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A b s t r a c t 

This paper presents general solution of boundary value problem for constant cross-section 
Timoshenko beams with four typical boundary conditions. The authors have taken into consider-
ation rotational inertia and shear strain by using the theory of influence by Cauchy function and 
characteristic series. The boundary value problem of transverse vibration has been formulated and 
solved. The characteristic equations considering the exact bending theory have been obtained for 
four cases: the clamped boundary conditions; a simply supported beam and clamped on the other 
side; a simply supported beam; a cantilever beam. The obtained estimators of fundamental natu-
ral frequency take into account mass and elastic characteristics of beams and Timoshenko effect.  
The results of calculations prove high convergence of the estimators to the exact values which were 
calculated by Timoshenko who used Bessel functions. Characteristic series having an alternating 
sign power series show good convergence. As it is shown in the paper, the error lower than 5% 
was obtained after taking into account only two first significant terms of the series. It was proved 
that neglecting the Timoshenko effect in case of short beams of rectangular section with the ratio 
of their length to their height equal 6 leads to the errors of calculated natural frequency: 5%÷12%.
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Introduction

Mechanical vibrations, in particular flexural vibrations are common in 
load-bearing structures, so designers have to perform calculations for dynamics 
to protect the structure from fatigue damage. Therefore, the dynamic calcula-
tions are important subject of interest in both engineering theory and practice.  
The initial stage of the calculation is to solve the boundary problem as results 
from vibrations which are determined by the natural frequencies and the cor-
responding mode shapes (Timoshenko et al. 1985). In most cases, long an 
thin beams alone may be used to derive the equation of vibration by a sim-
plified theory of Euler-Bernoulli. However, the experience shows that simpli-
fied theory can be applied for slender beams if one deals with higher vibra-
tion frequencies calculated. The development of industry and the construction  
of equipment particularly exposed to dynamic loads have caused the need to refine 
the technical calculation methods used in the classical strength of materials.  
In 1914, H. Lamb pointed out that even in the simplest case of an impact loaded 
beam, the elementary vibration equation given by Euler and Bernoulli is not 
true. This equation leads to a result showing that the impact of the suddenly 
applied load propagates at an infinite speed. In order to eliminate this er-
ror, the strength methods were abandoned and, as proposed by Timoshenko, 
corrections due to the Timoshenko effect were introduced Timoshenko 1971).  
They took into account the effect of transverse forces on bending and rotational 
inertia (Rayleigh correction). Table 1 shows the related exemplary results ob-
tained by (Solecki, Szymkiewicz 1964)

Table 1 
The values of the first three frequencies for the above data in the case of a simply supported 

beam, with the consideration of Timoshenko effect

Frequency number
n

ῶ [rad/s]
(without effect)

ῶ [rad/s]
(with effect)

Difference
[%]

1 6 5.73 5
2 24 20.3 15
3 54 39.4 27

Although Timoshenko beam theory is much more complex than the fun-
damental one, it is much simpler than the solution of the three-dimensional 
theory of elasticity. The introduced correction caused a significant qualitative 
change in the beam vibration equation. It was possible, however, to capture the 
experimentally confirmed wave nature of the phenomenon, and with sufficient 
efficiency, it was also possible to discuss the results originating from the area 
of the wave fronts.
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Figure 1 presents the dependence, drawn with the broken line, which was 
obtained by the Bernoulli theory, or with the dotted line, as stated by the refined 
theory. The continuous lines show the dependencies resulting from the exact 
solution of dynamic Lame equations for a bar with the circular cross-section. 
The curves corresponding to the first three modes of vibrations were marked 
with digits I, II, III, respectively. The correlation of the curves shown in Figure 1  
shows that the refined theory can provide satisfactory approximations for the 
lower orders of vibration. For large values, the k-divergence is rather important.

If wave number k→∞ the exact value for velocity of surface Raleigh waves is 
cR, whereas in Timoshenko theory the limit value is the velocity of longitudinal 
waves c0.

For each fixed wave number, there are two phase speeds c1, c2 which main-
ly correspond to the bending and cutting forms of the propagating waves.  
At k2R2 ≪ 1; c1 ≈ kRc0; c2 ≈ ct

kR  hence c1 occurs with the velocity of bending waves, 
calculated on the base of the fundamental theory, with ct being the velocity  
of deformation. The velocity c2 at kR→0 increases to infinity (Bolotin 1979).

Fig. 1. Dependency of phase velocity of bending waves in rods on propagation coefficient, 
obtained by the use of a number of theories: c = k(EJ/ρF )1/2, R = (J/F )1/2,  

J, F – moment of inertia and the cross section area of the beam, ρ – denotes density  
of a material, E – Young modulus of elasticity λ – length of wave 

Source: based on Bolotin (1979).
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In the current work we solved the boundary problem of vibration bent for 
the four boundary conditions: both ends clamped, a simply supported end and  
the other clamped, soft simply supported on one end and hard simply support-
ed on the other end, and the cantilever. To solve those problems, the Cauchy 
functions and series of characteristics developed under the personal guidance  
of prof. Zoryj were applied, for example in work (Jaroszewicz et al. 2004). 
Exact formulas for the coefficients of a number of characteristic were derived. 
Moreover, taking into account only the first two significant terms of the series 
resulted in error not exceeding 5%. On the basis of the derived formulas, numer-
ical values of the coefficients of the short series were calculated for a reinforced 
beam with a rectangular profile of the ratio of length to height equal to 6.  
Disregarding the Timoshenko effect leads to the considerable calculation error. 
In order to calculate the fundamental frequency and the next two (the second 
and the third ones), double Bernstein estimates were used which appeared 
to be consistent with the exact values for the cantilever beam. The problem  
of impact of Timoshenko effect on vibrations of complex dynamic systems has 
been widely covered in literature, particularly in works (Wu, Chiang 2004, Ma-
mandi, Kargarnovin 2011, Moeenfard et al. 2011, Chen 2014, Zhang et al.  
2014, Hsu 2016). Particular attention should be paid to publications (Cazzani 
et al. 2016a, 2016b), in which the Timoshenko effect is evaluated for systems 
with variable mass and elastic parameters.

To solve the boundary problem, we use the methods of the Cauchy function 
and the method of characteristic series as an extension of Bernstejn’s spectral 
functions and double (lower and upper) estimators Bernstejn-Kieropian, which 
were developed in 1977-2000 at the Lviv Polytechnic by prof. L. Zoryj and  
at the Bialystok University of Technology by prof. J. Jaroszewicz. It was shown  
that the above methods are effective for solving linear 4th order differential 
equations with fixed coefficients and variable coefficients containing singu-
larities. Thanks to this method, the coupling conditions can be omitted, which 
increase the number of boundary conditions and increase the degree of the 
characteristic determinant.

The forms of characteristic equations proposed in the work allow to write 
the functional relationships between the frequency of the vibration form and  
the mass-elastic characteristics of the models. This allows not only to calcu-
late the frequency and form of vibrations, but also to optimize and influence 
the formation of specific dynamic behaviors. For the construction of solutions  
of analogous differential equations, Bessel special functions were commonly 
used, which require solving complex systems of algebraic equations. Therefore, 
the proposed solution structure using the Cauchy function is much more effec-
tive and the characteristic equations are derived in the form of fast convergent 
power series of the frequency parameter. Double estimators give limits in which 
the exact frequency value is located using elementary functions. By deriving 
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a greater number of linear terms in the series, two or more frequencies can be 
determined without the need for numerically solving high order characteristic 
equations.

The equation of flexural vibrations

In the case of load-bearing structures, like beams, in which height of cross 
section is larger than the span or length of the beam, and when higher natural 
frequencies are calculated, it is necessary to consider the influence of shear  
strain with regard to rotational inertia and shear, in literature known as  
the effect of Timoshenko (Timoshenko 1971, Thomas, Abbas 1975). 

Not considering these effects leads to the significant divergence with respect to 
calculations based on the Timoshenko theory (Timoshenko et al. 1985, Solecki, 
Szymkiewicz 1964). 

For short beams, when calculating higher frequencies, when the wavelength 
of the deformation is comparable to the transverse beam dimensions, the techni-
cal theory of bending vibration, which does not take into account the shear and 
inertia of the rotation of the cross sections, results in large errors in calculations 
i.e. overestimates frequencies. The beam shape for the first mode of vibration 
is shown in Figure 2.

Fig. 2. The beam shape for the first mode of vibration: w – deflection of a beam,  
x – length of axis, L – length of beam, δw

δx  – angle of bending, γτ – angle of a cross-section 
Source: own elaboration.

Timoshenko beam is a sufficiently generalized calculation model for  
the studied load-bearing structure, with the consideration of influence of rota-
tional angle and shear strain. The loading state of the element section of the 
beam is presented in Figure 3 and 4. 



220	 Jerzy Jaroszewicz, Krzysztof Łukaszewicz

Technical Sciences	 21(3) 2018

Fig. 3. Schematic diagram of the internal loading of the beam element resulting  
from the rotational inertia and inextensional strain: R – radius of element,  

y – length from neutral axis to section axis, dx – length of elementary element,  
∆dx – elongation, ψ – angle, δψ

δx
dx– elastic deformation 

Source: based on Vasylenko, Aleksejiuk (2004).

Fig. 4. Schematic diagram of loading of beam elements with respect to rotational inertia  
and non-dilatational strain: A – cross sectional area, M – moment of element bending,  

Q – shear power, B –inertia force, Jm – moment of inertia,  
g – acceleration of gravity, γ – mass density 

Source: based on Vasylenko, Aleksejiuk (2004).

For simplicity we assume that the beam performs the first bending mode  
of vibration for which (see: Vasylenko, Aleksejiuk 2004):

	 Θ = ∂𝑤𝑤
∂𝑥𝑥 + 𝛾𝛾𝜏𝜏 	 (1)
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Then, on the basis of Figure 2, we obtain:

	 Q = –KGF𝑄𝑄 = −KGF (𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 − Θ) 	 (2)

where:
K =  Jb

FS
	–	the coefficient applied to establish shear deformation, 

G	 –	Kirchhoff module of elasticity, 
J	 –	a moment of cross section inertia, 
F	 –	cross section plane, 
S	 –	a moment of inertia of a part of the section located at one side  

of the axis of symmetry,
b	 –	width of cross section in the neutral plane. 

Taking into account the forces acting on the dx element, d’Alembert’s  
inertial forces from the linear w and angular Θ displacements of the sections  
(Fig. 2), we apply equations of dynamic equilibrium ∑Y = 0, ∑M0 = 0. From these 
equations, rejecting infinitely small quantities of the second order, we obtain 
the following relations:

	
∂𝑄𝑄
∂𝑥𝑥 = 𝑞𝑞 − 𝜌𝜌𝜌𝜌 ∂

2𝑤𝑤
𝜕𝜕𝑡𝑡2  ,  

∂𝑀𝑀
∂𝑥𝑥 = 𝑄𝑄 + 𝐽𝐽𝑚𝑚

∂2Θ
∂𝑡𝑡2  	 (3)

Substituting equation (2) to (3), and taking into account known relations 
(Vasylenko, Aleksejiuk 2004), we obtain the equations of forced vibrations 
of the elastic Timoshenko beam:

	

{ 
 
  𝜌𝜌𝜌𝜌

∂2𝑤𝑤
𝜕𝜕𝑡𝑡2 − 𝐾𝐾𝐾𝐾𝐾𝐾 (

∂2𝑤𝑤
𝜕𝜕𝑥𝑥2 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕) = 𝑞𝑞(𝑥𝑥, 𝑡𝑡)

𝐸𝐸𝐸𝐸 ∂
2Θ
∂𝑥𝑥2 + 𝐾𝐾𝐾𝐾𝐾𝐾 (

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 − Θ) − 𝐽𝐽𝑚𝑚

∂2Θ
∂𝑡𝑡2 = 0

 	 (4)

This work examines the method of analysis of transverse vibrations of the 
given beam with the use of Cauchy function and characteristic series (Jaro-
szewicz, Zoryj 2000). Earlier, Jaroszewicz applied Cauchy function to analyze 
both static and dynamic problems of the beam systems (Jaroszewicz 1999, 
Jaroszewicz et al. 2014). 

Formulation of the boundary problem

From the equation (4), for a constant cross-section beam EJ = const., GJ = const., 
ρF = const with q(x,t) = 0, we obtain the equation of motion of transverse free 
vibrations of load-bearing beam system, the elements of which are shown in 
Figure 1. This equation can be written (Jaroszewicz et al. 2004) in the form: 
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	 𝜌𝜌𝜌𝜌 ∂
2𝑤𝑤
∂𝑡𝑡2 + 𝐸𝐸𝐸𝐸 ∂

4𝑤𝑤
∂𝑥𝑥4 − 𝜌𝜌𝜌𝜌 (1 + 𝐸𝐸

𝐾𝐾𝐾𝐾)
∂4𝑤𝑤

𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2 +
𝜌𝜌2𝐽𝐽
𝐾𝐾𝐾𝐾

𝜕𝜕4𝑤𝑤
𝜕𝜕𝑡𝑡4 = 0 	  (5)

where:
ρ	 – denotes density of a material, 
E	– Young modulus of elasticity, 
w	– a deflection of the beam, 
x	 – the longitudinal beam coordinate, 
t	 – time.
Determination of free frequencies needs solving the appropriate boundary 

value problem. Substitution of w = y  te
l
xyw ë





= eλt with (5) and separation of two vari-

ables x and t give the differential equation with respect to x:

	 yIV – βy″ – δy = 0, (0 ≤ x ≤ 1) 	 (6)
where:

β = λ2ρJ(1 + E
KG)l2(EJ)–1 = λ2A,

δ = –(EJ)–1(ρFλ2 + ρ2 J
KGλ4)l4 = –(λ2B + λ4C),

w2 = –λ2 – the second power of frequency.
The formulas above contain the following symbols: 

	 𝐴𝐴 = 𝜌𝜌𝑙𝑙2
𝐸𝐸 (1 + 𝐸𝐸

𝐾𝐾𝐾𝐾) ; 𝐵𝐵 = 𝜌𝜌𝜌𝜌𝑙𝑙4
𝐸𝐸𝐽𝐽  ; 𝐶𝐶 = 𝜌𝜌2𝑙𝑙4

𝐸𝐸𝐸𝐸𝐸𝐸 	 (7)

Four cases of boundary conditions (Tab. 2), corresponding to the most fre-
quently occurring supports of beams were analyzed of (Jaroszewicz et al. 2004).

Table 2
Four cases of boundary conditions

y(0) = y′(0) = 0 y(1) = y′(1) = 0 (8)

y(0) = y″(0) = 0 y(1) = y′(1) = 0 (9)

y(0) = y″(0) = 0 y(1) = y″(1) = 0 (10)

y(0) = y′(0) = 0 y″(1) = y‴(1) = 0 (11)
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The general solution

The general solution of equation (6) can be expressed in the following form 
(Jaroszewicz, Zoryj 2000):

	 y = C0φ + C1φ′ + C2φ″ + C3φ‴	  (12)

in which the function φ(x, β, δ) and its x derivatives are defined below, and 
where C0, C1, C2, C3 denote arbitrary constants. 

The Cauchy function appearing in the equation (12) is described with the 
formulas: 

	 𝜑𝜑(𝑥𝑥, 𝛽𝛽, 𝛿𝛿) = ∑ 𝐽𝐽𝐾𝐾𝑥𝑥𝐾𝐾+3
(𝐾𝐾 + 3)!

∞

𝐾𝐾=0
= 1
𝜇𝜇2 + 𝜈𝜈2 (

sh𝜇𝜇𝜇𝜇
𝜇𝜇 − sin 𝜈𝜈 𝑥𝑥

𝜈𝜈 ) 	 (13)

J0 = 1,   JK = βJK–2 + δJK–4,   Jj = 0    for j < 0

µ2 = √1
4 𝛽𝛽

2 + 𝛿𝛿 +
1
2 𝛽𝛽 , v2 = √1

4 𝛽𝛽
2 + 𝛿𝛿 −

1
2 𝛽𝛽 

Characteristic equations corresponding  
with the first three types of boundary conditions 

Substitution of the form (12) in the boundary conditions (8) from Table 2, 
corresponding to the clamped-clamped beam, results in the following charac-
teristic equation: 

	 0)))((),,1( 1
2 =−== =xFF φφφδβ  	  (14)

where: 	 n
n

n

nn xfF δβ ),(2)1(
0

12


=

+−=  	 (15)

	
)!424(

),(
424

0

12
12 ++

=
++

=

+
++ mn

xCxf
mnm

m

n
mn
ββ  	 (16)

C2n + 1
2n + 1 + m  – binominal coefficient.

Subsequent substitution of the general solution (12) in the conditions (9) 
yields the characteristic equations of a similar structure as before, on whose 
left side there is the following derivative of the function F from (15): 

	 0),,1( = δβF   	  (17)
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Subsequently, substitution of (12) in (10) leads to the following derivative  
on the left-hand side of (10): 

	 0),,1( = δβF  	  (18)

Now we can construct function for boundary conditions (11) in power series 
form with respect to the coefficient λ2. For this purpose, a few first functions 
can be calculated from (16):

...
!8

3
!6

2
!4

),(
2864

0 +++=
 xxxxf  

...
!12

10
!10

4
!8

),(
212108

1 +++=
 xxxxf  

	 ...
!16

21
!14

6
!12

),(
2161412

2 +++=
 xxxxf  	 (19)

...
!20

36
!18

8
!16

),(
2201816

3 +++=
 xxxxf  

...
!22

10
!20

),(
2220

4 ++=
 xxxf  

and a few first terms of the series (15) are:

	 ...2222 3
3

72
2

5
1

3
0 +−+−= δδδ ffffF  	  (20)

The right-hand side of the relation (20) can be written in a form of a series: 

	 Δ ≡ 𝑎𝑎0 + 𝑎𝑎1𝜆𝜆2 + 𝑎𝑎2𝜆𝜆4 + 𝑎𝑎3𝜆𝜆6+. . . |𝑥𝑥=1 = 0 	 (21)

presented as a characteristic series, also named the Bernstein spectral function 
of the formulated boundary value problem. The characteristic equation (21)  
in the form of the power series in relation to the frequency parameter is obtained 
by substituting the general form of equation (12) to the boundary conditions 
from Table 2, equating equations of the system of four algebraic equations to 
zeros, and then using the conditions for non-zero values for integration constants  
C0, C1, C2, C3.

Formulas for the first four terms of a series (16) for the example presented 
in Table 2 have been determined by using relations (17)÷(20): 
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!4

2
0 =a  ,   BAa

!8
2

!6
4 3

1 +=  	 (22)

2
533

2
2 !12

2
!8

2
!10
42

!8
23 BCABAa ++


+


=  

3
76

2
53

2
3

3
3 !16

2
!12

2
!14
62

!10
42

!12
102

!10
24 BBCABACBAAa ++


+


+


+


=  

𝑎𝑎4 =
5 ⋅ 2
12! 𝐴𝐴

4 + 23 ⋅ 20
14! 𝐴𝐴3𝐵𝐵 + 23 ⋅ 10

12! 𝐴𝐴2𝐶𝐶 + 25 ⋅ 21
16! 𝐴𝐴2𝐵𝐵2 + 26 ⋅ 6

14! 𝐴𝐴𝐴𝐴𝐴𝐴+. .. 

where A, B, C are constants defined with (7).

The above formulas (22), correspond to a clamped-clamped support –  
the case (8). For the cases (9) and (10), the formulas for subsequent coefficients  
of the characteristic series (21) can be written, bearing in mind that F′(1, β, δ) = 0  
in the case (9) and F″(1, β, δ) = 0 in the case (10).

Having obtained coefficients (22), Berstein-Keropian double (upper and low-
er) estimators have been applied to calculate base frequency and the next two  
(the second and the third ones). Results of the calculation are presented be-
low, in section 6. It should be noted here that the first and second frequencies 
have been received with a great accuracy, and the third and fourth ones are 
determined with approximate values. Approximate values may be enhanced 
by means of iteration method with use of formula (12) and the exact expression 
for the function (15):

	 𝐹𝐹 = 1
(𝜇𝜇2 + 𝜈𝜈2)2 [(𝜇𝜇

2 + 𝜈𝜈2) sh𝜇𝜇 sin 𝜈𝜈 𝑥𝑥𝜇𝜇𝜇𝜇 + 2(1 − ch𝜇𝜇𝜇𝜇 cos 𝜈𝜈 𝑥𝑥)] 	 (23)

Characteristic equations in the case of cantilever beam 
boundary conditions 

In case of cantilever beam with Timoshenko effect taken into account, for 
which boundary conditions are in the form (11) (Tab. 2), the characteristic equa-
tion can be obtained in the following form:

	 1 – δF(1, β, δ) = 0	 (24)

which, by substituting δ in (24) and accounting for (7), reads: 

	 1 + (λ2B + λ4C) · F(1, β, δ) = 0	 (25)
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Then, consideration of (12) leads to the following coefficients of characteristic 
series: 

10 =a  ; Ba
!4

2
1 =  ; CABBa ++=

6
4

!8
2 2

2  

	 BCACCBABBABa
!8

2
!6

4
!8

2
!10
42

!8
23

!12
2 33

2
3

23
5

3 +++


+


+=  	 (26)

.....
!8

2
!8
23

!12
32

!14
62

!10
2

!12
102

!10
24

!16
2

2
3

2

2
5

3
56

22
3

34
7

4

CCA

CBABABCBABABa

+


+

+


+


++


+


+=
 

The final form of equation (25) is received by means of transformation of 
the expressions (26)

	 1 – δF(x, λ) = 0	 (27)
where:

	












+++
= −−−+

+−+

+++−

=

+

=



=
 jmjmnj

m
m

jnm

jmnjn

jm

m
n

j

j

n

n BACC
jmn

xCxF 12
1

4222
12

2/

00

2

)!4222(
2),( λλ  

(28)

The result in the form corresponding to the case without Timoshenko effect 
and values of estimators is not difficult to obtain from formulas (27): 

	 10 =a  ; Ba
!4

2
1 =  ; 2

3

2 !8
2 Ba =  	 (29)

	 √ 𝐸𝐸𝐸𝐸
𝑚𝑚𝑙𝑙4 1.8749 < 𝜔𝜔1 < 1.8751√ 𝐸𝐸𝐸𝐸

𝑚𝑚𝑙𝑙4 	 (30)

Values of coefficients of base frequencies which were calculated on base  
of Bernstein estimators [1] are in agreement with the exact values calculated 
by means of Krylov-Prager (Thomas, Abbas 1975) function for cantilever.

Calculation results of base frequency for four cases of supports, according 
to the proposed method

Table 3, presented below, contains formulas for the first three terms  
of a series without Timoshenko effect.

The application of Cauchy influence function and characteristic series to 
the analysis of the transverse vibration of short beams gave results in the form 
of characteristic power series (21) for which closed formulas for the first four 
terms of series (22) and (26) can be formulated. The calculations of frequency 
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were adjusted for the first three terms of the series. On the basis of the simplest 
Bernstein estimators, and by the use of previously listed formulas, the base 
frequency can be calculated (Bernstein, Kieropian 1960):

	
20

2
11

02
1

20
2
1

0

4

2

2 aaaa

a

aaa

a

−+


−
ω  	 (31)

If one knows a3 and a4 and the coefficients (22) and (26) for the frequency of 
equation (21), the plate first three frequencies can be estimated and the approx-
imate value of the fourth frequency can be determined. First, let us calculate 
the following numbers:

	 𝐵𝐵1 =
𝑎𝑎1
𝑎𝑎0

= 1
60 , 𝐵𝐵2 = (𝑎𝑎1𝑎𝑎0

)
2
− 2𝑎𝑎1𝑎𝑎2𝑎𝑎02

= 0.0001786 	 (32)

and the ratio:
	

𝐵𝐵2
𝐵𝐵12

= 0.64288 	 (33)

for which the corresponding results are given in Bernstein, Kieropian (1960, 
Tab. 21, p. 236). The following formulas are used:

	 𝜔𝜔𝑖𝑖 = 𝛾𝛾𝑖𝑖
1
𝑅𝑅2 √

𝐷𝐷0
𝜌𝜌ℎ0

, (𝑖𝑖 = 1, 2, 3) 	 (34)

	 (𝛾𝛾𝑖𝑖)− = √
𝜑𝜑𝑖𝑖
𝐵𝐵𝑖𝑖

4 , (𝛾𝛾𝑖𝑖)+ = √𝛽𝛽𝑖𝑖
𝐵𝐵1

4
, (𝑖𝑖 = 1, 2, 3) 	 (35)

	 4
1

4 B
ψγ   	 (36)

Table 3
Final formulas for the first three terms of a series without Timoshenko effect

Boundary conditions  
from Table 2 a0 a1 a2

(8)
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Expression (36) defines the approximate estimate of the fourth eigenvalue 
parameter according to Bernstejn-Kieropian tables. Having the first 3 coefficients 
of equation (21) a0, a1, a2 calculated, one can determine the estimators of the 
first three vibration frequencies and approximate the fourth one. Bernstejn and 
Kieropian developed formulas for estimators of higher frequencies and placed 
them in tables of relations between them. When calculating the ratio (33), we 
read on the basis of [1] the values: φ1, φ2, φ3, β1, β2, β3 and ψ and then we cal-
culate the upper and lower estimators of the higher frequencies.

Taking relations (32)–(36), and substituting a0 = 1, and a1 and a2 from (22) 
into these relations, we obtain: 

	 8.64 < γ1 < 8.85	

	 10.06 < γ2 < 20.08	 (37)

	 31.61 < γ3 < 52.56	

γ4 ≈ 66.61

Coefficients of the characteristic series of the present beam without Timo- 
shenko effect, manifested by zero values A and C, are presented in Table 3.  
To calculate the subsequent frequencies, Bernstein tables must be applied (Bern-
stein, Kieropian 1960).

The calculation results of the lower and upper estimators of the base fre-
quency, without Timoshenko effect, conducted by using symbols from Table 3,  
correspond to the exact values (Timoshenko 1971, Thomas, Abbas 1975,  
Solecki, Szymkiewicz 1964) and they are listed in Table 4.

The results of calculation of the lower and upper estimators of the base 
frequency are obtained with Timoshenko effect for concrete beam with  
a rectangular cross-section, in which: the ratio of length to cross-sectional height is:  

Table 4
Values of estimators for the base frequency in the case of four support  

without Timoshenko effect

Boundary 
conditions

Low estimator

−)(1
1

4
ωρ

π EJ
Fl  

High estimator

+)(1
1

4
ωρ

π EJ
Fl  

Exact value

)(1
1

4
ωρ

π EJ
Fl  

(8) 4.720 4.732 4.730
(9) 3.818 3.924 3.927
(10) 3.140 3.143 π

(11) 1.802 1.875 1.870
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l/h = 6, Young modulus and Kirchoff modulus relationship reads E/G = 2.5, 
and shape of the section is K = Jb/FS = 2/3, the area of cross-section equals:  
F = b ∙ h = 0.5 m2, the moment of inertia of a cross-section is: Jx = bh2/12 = 0.042 m4,  
S – the first moment of the section area located on one side of the axis neutral 
to this axis, ρ = 24,000 Ns2/m – the density of the material. Parameters A, B, C,  
calculated with formulas (7) are as follows: A = 0.029882 1/s2, B = 2.718 1/s2,  
C = 0.000148 1/s4. These results for geometrical and material exemplary para- 
meters are listed in Table 5. They correspond to the calculation results presented 
in the work (Solecki, Szymkiewicz 1964).

Table 5
Values of the first three coefficients of the characteristic series for the base frequency  

for the cases from Table 2, without Timoshenko effect.

Boundary 
conditions a0 a1 ∙ 10–4 a2 ∙ 10–6 ῶ1 

[rad/s]
(ω1)+ 

[rad/s]
(ω1)– 

[rad/s]
(ω1)sr 
[rad/s]

(8) 1/12 5.4 0.5 12.43 13.65 13.51 13.58
(9) 1/3 43.14 5.9 8.79 8.96  8.87 8.91
(10) 1 302 6.5 5.99 5.58 5.56 5.57
(11) 1 2264 1465 2.11 2.13 2.13 2.13

Table 6
Values of the first three coefficients of the characteristic series for the base frequency  

for the cases from Table 2, with Timoshenko effect

Boundary 
conditions a0 a1 ∙ 10–4 a2 ∙ 10–6 ῶ1 

[rad/s]
(ω1)+ 

[rad/s]
(ω1)– 

[rad/s]
(ω1)sr 
[rad/s]

(8) 1/12 7.05 1.41 11.87 13.57 12.68 13.13
(9) 1/3 57.01 6.3 8.16 8.25 8.22 8.24
(10) 1 456 7.03 5.22 5.31 5.23 5.27
(11) 1 2264 1995 2.09 2.05 2.06 2.06

Table 6 presents the results of the calculations with Timoshenko effect and 
Bernstein double estimators by formulas (22) for the boundary conditions (8), 
then by (26) for the conditions (11), and the results on the base of biquadratic 
equation (32) for the case (10). The results of calculations for a rough Dunkerley 
estimator for cases (8), (10) and (11) were based on the formula (Jaroszewicz, 
Zoryj 2000):

	
1

1
1~
a

ω  	  (38)

where ῶ1 is the course value of the basic frequency estimate, calculated on the 
basis of the first part of the series a1.
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For the case of a free-ends beam without Timoshenko effect, on the base  
of (32) and Table 3 formulas for the cases (8)÷(11) can be formulated:

	
420/

1~
1 B
ω  , 

720/
1~

1 B
ω  , ,

90/
1~

1 B
ω  , 𝜔̃𝜔1 ≈

1
√𝐵𝐵/12

 	 (39)

Numerical analysis

For comparison purposes, the calculations of the distribution and values 
of concentrated strain have been calculated with the use of FEM. Autodesk 
Inventor 2015 software equipped with NASTRAN module has been applied. 
The comparison has only related to natural frequency distribution determined 
analytically using the relationship (31) and (38), so the focus was on the calcu-
lation with linear behavior of the material. Calculations covered four cases of 
beam support shown in Table 2. The dimensions of the beam, material constants 
and boundary conditions were assumed in the same way as in the analytical 
studies. Due to the simple shape of the beam, the problem was modeled as  
a spatial one, adopting a standard mesh that uses 10-node elements. Table 7 
shows information on the developed mesh for the studied beam.

Calculations of the percentage difference in the results for different types 
of beam supports and calculation methods have been conducted according to  
the formula (40), and these values are given in Table 8.

	 𝛥𝛥𝛥𝛥 = |𝜔𝜔sr
ANL − 𝜔𝜔MES

𝜔𝜔srANL
| ⋅ 100% 	 (40)

where: 
ωsr

ANL	– analytically determined natural frequency, 
ωMES	 – FEM-determined natural frequency.

Table 7 
Mesh parameters

Type of mesh Parabolic tetrahedral
Max. element Growth Rate 1.5
Refinement Ratio 0.2
Min./Max. Trangle Angle 20/30 deg
Upper Jacobian Ratio Bound 16 points 
Size 200 mm
Tolerance 0.0356 mm
Quality high
Elements 2,600
Nodes 3,851
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Table 8
Percentage values of difference in results for FEM and analytical method

Boundary 
conditions

Values  
ωMES  

[rad/s]

Difference in results without 
Timoshenko effect  

[%]

Difference in results  
with Timoshenko effect 

[%]
1st freq. 2nd freq. 1st freq. 2nd freq. 1st freq. 2nd freq.

(8) 12.87 29.96 5.28 8.71 2.04 4.23
(9) 8.53 23.41 4.31 7.76 3.47 3.12
(10) 5.41 21.541 2.88 6.48 2.65 5.08
(11) 2.08 11.78 2.15 5.37 1.17 2.81

Conclusion

The characteristic equations which have been obtained in this paper and 
final formulas resulting from them, provide the mathematical safeguard for 
calculation of the lower and upper estimators of the base frequencies of short 
beams with the rotational inertia and non-dilatational strain taken into account, 
and with the most common boundary conditions found in engineering practice.

Application of the Cauchy function and the corresponding characteristic 
series for analysis of transverse vibrations of short beams has demonstrated 
efficiency of these methods in terms of accuracy and in the ability of formulating 
functional relations between the mass and elasticity parameters of beams for 
an arbitrary section, arbitrary relationship of longitudinal and non-dilatational 
elasticity module, and arbitrary natural frequencies.

Consideration of first three terms of series allows for receiving convergence 
to the analytical solution results of the fundamental frequency coefficients, with 
accuracy to three decimal digits.

Formulas, proposed in this paper can be particularly useful for prelimi-
nary engineering calculations as well as for didactic objectives in the dynamics  
of short structural elements, in which application of simplified technical bending 
theory leads to unacceptable errors in natural frequency calculations, especially 
for higher frequencies, starting from the second one.

FEM – Autodesk NASTRAN environment allows for precise forecasting  
of a beam’s natural frequencies. Frequencies whose values are, for the most 
part, within the specified analytical considerations range. It can be observed 
that the results obtained in the FEM environment show lower percentage differ-
ences with respect to the analytical considerations when the Timoshenko effect  
is taken into account. 
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