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A b s t r a c t 

An optimization model for the cost–revenue study at the stage of system analysis and pre-
liminary designs of storage objects such as warehouses, containers, packs and similar objects are 
developed. Our assumptions motivated by warehouses design lead us to a nonlinear integer opti-
mization problem with the only basic constraint. We present algorithmic methods for obtaining the 
exact solution to the general problem with emphasizing the special case when both the objective 
and the constraint functions are increasing. The results of the paper may be used in developing 
software tools intended for supporting designers.

Introduction

An optimization model for the cost–revenue study at the stage of system 
analysis and provisory designs of storage objects such as warehouses, contain-
ers, packs and similar objects are developed. The design includes both: single 
objects and object complexes. 
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The problem of warehouses design is the strategic factor in the success of many 
businesses and hence there is a need of developing different types of warehouse 
storage solutions. A lot of companies offer their support in warehouse and layout 
design (see, e.g., Mecalux, Logistics Bureau). Scientific articles concern mainly 
layout design (see Chittratanawat 1999, Singh, Sharma 2006, van Camp et 
al. 1991). A design project of a warehouse should compile as much information 
as possible, so that the installation fulfils its function and can even adapt to any 
future needs that may arise. It is essential that designers clearly understand 
all the characteristics of storing goods: the load unit used, its dimensions and 
the required dimensions of the shelves and the installation work areas, as well. 
The dimensions and characteristics of the warehouse infrastructure are essen-
tial and must be very accurate information. They are required for the design 
of shelves, to calculate the capacity of the installations and the distribution  
of the goods inside the warehouse.

The following simplified sequence of relationships underlies our approach: 
entrepreneur’s revenue from selling storage services is roughly proportional to 
the total loading of all the storage objects the latter, in turn, is roughly propor-
tional to the entire interior volume of the storage objects and, finally, the interior 
volume of all the predesigned objects is a function of their dimensions. Such  
a function may be defined either by an analytical formula or even by an algorithm.

Naturally, the objective function is maximized subject to constraints that 
express budget limitation derived from landscape peculiarities or by structural 
or technological norms and regulations. The major financial constraint takes 
into account costs (prices) of the building materials, raw and fabricated, letting 
the other construction expenses (e.g. caused by purchasing and installing the 
equipment or facilities, labor costs etc.) be represented by a collective evaluation. 
There are also limitations that must be included: access, floors, windows, col-
umns, boxes, lines and power lines are all examples of parts of an installation 
that influence its design. Furthermore, there are the building regulations that 
directly affect the calculations of storage structures.

Structural and technology requirements imply that we mainly deal with  
a nonlinear integer optimization problem. The main version is proved to be an 

-hard problem. We study basic properties of this problem which underlie our 
algorithms. Examples and applications are given as well. 

Although our algorithms are based on searching the state space and have 
exponential complexity instances of the presented problem with a small number 
of variables are solved efficiently. In case of a large number of variables it is 
worth looking for fast sub-optimal algorithms enriched with the appropriate 
tests for optimality.

The paper is organized as follows. First, we present assumption and con-
ventions that are motivated by practice. Next an optimization problem for three 
decision variables is described together with its algorithmic solution. Later 
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we generalize this problem to  decision variables. We also discuss the role  
of the choice of the set of parameters (that corresponds to decision variables) 
characterizing the predesign shape of construction. Finally, we consider increas-
ing property of both the objective function and the constraint function and we 
give an algorithm based on this property.

Assumptions and conventions

Assume that an entrepreneur has a land area sufficient to build a logistics 
center, the main object of which would be a warehouse to provide regular reve-
nue, and therefore to gain profit from the provision of warehousing and storage 
services for goods, raw materials, semi-finished products, etc., generally called 
“loading” of the magazine. We also make the following assumptions:

–	regular income is quite stable and proportional to the amount of the whole 
loading stored;

–	the size of the loading is related to the interior volume: larger volume 
creates a predisposition for greater loading. In any case, the lack of space at  
the occurrence of demand for storage services clearly leads to revenue losses;

–	storage capacity depends on the geometric shape and individual dimen-
sions of the warehouse. The most common shapes of real structures are quite 
simple: a cuboid (possibly with a “gable roof” or a shade), a pyramid or pyramid 
truncated;

–	assuming the geometric shape of the storage structure to be already defined, 
we have that the values of the basic dimensions of the construction determine  
the final design of the interior space of the warehouse. Such a project is designed 
to provide the largest volume of interior space and thereby maximize the potential 
loading of the warehouse. This means that the dimensions are variable values, 
selectable in certain intervals and subject to some constraining conditions (in 
other words, they are supposed to be decision variables in appropriate optimi-
zation mathematical models);

–	as the basic limiting condition, we require that the pre-determined amount 
of money for warehouse construction be not exceeded. We assume that the costs 
are dependent on the prices of building materials used for the structural com-
ponents, i.e. walls, floor, roof and so on. Also, other costs such as design, land 
preparation and development, energy infrastructure for machines, energy costs 
of equipment exploitation, labor, etc. are under consideration. The entire sum 
of costs is presented as a function dependent on decision variables;

–	summing up, we would like to develop and explore a model for achieving 
best business results based on the provision of stock warehousing services at 
the design stage of storage facilities, depending on the structural components 
and dimensions of the building. 
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Formulation of optimization model

We start with an example of an optimization model for a cuboid warehouse. 
The problem is to determine the size of the warehouse with the greatest volume 
under budget. We take the following assumptions:

–	the warehouse is a cuboidal building described by three parameters: length, 
width and height denoted, respectively, by . In our optimization prob-
lem these parameters measured e.g. in meters will play the role of decision 
variables. Our purpose is to maximize volume of the cuboid, hence the function 

 will constitute the objective function;
–	the parameters values are restricted to intervals determined by lower 

bounds  and upper bounds ;
–	the construction expenses are obtained by summing costs of the main 

parts of the building such as walls, floor, roof and others which are supposed 
to be proportional to their surfaces. Let  denote the given unit costs 
of construction of one square meter of the floor, side and rear walls, roof, and 
the front wall, respectively;

–	the total cost (denoted by ) of constructing the warehouse is the sum 
of all the main parts and some costs  that are independent of the size of the 
building. Hence, we obtain a mathematical expression for the constraint function: 

;

–	let  denote the budget limitation for the investment. Thus, we obtain  
the following constraint on the size of the building: ;

–	finally, the problem can be stated as follows: maximize  sub-
ject to:

C1  ,

C2  , and  are nonnegative reals for every

–	the integer form of this problem assumes that  are nonnegative 
integers. 

The integer optimization problem with three decision variables will be ab-
breviated as  (Integer Problem with 3 decision variables). Certainly,  and 

 in  can be different from those presented in above.
The above problem can be stated for continuous variables and hence cer-

tain attempts to apply real analysis optimization methods may be done. How-
ever, as we assume that the objective function describes the volume not only  
of a warehouse but also of a container or a collection of containers, the  function 
may have many different types and forms. Practically, any arbitrary function, 
even defined by an algorithm (with no explicit formula given) can be considered 
as an objective function. The constraint function  is assumed to express  
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the sum of all the construction costs. Therefore, there is no reason to assume 
any ‘nice’ analytic property such as differentiability, continuity or convexity  
of any of these two functions.

In this situation, an approach based on partial enumeration of feasible solu-
tions, seems to be the only practically efficient technique. Certainly, we realize 
that even decision problem of simple membership in the feasible region may turn 
out to be hard. Nevertheless, strong variability of objective functions justifies 
this approach in our work. Moreover, we assume that, as a rule, in practical 
applications the variables are integer. For example, the walls are made of some 
normalized components (modules) of a given size or the material is stored in 
containers of a given size. For this reason, we assume that the parameters are 
measured in some units depending on a specific situation and we consider the 
values of variables to be integer multiples of these units. Consequently, these 
units are used to calculate costs. Hence, we focus our attention on integer op-
timization problems such as  or more generally, , where  is the number 
of decision variables.

Algorithmic solution of 

The set of all the integer points satisfying C2 will be called the state space. 
To solve the  problem we need to scan the state space :

where  for every 

If a point in  satisfies the constraint C1 i.e. is a feasible solution, then 
the value of  is calculated, and finally, the points with the greatest value  
of  are the optimal solutions.

Below the reader will find the pseudo-code of an algorithm which for every 
point in  checks if this point is a feasible solution, and if the answer is “yes”  
it calculates the value of . The points with currently the highest value  
of the variable  are remembered (REMEMBER) and they are cleared (CLEAR)  
as soon as  becomes greater.

Algorithm-3DmaxVolume

FOR  DOWNTO  
	 FOR  DOWNTO 
		  FOR  DOWNTO 
		   	 IF ( ) THEN 
					     V: = Vol(l, w, h)
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	 IF ) THEN 
	 REMEMBER 
	 END IF
	 IF ) THEN 
	
	 CLEAR 
	 REMEMBER 
	 END IF
			   END IF
		  END FOR
	 END FOR
END FOR
END

The above algorithm scans the whole state space, so it makes 
 of steps. To improve effectivity  

of solving IC3 some deeper analysis of the functions  and Cost should be done.

The  model 

We present here a general optimization model . By assuming a gener-
al point of view, we are able to consider any solid figure (or even a collection  
of solid figures) the volume of which is being maximized. We assume that such 
a figure is described by a set of parameters (describing parameters) that charac-
terizes this figure in the sense that there is a function on the set of parameters 
returning its volume. Assume that we have: 

–	describing parameters  that fully characterize the figure as  
a rigid body;

–	the volume function  to be maximized;
–	the cost function  limited by a fixed number ;
–	integer values of describing parameters that are constrained by the integer 

lower and upper bounds  so that  for every  
The state space of this problem consists of integer points of the -orthotope S:

where   for every 

Then the  problem is formulated as follows:
Maximize , subject to 
C1	 , where B is a positive real,
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C2	  and  where  are nonnegative integers for 

C3	 , where ,  are the domains of  and  
respectively.

Any solution of the above problem is based on searching (exhaustively or 
partially) the state space, checking constraints and choosing the optimal solution 
(or solutions). Obviously, the cardinality of  is equal to:
card(𝑆𝑆) = (1 + 𝑢𝑢1 − 𝑙𝑙1) ∙ … ∙ (1 + 𝑢𝑢𝑛𝑛 − 𝑙𝑙𝑛𝑛) ≤ [max{(1 + 𝑢𝑢1 − 𝑙𝑙1), … , (1 + 𝑢𝑢𝑛𝑛 − 𝑙𝑙𝑛𝑛)}]𝑛𝑛 .

Therefore, it is important that the chosen set of describing parameters be mini-
mal. The choice of describing parameters is crucial in faster methods for solving 
the problem.

The 3DmaxVolume algorithm easily generalizes (  nested loops FOR) to the 
algorithm DmaxVolume solving IPn. Notice that the condition C3 guarantees 
the correctness of this generalization. If C3 is not satisfied, the DmaxVolume 
algorithm should be improved by introducing the mechanism for checking if 
the current point belongs to . If the answer is “no” the next point is 
taken. As the DmaxVolume algorithm is of exponential time complexity, other 
quick methods for solving  are worth of considering including methods based 
on some kind of heuristics. For example, genetic or other evolutionary algorithm 
would bring a suboptimal solution in better time. It depends on preferences of the 
entrepreneur if the exact solution with bigger cost is required, or if a non-exact 
suboptimal solution is good enough to use.

Choosing describing parameters

The next two examples show that even for a fixed solid figure there are 
various choices of describing parameters. Every choice has some advantages 
and disadvantages, as well. The solid figure in Example 1 is a cone and the 
value of the cost function is given as the value of the lateral surface area.  
It can be characterized by two parameters e.g. radius  and height , or radius   
and slant height .

Example 1 (Cone):
–	 , . Here, the constraint C3 is 

satisfied;
–	 , . Here, the domain of  is re-

stricted to pairs . In this case, the improved version of 2DmaxVolume should 
be used or some change in describing parameters should be done. Let us introduce 
a new decision variable , . Then ,  

 and C3 is satisfied.
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When the solid figure is a conical frustum, created by slicing the top off  
a cone with a cut parallel to the base, we need at least three parameters. 

Example 2 (Conical Frustum). Describing parameters: ,  
where  is the radius of the base,  is the radius of the top, and  is the 
slant height. Then , and 

, where  are unit costs of con-
structing the base, the top and the lateral surface, respectively. Here the domain 
assumptions that  and  can be used. By substituting new varia-
bles ,  and ,  we obtain a model with describing 
parameters  that satisfies C3.

NP-hardness of IPn

To show that  is -hard we present a polynomial (linear) reduction of the 
very known  problem) to . To learn more on  problems 
see e.g. Kellerer et al. (2004).

Based on a  instance:
maximize , subject to 

, 

where  are nonnegative integers for every 

create the following instance of 
maximize , subject to 

,

where  are positive integers and and 
 

It is easy to see that the model describes the situation of designing  
a collection of  bins of sizes . Such a collection may be in-
tended for serial batch manufacturing. The very creation of the model instance 
uses linear time  Any optimal solution of the  is an optimal solution  
of the  instance. -hardness of  implies -hardness of .
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Increasing assumption

In this section we consider an assumption that the functions Vol and Cost 
are increasing. This allows as to propose an algorithm solving  in linear 
time and to lower time complexity of .

Basic definitions and properties
Let  and let  denote 

an -tuple obtained from by substitution  for , where  Analogously, 
 stands for an -tuple obtained from by substitution  for  and 

 for , where 
Let  be a real function of  variables  and let . We say that: 
–	  is increasing on variable  on a set if and only if for any  

with  it holds that 
–	  is strictly increasing on variable  on a set if and only if for any 

 with  it holds that ;
–	  is increasing on a set if and only if  is increasing on a set  on 

every variable;
–	  is strictly increasing on a set if and only if  is strictly increasing 

on a set  on every variable.

Example 3:
–	in Example 1.1, the functions  and are strictly increasing on their 

domains;
–	in Example 1.2, the function  is strictly increasing on  and it would 

not be increasing on . After substitution, Vol(r, x) is strictly increasing on its 
domain;

–	in Example 2,  is strictly increasing on variables and would 
not be increasing on . The cost function Cost is strictly increasing on its domain. 
After substitution,  is strictly increasing on its domain;

–	as the state space  is a Cartesian product, the natural ordering  (state 
space ordering) on is determined. Namely, for any ;

–	  
–	  

with .
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Directly from definition of the order ≼ we have that a function  
is increasing (strictly increasing) on the state space  if and only if  and 
for any , if  then  ( ).

Proposition 1. If the objective function  is: 
–	increasing, then for any optimal solution there exists a maximal (in the 

order ≼ restricted to feasible solutions) element  which is an optimal solution 
of ;

–	strictly increasing, then any optimal solution of  is a maximal element 
among feasible solutions.

To see the correctness of the above proposition, let  be an optimal solution  
of  with for a feasible solution . If is increasing, then  
and, as  is maximal we have Vol(𝑎̌𝑎) = Vol(𝑥̌𝑥) , which means that  is an 
optimal solution. If is strictly increasing, then , which yields 
a contradiction.

A linear algorithmic solution of 

Proposition 1 and the next observation will be used in our algorithms in the 
sequel. Let us say that  satisfies the cost constraint if  and  
does not satisfy the cost constraint, in the opposite case.

Proposition 2. If the function Cost is increasing on its domain and  
then for any 

–	if  satisfies the cost constraint and  then  satisfies the cost con-
straint;

–	if  does not satisfy the cost constraint and  then  does not satisfy 
the cost constraint, either.

This proposition can be used to fit upper bounds  in  C2 as follows:

Algorithm-Fitting 

WHILE (  )
		
END WHILE
OUTPUT 
END
Assume from now on that the upper bound for every decision variable is set 

by the above algorithm, and that  is strictly increasing and  is increas-
ing on  (increasing assumptions). First, we will present the algorithm for  
(based on Proposition 2) that finds maximal feasible solutions which are, at the 
same time, optimal solutions (by Proposition 1). 
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Let Vol be a 2-D state space. Let  be the decision variables 
with , . We present an algorithm solving IP2 in at most 

 steps.

Algorithm 2D-IncreasingAssumptions (2D-IA)

 
WHILE ( )
	 WHILE ( )
	
	 END WHILE
	 REMEMBER  
	 WHILE (  )
	
	 END WHILE	
END WHILE
END

The algorithm starts in the North-West corner ( ) of the rectan-
gle  As satisfies the cost constraint,  satisfies the cost 
constraint for every . In this situation, we should move right ( ) 
and repeat this procedure until  does not satisfy the cost constraint. And 
again, we move down then right and so on. The algorithm ends when we get to 
the bottom or to the right-side boundary of the rectangle. 

Time complexity of this algorithm (the number of visited points) is not 
greater than the length of the path starting in the North-West corner and end-
ing in the South-East corner, which is equal to .  
The usage of space is not greater than  because every 
line (row or column) contains at most one maximal element. To obtain optimal 
solutions it is enough to calculate the values of Vol for every remembered point 
and choose the best ones.

An algorithmic solution of 

Consider  and choose a variable (say,  with ) and repeat  
the 2D-IA algorithm for  and every fixed . For simplicity, let 

2D-IA  

mean that 2D-I A runs for variables with the cost function 
 is for a fixed value , bounded as , .
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Algorithm 3D-IncreasingAssumptions (3D-IA)

FOR  TO  
	 RUN 2D-IA
END FOR
END

This algorithm needs at most  steps. 
Algorithm 3D-IA easily generalizes to higher dimensions ( D-IA algorithm)  
by using the appropriate number of FOR loops. Notice that the D-IA algorithm 
can be used under assumption that the Vol and the Cost function are increasing 
only on a pair of decision variables.

A slight improvement of the D-IA algorithm
Assume that Vol and the Cost are increasing functions on 𝑆. Notice that 

D-IA solves  in time , where  for 
 Moreover, if the variables are ordered according to increasing 

values of  i.e. then 

where  is a permutation of  

To show the last property consider   and 
  for some . Then

 and 

As the first components are equal, we compare the second ones:

 = . 

This yields that . 

Conclusions and remarks

In the paper, we introduced into consideration and investigated a problem 
of warehouse design under budget limitation. Certainly, this motivation leads 
to the IPn problems which can be also used in other applications e.g. allocation 
problem (see Ibaraki and Katoh 1988). The proposed IPn model has a single 
constraint however it may be extended to a multi-constraint model.

When we make increasing assumptions on the IPn problem we obtain an 
instance of the nonlinear integer knapsack problem (see Li Duan, Sun Xiaoling 
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2006). Therefore, methods for solving IPn can be used in a very wider class  
of problems and we think that developing methods presented in this paper 
is worth of effort (for example, an effective generalization of 2D-IA to higher 
dimensions is desirable).
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