
Technical Sciences, 2018, 21(4), 271–280

NUMERICAL EQUILIBRIUM ANALYSIS  
OF A STACK OF STEEL POST PALLETS 

Józef Pelc
Department of Mechanical Engineering and Fundamentals of Machine Design

University of Warmia and Mazury in Olsztyn1 

Received 25 April 2018; accepted 20 November 2018; available online 21 November 2018.

K e y  w o r d s: pallet, stack, equilibrium, stability, imperfection, warehouse. 

A b s t r a c t

A method for analyzing the equilibrium of a stack of loaded post pallets is presented.  
The finite element method was used to investigate the behavior of the bottom pallet in the stack 
during the addition of successive pallets. The stack was regarded as a self-stable multi-storey structure 
without bracings which is subjected to the weight of loaded pallets, horizontal forces resulting 
from sway and bow imperfections, and the impact of a forklift truck. The definite quadratic form of  
the tangent stiffness matrix after every increment in load was determined by nonlinear analysis to 
indicate the loss of post stability. An analysis of the stacking process of the evaluated pallets did 
not reveal a buckling trend in the posts of the bottommost pallet and demonstrated that the loss  
of equilibrium can lead to the collapse of the entire stack when a critical number of pallets is reached.

Introduction

Different types of pallets are used in warehouses for storing various prod-
ucts. Pneumatic tires are usually stored on steel post pallets. These pallets 
have a rigid bottom grid for storing tires. Posts are welded to the bottom grid, 
and the structural elements in the upper part of each post support the stack-
ing of subsequent pallets. Pallets are stacked on top of each other to maxi-
mize storage space. However, the stack can become unstable when it reaches  
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a critical height, which can be caused by the buckling of the bottommost pallet 
or the collapse of the entire stack around the edge of its base. In daily practice, 
the determination of the safe maximum number of pallets in a stack poses  
a significant challenge for engineering staff. The above can be attributed to 
the absence of the applicable standards. Two pallet standards were previously 
in force in Poland (PN-M-78207: 1981, PN-M-78205: 1988). The first standard 
was revoked in 2012, and the second was revoked in 2015 without any replace-
ments. These types of pallets have been rarely discussed in scientific and tech-
nical literature. Wolny et al. (2014) investigated the stability and resistance  
of a box pallet to bending, stacking, free fall impact, lifting with a forklift truck, 
and horizontal impact with both edges and legs. They conducted analyses with 
the Finite Element Method (FEM) in the Femap/NEi Nastran system with the 
use of beam elements that are particularly useful in pallet design. Most pub-
lished studies focus on pallet racks and on pallets for storing products in racks  
(on rack shelves) (Bernuzzi et al. 2015a, 2015b, Shah et al. 2016). Unlike pallets, 
racks have post footings attached to the warehouse floor, and adjacent racks 
and pallet rack series are often connected by bracings, whereas post pallets are 
placed on the warehouse floor.

According to Pelc (2017), a stack of post pallets should be regarded as  
a self-stable multi-storey structure without bracings. The above approach sup-
ports analyses of pallet stack stability with the use of the methods detailed 
in the standard applicable to steel structures (EN 1993-1-1:2005). The cited 
study proposes a calculation procedure and an exemplary analytical procedure 
for verifying the safety and stability of a stack of steel post pallets loaded with 
pneumatic tires.

This study relies on the FEM to propose a numerical method for determining 
the maximum number of loaded post pallets in a stack. The stability of structural 
components in the most loaded pallet, i.e. the bottommost pallet in the stack, 
and the stability of the entire stack were investigated by simulating the process 
of adding subsequent pallets to the stack. The vertical load of the bottommost 
pallet and the horizontal forces resulting from sway and bow imperfections in-
creased with every additional pallet. The horizontal force generated by the forklift 
truck on the top pallet in the stack was taken into account based on the value 
calculated by Tilburgs (2001). The stack equilibrium was analyzed using the 
nonlinear incremental-iterative method, and the presence of a positive-definite 
or negative-definite quadratic form of the tangent stiffness matrix was deter-
mined after each increment. The absence of a positive-definite quadratic form 
was indicative of stack collapse. The FEM MSC.Marc/Mentat system was used 
in numerical simulations. In the analyzed case, pallet posts were stiff enough to 
prevent buckling, whereas a loss of static equilibrium was previously observed 
when the critical number of pallets was exceeded in the stack.



Technical Sciences	 21(4) 2018

	 Numerical Equilibrium Analysis of a Stack of Steel Post Pallets	 273

Computational Model

The pallet which was used to build the analyzed stack is shown in Figure 1. 
It was assumed that the rigid grid at the bottom the pallet was non-deformable.

The pallet computational model with specific dimensions is presented in 
Figure 2. The main structural elements of the pallet were: 1 – post (tubular 
section, 50×50×3), 2 – bed for the top pallet (angle bar, 50×50×4), 3 – crossbar 
(tubular section, 50×50×3), 4 – boom (flat, 50×8), 5 – bracket (tube, 50×3).  
In the analyzed pallet, dimensions a, b, c, d, h and e were determined at [m]: 
1.25, 1.20, 1.07, 0.93, 1.50 and 0.09, respectively. 

 
Fig. 1. View of the post pallet for storing pneumatic tires

The top pallet in the stack transfers load to the bottom pallet as a continuous 
load acting on the bed. In beds made of angle bars, the bar is bent around the 
axis of the minimum moment of inertia of the beam cross-section; therefore,  
it can be assumed that load will be transferred to the most rigid zones in the 
bed, i.e. points A-D which are supported by the posts. The rigid grid of the top 
pallet limits the relative displacement of points A and B, which is why they were 
joined by a non-deformable and weightless truss rod.

The bottommost pallet will be hereinafter referred to as the bottom pal-
let. The bottom pallet is subjected to the greatest load, and it determines  
the stability of the entire stack. The loads acting on successive pallets in the stack 
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were reduced to points A-D of the bottom pallet. It was assumed that the lower 
ends of the posts are fixed in the pallet’s rigid grid and that the bottom pallet 
touches the floor at four points. Friction forces prevent horizontal displacement 
of the pallet. In order to apply boundary conditions, all three possible rotations 
of bottom post nodes were blocked, and non-deformable elements were used 
to connect pallet support points on the floor with bottom post nodes and with  
the post nodes located on the pallet grid (Fig. 2).

Fig. 2. Computational model of the post pallet (description in the text)

Sway and bow imperfections occurring in the system, whose values are spec-
ified in Standard EN 1993-1-1:2005, exert horizontal forces on the stack. The 
method of calculating these imperfections and the resulting values were presented 
in detail by Pelc (2017). It should be noted that all possible translational and 
torsional sways were considered based on the recommendations formulated in 
the above Standard. The following inclinations were examined in this study: 
DACB (forward), BADC (torsional) and BACD (left). The acronym DACB in-
dicates that points D and A move towards vector DA, whereas the remaining 
two points move towards vector CB. In the first two analytical cases, load-car-
rying capacity conditions were least satisfied by the bottom pallet in the stack  
(cf. Pelc 2017). The forces acting on one point of the bottom pallet as a function 
of the number of pallets in the stack are presented graphically in Figure 3.  
The diagrams of increasing characteristic forces which were used in the analysis 
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of stack displacement and static equilibrium are similar, but their values are 
smaller than the values of the calculated forces. Vertical forces acting as pairs 
of opposite forces (couples) originate from the horizontal forces acting above the 
bottom pallet and represent the moment of stack collapse (Fig. 4).

Fig. 3. Forces caused by weight (G) and imperfections (H – horizontal, V – vertical),  
acting on one point of the bottom pallet

Fig. 4. Forces acting on the bottom pallet in case of DACB sway



Technical Sciences	 21(4) 2018

276	 Józef Pelc

A minor difference in the progression of vertical forces acting in planes par-
allel to planes XZ and YZ results from the difference in the distance between 
points A and B and points B and C (AB <BC), respectively.

Due to the significant values of horizontal forces acting on the stack  
(see Fig. 3) in addition to vertical forces, the maximum load-carrying capacity 
of the bottom pallet was calculated with a non-linear method. In the analyzed 
case, the distribution of forces is known, but the load, i.e. the number of pallets 
which cause stack instability, is unknown. In the total Lagrangian formulation, 
the increment in node displacement in the studied structure was determined 
from the following equation (Bathe 1982):

	 (t
0KL + t0KNL) ΔU(i) = (t + Δtβ)ΔtR – t + Δt

0F(i – 1)	 (1)
where: 

ΔtR	 –	vector of known loads in the first loading step, 
t + Δtβ		  scale parameter which determines load in time t + ∆t. The index 

in brackets is the iteration number, 
t
0KL, t0KNL	–	linear and non-linear (geometric) part of the stiffness matrix, 

respectively, 
t + Δt

0F(i – 1)	–	nodal force vector resulting from node displacement.

When load reaches the value which causes system instability, small incre-
ments in load are accompanied by large increments in displacement, and the 
tangent stiffness matrix (the sum is given in brackets in equation 1) becomes 
singular. Furthermore, the iterative process ceases to converge. The assumption 
that the linear stiffness matrix t0KL does not change significantly before system 
buckling and that the non-linear stiffness matrix t0KNL is a multiple of its initial 
form leads to the so-called linear (initial) stability analysis of the eigenvalue 
problem (cf Wood 1992)

	 (0
0KL + λ Δt

0KNL) ΔU = 0	 (2)

The smallest eigenvalue λ1 is determined to calculate critical load λ1
ΔtR.

Two-noded beam elements with six degrees of freedom per node (three lin-
ear displacements and three angles of rotation) were used to analyze stack 
stability. The finite element model was composed of 294 elements (element 52 
from MARC element library: straight, Euler-Bernoulli beam in space), and the 
assumed mesh density was validated with the mesh refinement method due to 
an approximation error. In a non-linear analysis examining the elastic behavior  
of the bottom pallet subjected to increasing load, the influence of large displace-
ments (total Lagrangian formulation) was taken into account. The load imposed 
by additional pallets was increased in ten equal increments. The iterative process 
was conducted according to the Newton-Raphson procedure and was terminated 
when the displacement convergence criterion was satisfied.
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Results and Discussion

A steel post pallet can be regarded as a frame whose legs are fixed in  
a non-deformable floor (grid at the bottom of the pallet). An initial/linearized 
stability analysis of the bottom pallet was performed according to (2). Vertical 
unit forces were applied to points A, B, C and D, and the lowest eigenvalue λ1 was 
determined by solving the eigenvalue problem. The resulting critical load value 
was 62.7 kN. The fundamental mode of buckling was the lateral displacement 
and rotation of the upper part of the pallet (Fig. 5).

Fig. 5. The first mode of bottom pallet buckling

In sways DACB, BADC and BACD, vertical reactions were examined at 
points where the bottom pallet was supported by the warehouse floor (Fig. 6)  
and at points of displacement of the forces applied to the pallet, i.e. points  
A, B, C and D (Fig. 7a, b). The diagrams presenting the changes in the values 
of vertical reactions acting on the bottom pallet indicate that all reactions had 
positive values up to six pallets in the stack, but when the seventh pallet was 
added, the reactions of some supports reached zero; therefore, negative reactions 
should be applied to balance the stack. This approach is possible in the adopted  

Fig. 6. Vertical reactions at points where they can assume negative value
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model, but in reality, the pallet and the floor are bound by one-sided constraints, 
and the achievement of zero reaction force should be regarded as a loss of static 
balance. Changes in floor reaction forces acting on the bottom pallet in the 
three analyzed sways are presented in Figure 6, but only at points where  
a given number of pallets can change the sign of these reactions. These points 
are located opposite to the sway. For example when the stack sways to the left 
(BACD), these are points located on the right side of the pallet, i.e. B ’ and C ’. 
Reaction forces increase monotonically in the remaining supports.

The displacement of points A-D on the bottom pallet increases monotoni-
cally with an increase in the number of pallets in the stack. In a stack with 
six pallets, the greatest displacement of 20.2 mm in the direction of the y-axis 
was noted in points A and B with DACB sway. Points A and B were least dis-
placed in torsional sway BADC. The results of the linear analysis are presented  
in Figures 7a and 7b. In a stack with six pallets, the linear displacement  
of point A deviated most significantly from non-linear displacement in sway 
BACD (9.7%) and a similar deviation occurred in sway BADC (9.2%).

Displacement of points A, B and D on the bottom pallet as a function of the 
number of pallets in the stack in sways DACB and BACD.

Fig. 7. Displacement of points A and D on the bottom pallet as a function of the number  
of pallets in the stack in sway BACD (a); displacement of points A, B and D on the bottom pallet 

as a function of the number of pallets in the stack in sways DACB and BADC (b):  
Lin – linear analysis, Nlin – non-linear analysis

It should be noted that the progression of displacement changed rapidly 
in an incremental manner when 5 pallets were stacked (refer to the variant  
of sway DACB in Figure 7b), which resulted from the rapid increase in horizon-
tal forces mainly due to bow imperfection. The values of these forces depend on  
the values of the compressive normal forces acting on the posts, and they increase 
with the number of pallets in the stack.
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Fig. 8. Compressive normal forces acting on posts

Diagrams of compressive normal forces acting on pallet posts with different 
sways forms presented in Figure 8. In the case of the most dangerous sway 
BACD, the compressive force of 26 kN is far from the critical post force of 62.7 kN.

Conclusions

Vertical loads and equivalent horizontal loads acting on a stack as a result of 
sway and bow imperfections can be determined when a pallet stack is regarded 
as a multi-level self-stable structure.

The stability of stacked loaded post pallets can be effectively analyzed using 
the general non-linear incremental-iteration FEM procedure.

An analysis of the displacement history of the characteristic points on the 
bottom pallet indicates that geometric non-linearities exert a moderate influence 
on displacement. The greatest differences in displacement between linear and 
non-linear analysis were determined at 10%.

In an analysis of the equilibrium of a stack of post pallets loaded with pneu-
matic tires, static balance was lost when the seventh pallet was added. None  
of the posts in the bottom pallet buckled in the analyzed sways, which suggests 
that the evaluated post cross-sections confer high flexural stiffness.
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