clinical semantics
across institutions. In particular, the mCODE initiative provides a structured
oncology data model built on FHIR, enabling consistent representation of cancer
diagnoses, staging, treatments, and outcomes. At the European level, the HL7
Europe FHIR Common Implementation Guide offers guidance on representing
oncology concepts within FHIR-based exchanges.

The reference model assumes compatibility with such oncology-specific profiles
where available. While local adaptations and extensions are often unavoidable,
alignment with shared profiles improves portability, reduces integration friction,
and supports secondary uses such as quality assessment and cross-institutional
evaluation.

Regulatory framing as system requirements. Regulatory obligations
under the EU AI Act and MDR are translated here into system-level requirements
rather than legal claims. In particular, requirements for traceability motivate
comprehensive logging and documentation artifacts; requirements for human
oversight motivate explicit HITL roles and escalation paths; and lifecycle
obligations motivate gated deployment, controlled change management, and
post-deployment monitoring. The reference model is designed to support such
compliance-oriented deployment, while recognizing that formal conformity
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assessment and clinical validation remain site-specific activities. Table 3 presents
selected standards and regulations relevant to the proposed reference model.

Assumptions and deployment pathway integration. All assumptions
introduced in this section are explicitly checked and enforced through decision
gates in the reference deployment pathway presented in Section (Reference
Deployment Pathway). Their role is therefore operational rather than descriptive:
they determine whether a system may progress from preparatory work to pilot
studies, integration, and compliance-oriented operation, or whether remediation
is required before further deployment steps are permitted.

These assumptions are regulation-informed but implementation-neutral: they
translate EU AI Act and MDR obligations — and the engineering expectations
reflected in relevant ISO standards — into system-level prerequisites without
prescribing particular technologies or organizational realizations. Detailed
article-level mappings to the EU AI Act, MDR, and specific ISO clauses are

Table 3

Non-normative reference mapping of selected standards
and regulations relevant to the proposed reference model

Standar‘d / Primary focus Relevance to Part I
Regulation
EU AI Act Governance of high-risk Al ~ Provides the governance framing for

systems, role separation
(provider/deployer), and
documentation and oversight
obligations

deployment-first design and accountability
assumptions, without legal interpretation
or conformity claims.

MDR (Regulation
(EU) 2017/745)

Regulatory framework for
medical devices and software
as a medical device (SaMD)

Motivates lifecycle discipline, risk
awareness, and documentation readiness

for Al-supported medical software, without
asserting device classification or compliance.

ISO 14971 Risk management for medi- Informs the identification of clinical risk
cal devices hotspots, hazard analysis, and the linkage
between risks and mitigation artifacts in the
reference model.
IEC 62304 Software lifecycle processes Guides assumptions regarding controlled
for medical device software  evolution, versioning, maintenance, and
change management of Al assistants.
ISO 13485 Quality management Provides organizational context for roles,

systems for medical device
organizations

responsibilities, and documented processes,
without implying certification or QMS
implementation.

ISO 27001 /ISO
27799

Information security
management and protection
of health information

Supports assumptions related to secure
interoperability, auditability, and operational
continuity in integrated Al platforms.

GDPR
(Regulation (EU)
2016/679)

Personal data protection,
lawful processing, and data
subject rights

Constrains data governance following
GDPR, access control, consent/authorization
practices, and auditability for patient-related
data flows in CGG-enabled systems.

Technical Sciences
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intentionally outside the scope of Part I and are addressed in later parts
and supporting materials, once the foundational reference architecture and
deployment pathway introduced here are fixed.

Socio-Technical Readiness
as a Deployment Prerequisite

The deployment of AI systems in large-scale oncology centers is fundamentally
a socio-technical transformation. Beyond algorithmic performance, the success
and safety of the clinical mission depend on the alignment of human roles,
organizational culture, and technical governance. This section operationalizes
“organizational readiness” through quantifiable metrics and structured maturity
levels, treating these factors as enforceable deployment prerequisites rather
than contextual background.

The Centrality of Human Factors
and Common Institutional Barriers

Even when AI models demonstrate high technical performance, systemic
failures frequently arise from misaligned roles, opaque governance, or inadequate
organizational readiness. In the context of Central and Eastern European
(CEE) healthcare institutions, specific socio-technical barriers are particularly
pronounced and can critically impede Al initiatives if not proactively managed:

* Lack of Executive Sponsorship: Insufficient “anchoring” of the project
within the organization’s top management, leading to resource constraints and
strategic misalignment.

* Motivation and Incentive Gaps: Low engagement among clinical staff
due to misaligned incentives, perceived threat to professional autonomy, or lack
of visible benefit.

* Communication and Silo Breakdowns: Poor information flow and
collaboration barriers between clinical, technical, administrative, and compliance
departments.

¢ Competency and Digital Literacy Gaps: A misalignment between the
required skills for Al-augmented workflows and the current capabilities of the
workforce.

To navigate these complexities, this reference model adopts principles
of socio-technical systems engineering. We refer to the Basic Principles of CSE
Project Development (BPCD) as a non-normative but practical framework for
governing the substantial organizational change inherent in Al-driven clinical
transformation (JANKOWSKI 2017).
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Socio-Technical Readiness Levels (STRL)

To provide a structured, auditable path for organizational preparation, we
introduce Socio-Technical Readiness Levels (STRL), inspired by established
organizational maturity models in the CMU/SEI tradition. This scale ensures
that the organizational environment matures in parallel with the technical
infrastructure. Progress through the subsequent deployment pathway (Section
(Reference Deployment Pathway)) is conditional upon reaching specific STRL
milestones.

e STRL 1 (Initial): AI awareness exists at an individual level, but roles,
responsibilities, and decision authority are ad-hoc and undocumented. No formal
governance structure is in place.

e STRL 2 (Defined): STRL 1 + Governance ownership is formally assigned
(e.g., a designated AI Steering Committee). Basic Al literacy and SaMD safety
training programs for clinical staff are defined and implemented.

e STRL 3 (Managed): STRL 2 + Formal Human-in-the-Loop (HITL) roles
and escalation paths are documented and verified through drills, establishing
operational readiness without yet being exercised in live clinical decision-
-making. Interoperability protocols with key hospital systems (HIS/RIS) are
established and operationally tested, providing an ontological basis for
a shared semantic and operational context across clinical departments,
supporting consistent human communication as well as machine-to-
-system integration.

e STRL 4 (Predictable): STRL 3 + Processes for monitoring and mitigating
automation bias are active. Key Performance Indicators (KPIs) for Al safety,
clinician burden, and system performance are regularly collected and reviewed
by governance bodies (e.g., monthly), with documented thresholds and action
triggers.

e STRL 5 (Optimizing): STRL 4 + The feedback loop is closed. Insights
derived from CGG-controlled governance decisions, post-deployment monitoring
evidence, and structured end-user feedback directly and systematically inform
the iterative evolution of the platform, its workflows, and training programs.

Quantitative Readiness Metrics
and the AI Ambassador Program

To support the EU AI Act requirements for human oversight (Art. 14) and
institutional accountability, the reference model mandates the tracking of specific,
quantifiable Socio-Technical KPIs. These metrics must be verified at each decision
gate in the deployment pathway. Table 4 provides examples of such mandatory
indicators. To actively mitigate the institutional barriers identified in Section
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(The Centrality of Human Factors and Common Institutional Barriers), the model
institutionalizes an ATl Ambassador Program. This program designates
respected clinical champions and operational facilitators who:

* Bridge communication between technical teams and clinical units.

® Lead peer-to-peer training and change management efforts.

® Gather and channel frontline feedback to the governance committee.

® Model safe and effective use of the Al system in daily practice.

Table 4
Exemplary Socio-Technical Readiness Metrics for Deployment Gate Review

Metric ID Indicator Threshold for Rationale & Measurement Method
Gate Passage
M-SOC-01 Stakeholder > 85% positive Survey of clinical department heads
Alignment Index engagement regarding project goals, governance,

and expected impact.
M-SOC-02 AI Literacy & Safety 100% completion Verifiable completion of mandatory
Certification for HITL roles training on SaMD fundamentals,
limitations, and safety procedures.

M-SOC-03 Mean Escalation < 5 minutes Measured from system alert to clinician
Response Time for high-risk acknowledgment in the HITL interface
triggers during readiness drills.
M-SOC-04 Automation Bias <0.15 (15% Rate of uncritical acceptance of seeded,
Factor uncritical simulated Al errors in controlled testing
acceptance) scenarios with clinical staff.
M-SOC-05 Audit Trail 100% of pilot Percentage of Al-assisted decisions in the
Completeness interactions pilot phase with a complete, retrievable
log of input, context, evidence, and
outcome.

Operationalizing Human-in-the-Loop (HITL) Oversight

Human oversight is operationalized not as a passive fail-safe but as an
active, integral component of the workflow with defined triggers and artifacts.
In clinical oncology, such HITL patterns are widely recognized as necessary
to manage uncertainty, workflow risk, and safe escalation in real-world settings
(YANG et al., 2022). The system architecture (see Section (OnkoBot Reference
Architecture Outline: The AMAC Framework)) is designed to enforce HITL
interception based on explicit Escalation Triggers. Table 5 defines these triggers
and the corresponding auditable artifacts that must be generated.

The effectiveness of these triggers and the vigilance of HITL personnel are
validated through periodic “Red Teaming” exercises, where synthetic failures
and edge cases are introduced into the test system.
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Table 5
Operational Governance Interface:
HITL Escalation Triggers and Auditable Artifacts
Trigger Condition for Human Escalation Auditable Artifact (Log)
Category
Technical Model confidence score below Evidence snapshot + raw model output.
Uncertainty  established threshold t.
Evidence Discrepancy between RAG-retrieved  Conflict report + source document
Conflict clinical guidelines and LLM synthesis. citations.
Safety/Risk  Detection of red-flag clinical indicators Full trace of safety-constraint
Boundary (e.g., life-threatening toxicity). violation.
Contestability Manual override or ,disagree’ flag Rationale for override + clinician ID

raised by the clinician.

Ambiguity Input data (e.g., pathology report) is Data quality flag + missing field report
corrupted or incomplete.

Accountability Mapping: The RACI Framework

Sustainable deployment requires unambiguous accountability. For every
Al-supported workflow and output, a clear human agent must be accountable
for the final clinical decision. This reference model adopts a RACI matrix
(Responsible, Accountable, Consulted, Informed) to map accountability across
all roles involved in Al-assisted care.

Critically, for any advisory output generated by the AMAC system, the
Accountable (A) role is always assigned to a qualified clinical professional
(e.g., the treating oncologist). The AI system and its operators may be
Responsible (R) for generating the advice, but never Accountable (A) for
the clinical outcome. This explicit mapping is a non-negotiable prerequisite for
advancing from the Pilot to the Integration phase in the deployment pathway.

Integration with Architecture and Deployment Pathway

The socio-technical mechanisms specified here — STRL, metrics, Ambassador
Program, HITL triggers, and RACI mapping — are not standalone recommen-
dations. They are explicitly instantiated within the reference architecture
(e.g., HITL triggers are enforced by OnkoTrust and QUANT Services) and are
enforced as verification criteria at the decision gates of the reference deployment
pathway (Section (Reference Deployment Pathway)). This integration ensures
that organizational readiness is assessed with the same rigor as technical read-
iness before any progression to more advanced stages of clinical deployment.
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Case-Guided Instantiation: OnkoBot

This section presents OnkoBot as a case-guided instantiation used to
inform the proposed reference model. The purpose of this case is not to report
a clinical deployment or clinical study, but to ground system-level design decisions
in practical, pre-deployment experience. All OnkoBot elements discussed here
correspond to preparatory mock-ups and proof-of-concept (PoC) prototypes
developed during a preparatory phase; no clinical studies or clinical deployments
are reported in this Part I. For orientation, we summarize the OnkoBot
subsystem portfolio and representative mock-ups/prototypes developed across
the program (Table 1). The table is illustrative and non-normative: it documents
the decomposition used for engineering traceability and governance planning,
without implying clinical readiness, regulatory classification, or deployment status.

Methodological role of the case. The case-guided approach adopted
here serves to extract system-level regularities relevant to deployment and
governance, rather than to generalize clinical outcomes. In particular, the
OnkoBot experience is used to identify architectural boundaries, role allocation,
auditable artifacts, and decision gates that recur across subsystems and use
cases. This methodology is appropriate for constructing a reference model whose
primary aim is to support controlled deployment under regulatory constraints,
rather than to validate medical effectiveness.

Scope of preparatory work. Over nearly one year of preparatory work,
multiple OnkoBot subsystems were explored through mock-ups and PoC
prototypes, as summarized in Table 1. These artifacts were intentionally
developed in a pre-deployment context to probe feasibility, governance
implications, and integration challenges. They do not constitute medical devices,
nor do they provide evidence of clinical effectiveness. Their role in this paper is
illustrative and non-normative: they function as engineering probes that expose
constraints and dependencies relevant to system-level design.

Extracted system-level lessons. The preparatory OnkoBot work yielded
a set of recurring design insights that directly inform the reference model
developed in this paper, including:

* the necessity of clear separation between offline training and evaluation
environments and online clinical operation;

* the central role of auditable logging, documentation, and traceability across
subsystem boundaries;

® the need for explicit human-in-the-loop (HITL) gating and escalation
mechanisms to manage uncertainty and operational risk;

® the importance of clearly assigned decision authority for deployment,
rollback, and exception handling;

* the operational relevance of continuous evaluation and monitoring activities
beyond initial deployment.
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OnkoBot as a narrative benchmark. Within this work, OnkoBot is
treated as a narrative benchmark and design probe rather than as a reference
implementation. Its value lies in anchoring abstract governance and deployment
concepts in concrete preparatory experience, thereby reducing ambiguity when
generalizing toward a reference architecture and deployment pathway applicable
to large oncology centers.

Transition to the reference architecture. The observations and lessons
summarized in this section directly inform the reference architecture outline
introduced in Section (OnkoBot Reference Architecture Outline: The AMAC
Framework). In the next section, these experience-grounded insights are
consolidated into a structured architectural view that abstracts from individual
prototypes while preserving the system-level constraints identified during the
OnkoBot preparatory phase.

OnkoBot Reference Architecture Outline:
The AMAC Framework

This section presents the core architectural contribution of this work: the
Architecture for Medical AI Collaboration (AMAC) reference architecture.
AMAC is a multi-agent, governance-first framework designed to enable the
safe, compliant deployment of integrated AI platforms in oncology. Its design
1s explicitly shaped by two constraints: (1) lessons from the OnkoBot preparatory
phase, and (2) the non-negotiable requirements of the EU AI Act and MDR for
safety, predictability, and auditability.

OnkoBot Architecture visualization (case-guided illustration).
To provide a comprehensive top-level overview, the OnkoBot architecture
is presented through two complementary perspectives:

¢ User-Oriented Architecture — focuses on the functional aspects and
how the system meets the needs of patients and clinicians. This perspective
is analyzed from two distinct angles:

— User Journeys: Mapping the end-to-end experience and interaction
paths for both patients and medical professionals, as illustrated
in Figure 1. The hospital I'T/AT user-oriented architecture places
a strong emphasis on the comprehensive patient journey, spanning
from prehabilitation (preparation for treatment), through the
hospitaliza-tion phase, to long-term rehabilitation and post-clinical
follow-up.

— Functional Packages: Categorizing the system’s capabilities into logical
modules of user-facing features, which are detailed in the Core User
Subsystems Table 1.
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Fig. 1. OnkoBot closed-loop oncology pathway (illustrative, nodes 1-9). The diagram
emphasizes unavoidable interactions among patients, clinicians, laboratories, medical
equipment, and knowledge resources. Nodes (1-8) represent an illustrative patient journey
from home support and consultation through diagnostics, therapy planning and delivery,
and recovery support. Node (9) denotes the central orchestration core coordinating information
flow and governance across stages. The dashed return arrow indicates the relapse/suspected-
-recurrence loop routing the case back to verification under governance control.

The figure is a non-normative map of risk and validation focus rather than an exhaustive
clinical taxonomy or a complete IT blueprint

Quality Clinical Interaction OnkoTrust
Audit Agent Agent (Trust Layer)

[&AI/IT Govemance t]<—> Internal Communication Bus (event-driven)

Risk Managemen
EXteg;,";'tg'rg:p'ta' [ Interoperability ] [ QUANT ]
(HIS/PACSILIS) Middleware Services Evaluation Env.
Fig. 2. Minimal system-level decomposition of the OnkoBot reference architecture.
Co-operating agents and services are connected through an event-driven internal
communication bus and bounded interfaces to external hospital systems (HIS/RIS/PACS/LIS
and specialized subsystems). The AMAC community is governed via explicit trust and quality
gates, including decision-time supervision (OnkoTrust and QUANT Agent/Services) and offline
governance in the Training & Evaluation Environment (Quality Audit Agent).

This online/offline separation supports auditable decision boundaries and controlled evolution
through versioned releases rather than online self-modification during clinical operation
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* System-Level Architecture — details the technical framework, including
component interactions, data processing, and infrastructure requirements.
This perspective emphasizes the underlying functionalities that ensure the
reliable operation of the user-facing features. For OnkoBot, these top-level system
functions and their dependencies are visualized in Figure 2.

From OnkoBot Experience to Generalized Architecture

The AMAC framework generalizes system-level insights gained from
developing the OnkoBot portfolio of mock-ups and proof-of-concept prototypes
(summarized in Table 1). Key design decisions in AMAC are direct responses
to challenges encountered during this preparatory work:

® The need for strict role separation emerged from prototyping both patient-
facing (OnkoBot.P) and clinician-facing (OnkoBot.L) subsystems, where failure
modes and risk profiles differed significantly.

® The central importance of auditability was crystallized during the
development of the OnkoBot.A (Audit) subsystem, which necessitated
comprehensive logging and traceability across all components.

® The requirement for explicit, gated human oversight (HITL) was informed
by early testing where ambiguous outputs required clear escalation paths to
clinical experts.

Thus, AMAC does not describe a specific implementation but provides
an implementation-neutral blueprint that distills these practical lessons into
a reusable reference model for large oncology centers.

Architectural Overview and Core Principles

As noted above, the AMAC framework is visually summarized through two
complementary perspectives that connect the clinical mission with technical
execution.

The Clinical Pathway Perspective

Figure 1 illustrates the closed-loop oncology pathway that AMAC is designed
to support. It maps the integrated patient journey from prehabilitation through
treatment to follow-up (Nodes 1-8), emphasizing the unavoidable interactions
between patients, clinicians, data sources, and Al orchestration (Node 9).
This figure is not an exhaustive clinical protocol but a map of risk and validation
focus. It identifies where in the patient journey specific Al functions (e.g., decision
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support in Node 4, therapy monitoring in Nodes 5—6) are deployed and, conse-
quently, where architectural safeguards (like OnkoTrust gates) and validation
efforts must be concentrated. The dashed “relapse/recurrence” loop underscores
the system’s role in continuous, longitudinal care under governance control.

The System Architecture Perspective

Figure 2 provides a minimal system-level decomposition of the AMAC
reference architecture. It translates the clinical deployment pathway into
a technical blueprint built around four core reference-architecture principles:

A. Strict Online/Offline Separation: The Clinical Operational
Environment (online, right side of Fig. 2) is fixed at runtime. All learning,
tuning, and updates occur exclusively within the isolated Training & Evaluation
Environment (offline, left side). This makes the deployed system a predictable,
fixed-function component and supports MDR-aligned evidence traceability to
a specific software version.

B. Governance-by-Design: Auditability and human oversight are engineered
as first-class system capabilities. Centralized supervisory gates — OnkoTrust
and QUANT Services — enforce policy checks and safety constraints before any
Al output can influence patient care.

C. Multi-Agent Collaboration with Centralized Supervision: The
clinical computational core of AMAC is the Community of Collaborative Evolving
Medical Assistants (CEMA), operating within the AMAC governance envelope
under CGG-controlled gated approval of releases. CEMA 1is conceived as a set of
specialized AT agents orchestrated by a central Clinical Interaction Agent (Fig.
2), whose autonomy is explicitly bounded by the Governance & Risk Management
framework. All agent outputs are routed through the centralized validation stack
(Audit/QAA, OnkoTrust, and QUANT Services), ensuring that clinical advice
is validated, traceable, and verifiable prior to release to end users. This design
is inspired by CHANG’S (2025) principles of regulated collective intelligence,
adapted here to the constraints of large oncology centers under EU AT Act and
MDR expectations.

D. Integrated Governance & Risk Management: AMAC consolidates
risk-based controls, security governance, and compliance-oriented oversight
through an integrated governance module. It integrates Security & Operations
(SecOps) as the enforcement layer, within which Identity, Access & Security
(TAS) delivers identity-bound access control, accountability, and auditability.
Operational interactions between clinical and IT subsystems are mediated by
a Secure Integration Bus (SIB), which enforces identity-validated access, secure
transport, and policy-based routing. To support high-risk clinical use, the SIB
maintains tamper-evident, append-only event logs, providing a transparent audit
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trail for system interactions. The Clinical Governance Gateway (CGG) serves
as the clinical sign-off authority. It ingests auditable evidence packs (including
SIB-derived logs) to enforce gated approval at review and transition checkpoints
and to trigger formal escalation pathways when required.

AMAC Component Decomposition and Responsibilities
Operational Plane Components (Online)

Clinical Interaction Agent (CIA): The primary interface orchestrator.
It receives user queries, decomposes them, and coordinates workflows among
specialized sub-agents (e.g., for retrieval, summarization). It is responsible for
context management and final answer synthesis.

OnkoTrust (Trust & Consistency Gate): The core safety module
performing symbolic and rule-based checks:

* Grounding Verification: Ensuring statements are traceable to retrieved
sources (guide-lines, records).

* Contradiction Detection: Identifying logical conflicts within the output
or against trusted knowledge.

* Policy Enforcement: Applying institutional rules (e.g., “escalate all
off-label sugges-tions”).

* Escalation Triggering: Blocking outputs that fail checks and routing
them to HITL with a conflict report.

QUANT Services (Quantitative & Statistical Gate): Provides data-
driven checks:

* Confidence Scores: Based on model certainty and retrieval quality.

* Statistical Plausibility: Comparing suggestions against population
norms.

* Data Completeness Flags: Assessing if available data is sufficient for
reliability.

Interoperability Layer: A dedicated subsystem handling secure, reliable
connections to hospital IT (HIS, RIS/PACS, LIS), performing protocol translation,
validation, and resilience management.

Governance & Evolution Plane Components (Offline)

Quality Audit Agent (QAA): The central offline governance module.
It analyzes logs from the operational plane, conducts periodic audits using
synthetic and real dialogue logs, identifies performance drift, and generates
evidence packs for regulatory audits and CGG-controlled evidence-based reviews.
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Simulation & Training Engine: A sandboxed environment for training
and evaluating new versions of agents, knowledge graphs (GraphRAG), and
prompts against comprehensive test suites and simulated clinical scenarios.

Release Governance Module: Manages the gated pipeline for promoting
changes from offline to online. It enforces that all updates pass regression
testing, safety validation, and formal approval.

A brief summary of the proposed responsibility allocation across the Online/
Offline separation in AMAC is provided in Table 6.

Table 6
Responsibility allocation across the Online/Offline separation in AMAC

Governance & Evolution Plane

Aspect Operational Plane (Online) (Offline)

Primary Purpose Execute clinical decision-support Evolve system knowledge, models,

tasks in real-time. and policies under controlled
conditions.

Key Modules Clinical Interaction Agent, Quality Audit Agent, Simulation
OnkoTrust, QUANT Services. & Training Engine.

Learning/Adaptation Prohibited. All parameters, Permitted via controlled cycles.
prompts, and knowledge graphs Includes updating GraphRAG,
are frozen. fine-tuning, prompt engineering.

Change Mechanism  Changes only via versioned, Managed via gated release pipeline
audited releases from the offline with validation suites and approval
plane. workflows.

Output Clinical recommendations New software versions, updated risk
with associated confidence and  files, validation reports, training
evidence. datasets.

The Controlled Evolution Cycle and Transition Gate

AMAC replaces risky “online learning” with a formalized, auditable
Controlled Evolution Cycle. This cycle, governed by a strict Transition Gate
(Table 7), ensures that system evolution is both safe and compliant.

1. Offline Development: New models or knowledge graphs are developed
in isolation.

2. Shadow Mode Validation: The candidate system runs in parallel with
the stable version, processing real historical cases. Its outputs are logged and com-
pared but not shown to clinicians, providing a risk-free performance assessment.

3. CGG-controlled Review & Authorization: Validation evidence and
release artifacts are subject to review through the Clinical Governance Gate-
way (CGG) against predefined success criteria (e.g., non-inferiority on safety

Technical Sciences 28, 2025



A Proposed Reference Model for the Deployment of an Integrated AI System... 331

metrics). When automated checks are insufficient, inconclusive, or conflicting,
CGG triggers a formal HITL escalation and issues authorization for clinical
deployment and use only after documented clinical governance approval.

4. Gated Deployment: Upon approval, the new configuration is frozen,
hashed, and deployed as a new immutable version. Rollback procedures are
always maintained.

Table 7
Transition Gate Requirements for moving a new AMAC version
from Offline to Online operation
Gate Checkpoint Verification Activity Auditable Output
Functional Automated testing against a curated “Golden Behavioral Stability
Non-Regression Dataset” of complex clinical scenarios. Report with pass/fail
metrics.

Safety & Rule Formal verification of adherence to all OnkoTrust Updated Risk
Compliance rules. Execution of adversarial “Red Team” tests. Management File

(RMF) annex. Safety
Test Report.

Clinical Validation Blinded expert review of the new version’s Clinical Evaluation
reasoning on challenging clinical vignettes. Report (CER)
Addendum.
Configuration Final freeze and cryptographic hashing of the Signed Release
Lock & Sign-off software bundle. Formal sign-off by the Certificate (vX.Y.Z).
accountable governance body. Software Bill

of Materials (SBOM).

Positioning AMAC within the Regulatory
and Research Landscape

AMAC offers a pragmatic synthesis of two trends:

The Research Trend toward Agentic Al: It embraces multi-agent
collaboration and long-term system evolution (Institute for AI Industry Research
2024), (L1 et al. 2024).

The Regulatory Imperative for Safety: It strictly bounds autonomy
within a governance framework that enforces determinism, auditability, and
human oversight, directly addressing EU AI Act (European Parliament and
Council 2024) and MDR (European Parliament and Council 2017) requirements.
By institutionalizing the separation of operation and evolution, and by mandating
CGG-controlled, evidence-based transition gating with formal HITL escalation
where required, AMAC provides a reference blueprint for the compliant
deployment of high-risk, evolving Al systems in clinical environments.

The AMAC architecture forms the foundation for the formal trust mechanisms
(Part IT) and long-term monitoring strategies (Part III).
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Offline Evolution Cycle

To support the predictability, repeatability, and safety expectations associated
with high-risk AI systems under the EU AT Act and MDR, the AMAC reference
model mandates strict online/offline separation and runtime immutability of the
Clinical Operational Environment.

Operationally, this separation requires controlled pathways for transferring
validated changes from the offline environment into the online clinical workflow
without compromising determinism at runtime, implemented through:

The Knowledge Transfer Mechanism: Transition Gates The migration
of an “evolved” version of the AMAC from the offline environment to the online
clinical workflow is governed by a formal Transition Gate. Under the framework
of IEC 62304, any modification to agent logic or knowledge representation
is treated as a new software release, requiring revalidation (see Table 7).

Shadow Mode and Clinical Benchmarking As an additional safety
layer, the reference model introduces a “Shadow Mode” Deployment. Before
an evolved AMAC version is permitted to provide active advice to patients
or clinicians, it must operate in parallel with the stable version. In this mode,
the new version generates recommendations that are logged, auditable, and
subject to CGG-controlled review (with HITL escalation where required), while
remaining invisible to end users. Access to the active clinical interface is granted
only after no observed safety incidents above predefined thresholds and meeting
predefined safety and governance criteria.

Regulatory Justification This modular-deterministic approach ensures
that while the system remains “agentic” in its internal orchestration, it remains
a “fixed-function” medical device during its operational lifecycle. This design
supports MDR-aligned evidence traceability to a specific, immutable software
version and enables human oversight over a predictable operational configuration,
consistent with the governance expectations of the EU AI Act.

Reference Deployment Pathway

This section introduces a reference deployment pathway that operationalizes
the reference architecture outlined in Section (OnkoBot Reference Architecture
Outline: The AMAC Framework). The pathway is designed to support controlled,
compliance-oriented rollout of an integrated Al platform by structuring
deployment into staged phases separated by explicit decision gates. Progression
through the pathway is conditional and auditable: advancement is permitted
only when predefined organizational, technical, and governance pre-requisites
are satisfied.
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Pathway rationale and scope. The deployment pathway reflects the central
premise of this Part I: large-scale AI deployment in oncology is primarily a systems
and governance challenge rather than a purely technical one. Accordingly, the
pathway emphasizes readiness verification, accountability, and controlled change
over speed of adoption. It does not prescribe specific timelines or technologies,
but defines a sequence of phases and gates that must be respected regardless
of local implementation choices.

Phase Model with Explicit Review Gates The proposed reference model
treats the deployment pathway not merely as a project plan, but as the conceptual
backbone for designing, evolving, and governing both the integrated Al platform
(OnkoBot) and its constituent sub-systems. In particular, the entire system as
well as each user-facing and governance-facing subsystem is conceptualized
through a shared phase model:

Preparation = Mock-up/Prototype = Pilot = Integration > AMAC.

Successive versions of subsystems traverse this pathway as modular, versioned
building blocks metaphorically, “LEGO blocks” — that are incrementally built,
tested, validated, and integrated under explicit governance and release gates.
The pathway therefore unifies system architecture, development methodology,
and organizational change within a single deployment logic.

Hospital-scale AI deployment should proceed through explicit phases with
controlled scope expansion and formal exit criteria. Each phase concludes with
a review gate evaluating readiness across four dimensions: safety, quality,
interoperability, and governance. Advancement is conditional rather than
automatic.

* Preparation establishes scope boundaries, assigns roles and responsibili-
ties, identifies high-risk contexts, and assesses data availability, interoperability
constraints, and security baselines.

* Mock-up/Prototype validates interaction patterns and architectural
assumptions in controlled environments, typically limited to non-clinical or low-
risk scenarios.

* Pilot introduces supervised, real-context use with mandatory human-
-in-the-loop control, exercising interoperability and operational continuity
mechanisms.

* Integration embeds Al assistants into routine workflows across
departments while preserving the same trust, safety, and audit constraints.

* AMAC operation supports long-term use and evolution of agents under
controlled, auditable release cycles and explicit online/offline separation. AMAC
is a multi-layer, agent-oriented reference architecture.

Each phase ends with a formal review gate that determines whether the
next phase may begin.
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Iterative Development and the Modular “LEGO” Principle Within the
deployment pathway, each functional subsystem is treated as an independent,
versioned module. Subsystems can progress through phases at different speeds,
depending on risk profile and organizational readiness, while remaining
interoperable through shared platform services.

The modular “LEGO” principle yields several operational benefits: failures are
localized rather than systemic, validation efforts are focused, and integration is
driven by governance readiness rather than technical enthusiasm. Importantly,
modularity applies not only to technical components, but also to organizational
artifacts such as training materials, procedures, and audit documentation.

Change Management: Ambassadors, Training, and Adoption Metrics
Sustainable AT deployment requires structured change management alongside
technical development. The reference model therefore embeds organizational
adoption mechanisms directly into the deployment pathway.

Key elements include designated clinical and organizational ambassadors,
role-specific platform literacy and training programs, sandbox environments
for safe experimentation, and feedback loops capturing adoption metrics and
trust dynamics.

Decision gates and verification. Transitions between phases are governed
by explicit decision gates that evaluate whether required prerequisites have
been met. These include verification of system assumptions, availability of HITL
capacity, completeness of logging and audit artifacts, and readiness of escalation
and rollback mechanisms. Decision outcomes are documented and traceable,
ensuring that progression through the pathway produces auditable evidence
rather than implicit acceptance.

Offline - online separation and change control. Consistent with the
architectural principles defined in Section (OnkoBot Reference Architecture
Outline: The AMAC Framework), all model updates, parameter changes, and
policy adjustments are performed exclusively in offline environments. Online
operation is restricted to execution under fixed, versioned configurations. Changes
are introduced into operation only through gated releases following success-
ful offline evaluation and formal approval, preventing uncontrolled adaptation
during clinical use.

Integration of HITL and CGG. HITL oversight and CGG-controlled
governance are enforced across all phases of the deployment pathway. HITL
interception points are specified prior to pilot operation and may be tightened or
relaxed only through documented, auditable governance decisions. CGG maintains
a continuous governance feedback loop based on monitoring signals, incident
reviews, and performance observations, which informs offline updates and gate-
-controlled release decisions without directly modifying online clinical behavior.

Rollback, suspension, and controlled degradation. The pathway
explicitly incorporates mechanisms for rollback, suspension, and controlled
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degradation of automation. Trigger conditions for these actions are defined
in advance and linked to monitoring and HITL inputs. The ability to revert
to earlier phases or reduced functionality is treated as a core safety requirement
rather than as an exceptional failure mode.

Pathway as a governance instrument. Beyond its procedural role, the
reference deployment pathway functions as a governance instrument. It structures
accountability, documents decision authority, and generates a traceable history
of system evolution. In this way, it complements the reference architecture
by ensuring that technical components, organizational roles, and regulatory
expectations are aligned throughout the system lifecycle.

Transferability to Smaller Centers

This section addresses the transferability of the proposed reference
model to smaller oncology centers. Transferability is not treated as free-form
simplification, but as a controlled relaxation of assumptions defined in Section
(System Assumptions and Requirements for Large Oncology Centers), performed
under explicit constraints on safety, governance, and auditability. The objective
1s to preserve a non-negotiable core while permitting context-aware adaptation
of scale-dependent elements.

Non-negotiable core (STRL > 4 aligned). Independent of institutional
size, the following elements are mandatory and must remain unchanged for any
clinical deployment at STRL > 4 (“Predictable”):

* minimum organizational readiness at STRL > 4 (“Predictable”), ensuring
documented, repeatable operational processes, deterministic online behavior,
and auditable change control;

* mandatory adherence to the Reference Deployment Pathway, including
phase-gated progression with explicit decision gates for deployment, rollback,
and escalation;

*® explicit assignment of governance ownership and decision authority for
deployment, rollback, and escalation;

* enforceable, runtime human-in-the-loop (HITL) oversight with the ability
to suspend or override automation;

e auditable logging, traceability, and version control across the system
lifecycle;

¢ gated change management separating offline updates from online operation,
with no ungoverned modifications in the clinical runtime environment;

® continuous evaluation and monitoring activities as an operational
governance loop, including documented triggers for escalation, rollback, and
release suspension.
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Relaxation of these elements is not permitted, as it would undermine system-
-level safety and accountability. Transferability is therefore achieved exclusively
by scaling the remaining components and organizational arrangements while
preserving the non-negotiable core.

Scalable and adaptable elements. Other aspects of the reference model
may be adapted to reflect reduced scale or resource availability. These include the
depth of system integration, the number of automated components, the granularity
of monitoring, and the organizational distribution of roles. Such adaptations are
permitted provided that they do not weaken the non-negotiable core and remain
verifiable through auditable artifacts.

HITL under resource constraints. In smaller centers, HITL capabilities
need not be locally replicated in full. The model permits federated, shared,
or centralized arrangements, including cross-institutional expert pools or external
service models, provided that escalation paths, response times, and decision
authority remain clearly defined and auditable. In all cases, insufficient HITL
capacity constitutes a blocking condition for increased automation.

Risk—cost-complexity trade-offs. Transferability entails explicit trade-offs
along axes of cost, automation level, HITL workload, and audit coverage, while
maintaining a fixed clinical risk budget. Here, a “fixed clinical risk budget”
denotes institutionally approved safety thresholds and escalation policies that are
not relaxed when capacity is reduced; instead, automation and gating strictness
are adjusted. Reductions in local capacity must therefore be compensated by more
conservative automation, stronger gating, or shared governance arrangements,
rather than by relaxing safety or oversight requirements.

Architectural and pathway implications. The reference architecture
outlined in Section (OnkoBot Reference Architecture Outline: The AMAC
Framework) supports modular scaling, allowing components to be included,
simplified, or externally provided without violating core constraints. Likewise,
the reference deployment pathway presented in Section (Reference Deployment
Pathway) remains applicable across institutional scales, although smaller centers
may require longer preparatory phases and more conservative progression through
deployment gates.

Discussion and Limitations

This section discusses the scope, strengths, and limitations of the proposed
reference model, with particular emphasis on its intended role as a deployment-
and governance-oriented foundation rather than a clinical or regulatory validation
study.

Scope and intended use. The reference model introduced in this Part I
is designed to support controlled deployment, governance, and evolution
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of integrated Al platforms in large oncology centers. Its primary contribution
lies in structuring architectural boundaries, organizational responsibilities,
and deployment decision gates under regulatory constraints. Accordingly, the
model targets system-level safety, accountability, and auditability, rather than
algorithmic novelty or optimization of clinical performance.

Non-claims and deliberate exclusions. Several aspects are intentionally
outside the scope of this work. First, this Part I does not establish clinical
effectiveness, diagnostic accuracy, or therapeutic benefit of any AI component.
Second, it does not by itself demonstrate regulatory compliance under the EU Al
Act or MDR, as such compliance requires site-specific implementation, formal
conformity assessment, and documented validation procedures. Third, detailed
algorithmic specifications, parameter choices, and mathematical formalizations
are deferred to subsequent parts of this series. These exclusions are deliberate
and reflect a separation of concerns necessary for rigorous system design.

Experience-grounded but non-clinical basis. The reference architecture
and deployment pathway are grounded in nearly one year of pre-deployment
experience from the OnkoBot project, including the development of preparatory
mock-ups and proof-of-concept artifacts. While this experience provides valuable
insight into system-level constraints and governance challenges, it does not
substitute for clinical studies or post-market surveillance. The model should
therefore be understood as experience-informed rather than empirically validated
in clinical practice.

Generalizability and context dependence. Although the reference model is
intended to be applicable across large oncology centers, its instantiation necessarily
depends on local context, including organizational maturity, IT infrastructure,
staffing, and regulatory environment. Transferability to smaller centers requires
controlled relaxation of assumptions, as discussed in Section (Transferability to
Smaller Centers), and may involve federated or shared governance arrangements.
Consequently, the model provides a structured framework for adaptation rather
than a one-size-fits-all solution.

Implications for subsequent parts. The limitations identified here directly
motivate the structure of Parts IT and III. Formal trust mechanisms, evaluation
criteria, and decision gating logic are addressed in Part II, while extended
validation, monitoring strategies, and lifecycle evolution under operational
conditions are explored in Part III. Together, these parts aim to complement
the reference layer established in this work without overloading Part I with
premature formal or clinical claims.

Architectural interpretation and evolution perspective. The proposed
reference model deliberately separates architectural stability from the
accumulation of system intelligence. AMAC defines a stable deployment and
governance envelope whose role is to enforce controlled operation, accountability,
and traceability, rather than to evolve into an autonomous clinical system. Within
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this envelope, clinical intelligence is progressively accumulated within the
CEMA multi-agent core through controlled, offline updates and increasing agent
collaboration. Crucially, lifecycle evolution never bypasses clinical governance:
all clinically relevant outputs and releases remain subject to CGG-controlled,
evidence-based review and gate-controlled authorization, with formal HITL
escalation when automated checks are insufficient, inconclusive, or conflicting.
In this sense, the Clinical Governance Gateway (CGG) functions as the permanent
clinical governance function and architectural checkpoint governing all CEMA-
-driven outputs within AMAC, ensuring that increasing system intelligence
remains bounded by invariant safety, accountability, and regulatory constraints.

Conclusions

The Architecture for Medical Al Collaboration (AMAC) defines an enforceable,
system-level governance and deployment framework for integrated Al platforms
in large oncology centers. It reframes the deployment challenge from isolated
algorithmic performance to auditable architectural controls that constrain
autonomy, regulate change, and operationalize safety, accountability, and
interoperability requirements aligned with the EU AI Act and the Medical
Device Regulation (MDR).

At the computational level, AMAC formalizes the Community of Collaborative
Evolving Medical Assistants (CEMA) as the core clinical Al engine. CEMA
instantiates a supervised, multi-agent architecture in which specialized Al
agents perform coordinated clinical reasoning under explicitly bounded autonomy.
This design deliberately aligns with contemporary multi-LLM collaborative
intelligence paradigms — such as those articulated by CHANG (2025) — while
translating them into a governance-controlled clinical setting in which all agent
outputs are subject to centralized trust, consistency, and release gating.

From a system perspective, AMAC establishes the following enforceable
control principles:

(1) Runtime immutability and controlled evolution, achieved through strict
online/offline separation that preserves deterministic clinical operation while
confining model and knowledge evolution to gated offline environments;

(i1) Governed multi-agent operation, in which CEM A-generated outputs are
admissible for clinical use only after passing centralized trust-and-consistency
controls and explicit human-in-the-loop escalation paths;

(i11) Release accountability and traceability, implemented through a Clinical
Governance Gateway (CGG) that binds deployment decisions to evidence packs,
auditable approvals, and clearly assigned clinical responsibility;
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(iv) Gate-based deployment conformance, preventing uncontrolled transitions
between operational modes by enforcing phase-specific entry, rollback, and
suspension criteria; and

(v) Socio-technical readiness as a mandatory condition, operationalized via
Socio-Technical Readiness Levels (STRL), readiness metrics, and accountability
mappings as formal gate-passage requirements.

Importantly, AMAC positions regulated multi-agent clinical systems as
a realistic next step beyond single-model decision support. In this respect, it is
consistent with emerging “Al hospital” initiatives — such as large-scale virtual
hospital environments developed in China — while making a critical design
choice: multi-agent clinical intelligence is acceptable only when embedded
within a governance envelope that enforces auditability, bounded autonomy,
and escalation-safe clinical accountability.

In summary, AMAC provides the system-level envelope required to make
large-scale clinical Al integration feasible, controllable, and regulation-compatible
in complex oncology environments. As Part I of this series, the present work fixes
the architectural, governance, and deployment baseline. Subsequent parts build
on this foundation by formalizing trust evaluation mechanisms, quantitative
monitoring, and lifecycle feedback controls necessary for sustained, long-term
clinical operation.

Further Research Directions

The reference model established in this Part I defines a stable system-
level foundation for the deployment and governance of integrated Al platforms
in oncology. Several directions for further research naturally follow from the
scope delimitations and limitations discussed earlier, and are essential for
completing the proposed framework across technical, formal, and operational
dimensions.

Formal trust, evaluation, and decision gating. A primary direction
for further research concerns the formalization of trust, evaluation, and
decision gating mechanisms within the reference architecture. This includes
the development of quantitative and logical models for confidence estimation,
abstention, escalation, and acceptance under uncertainty, as well as their
integration with human-in-the-loop oversight. Such mechanisms are addressed
in Part II, where algorithmic and formal tools are introduced to operationalize
these concepts without weakening governance constraints.

Advanced mathematical and statistical modeling. Further work is
required to support rigorous analysis of robustness, calibration, and sensitivity
across heterogeneous clinical contexts. This includes advanced mathematical and
statistical modeling for uncertainty propagation, drift detection, and stress testing
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under varying data distributions and operational conditions. These methods
are critical for moving from experience-grounded assumptions to quantitatively
supported deployment decisions.

Extended validation and lifecycle governance. Beyond initial deployment,
further research must address long-term validation and lifecycle governance
of integrated Al platforms. This includes post-deployment monitoring, incident
analysis, model update strategies, and mechanisms for managing concept drift
and emerging risks under regulatory oversight. These topics are the focus of Part
III, which examines how the reference architecture and deployment pathway
can sustain safe operation over extended time horizons.

Cross-institutional and federated deployment models. Finally,
additional investigation is needed into cross-institutional and federated
deployment scenarios, particularly for smaller oncology centers. Such models
raise new challenges related to shared governance, distributed HITL and
AMAC functions, and coordinated auditability across organizational boundaries.
Addressing these challenges is essential for scaling the proposed reference model
beyond single institutions while maintaining safety and accountability.

Further research directions (deployment-first). Several issues merit
further research: (i) systematic multi-center transfer studies with explicit capacity
planning for HITL workloads and audit coverage; (i1) Interactive Granular
Computing (IGrC) mechanisms for auditable, human-guided evolution of granules,
thresholds, and operational policies over time (PEDRYCZ et al. 2008, POLKOWSKI
2009, SKOWRON et al. 2025); (ii1) advanced mathematical modeling for quantitative
robustness, calibration, and heterogeneity analyses across cohorts and clinical
practice patterns (e.g., uncertainty calibration, shift/transfer diagnostics, and
pre-defined statistical acceptance criteria for model updates); (iv) standardized
psycho-oncological quality auditing protocols (synthetic and real-world) and
their integration into post-market surveillance; and (v) long-term monitoring
of drift, security threats, and governance effectiveness under evolving EU Al
Act/MDR guidance.

Roadmap for future research on IGrC. The reference model motivates
a transition from static granular representations toward interactive granular
computing (IGrC), enabling auditable, human-guided evolution of knowledge
granules, thresholds, and policies over time. Research in this direction aims to
preserve traceability and control while allowing structured adaptation in response
to new evidence, changing guidelines, or evolving organizational constraints.
We plan to link the modeling of the AI systems discussed in the paper to the
IGrC (JANKOWSKI 2017, SKOWRON et al. 2025). For more information, see https:/
dblp.uni-trier.de/pers/hd/s/Skowron:Andrzej. This will enable us to design and
analyze Al systems based on the solid computational foundation of the IGrC and
consider interactive granular computations over abstract and physical objects.
The IGrC model can facilitate a more general approach than LLMs have thus
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far employed. For instance, it could enable us to examine the effectiveness
of languages found in nature. Inspired by biology and other natural phenomena,
these languages can advance reasoning tools for steering granular computations.
This will also make AI systems more trustworthy and explainable (BARREDO
ARRIETA et al. 2020) by providing explanations for suggested decisions, for
example. Furthermore, applying the lifelong learning paradigm to Al systems
will lead to continuous learning and the accumulation of past knowledge to assist
with future learning and problem solving. This makes systems adaptable to new
discoveries (e.g., outliers) and learning from past mistakes. One challenge of
rough sets based on IGrC is developing high-quality classifiers that can determine
whether information provided by LLMs is a hallucination and classify it with
different degrees of risk accordingly. This will require advanced dialogue methods
with domain experts. Another possibility is using IGrC to model c-granule
control. This would make computational modeling of learning more similar
to how the brain generates granular computations, constructing approximate
solutions for given specifications.

Closing perspective. Together, these research directions delineate a coherent
agenda that extends the foundational work presented in Part I. By progressively
enriching the reference model with formal mechanisms, quantitative validation,
and long-term governance strategies, future work can support the responsible
and sustainable integration of Al into oncological practice.
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