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A b s t r a c t

The present paper discusses steady MHD second order slip flow and heat transfer for a slightly 
rarefied gas due to an impermeable stretching sheet with heat flux and internal heat generation. 
By using the Lie group analysis, new similarity transformations are obtained. Employing these 
transformations, allows the partial differential equations governing the problem to transform into  
a system of ordinary differential equations which are later treated numerically using shooting 
method. Effects of the governing parameters on the dimensionless velocity and dimensionless 
temperature profiles are outlined graphically. Furthermore, results for the local skin-friction co-
efficient and the local Nusselt number are presented for some different values of the governing 
parameters in a tabular form. Also, results show that there is a strong dependency of the dimen-
sionless temperature on the heat flux. 
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Introduction

Of late, there has been a significant interest on the study of rarefied gas flows 
over a stretching sheet to obtain a thorough cognition for their behaviors and 
their various applications. Motivated by (Fang, Aziz 2010), we are interested in 
acquiring the knowledge of heat transfer characteristics for the rarified MHD 
gas flow over a stretching sheet with heat flux and internal heat generation. 
The micro-electro-mechanical systems (MEMS) have an immense interest be-
cause in these systems, the slip flow regime and its behavior must be treated 
as a rarefied gas flow (Fang, Aziz 2010). Also, for problems with low density, 
the fluid can be also treated as a rarefied gas flow, for example, in outer space 
applications (Shidlovskiy 1967). The behavior of a rarefied gas flow can be 
determined by the Knudsen number Kn which defined as (𝐾𝐾𝑛𝑛 =

𝜆𝜆𝑒𝑒
𝐷𝐷𝑒𝑒

 ) the mean 

free path (λe) divided by a characteristic length (De) for the flow. When Knudsen 
number is very small, no slip is observed between the surface and the fluid. 
Also, when Knudsen number lies in the range 0.001 to 0.1, slip occurs at the 
surface fluid interaction and the Navier-Stokes equations with the slip bound-
ary conditions become applicable. But, for large values of Knudsen number, the 
Navier-stokes equations are not applicable and the kinetic theory of gases must 
be employed (Mahmoud 2012). For the accurate prediction of gas flow and heat 
transfer in many applications second order slip boundary condition is critical. 
So, a significant amount of research on the fluid flow and heat transfer caused 
by stretched surfaces with second order slip under different conditions and in 
the presence of various physical effects has been reported (Fang et al. 2010, 
Khader, Megahed 2014).

In our study, we will use the Lie-group method to derive the similarity 
solutions for our proposed problem. Lie group method is one of the most pow-
erful methods in order to determine particular solutions of partial differential 
equations. It reduces the number of the independent variables of the partial 
differential equations under consideration and keeps the system of equations and 
associated initial and boundary condition invariant. The basic concepts of Lie 
group method can be found in Books (Olver 1986, Ibragimov 1994). In the field 
of viscous fluids there are many papers dealing with aspect of Lie group method. 
In 2001, Yürüsoy et al. presented exact solution of boundary layer equations 
for non-Newtonian fluids by using Lie group method. Lie group method used to 
study both problems of natural convection heat and mass transfer flow past an 
inclined plate for various parameters by (Sivasankaran et al. 2006). Likewise, 
in 2010, Mekheimer et al. (2010) studied the Lie group analysis and similarity 
solutions for a couple stress fluids with heat transfer. The similarity reductions 
for the problem of heat and mass transfer over a moving porous plate with hy-
drodynamic slip and thermal convective boundary conditions were investigated 
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by (Hamad et al. 2012). By using the Lie group method (Mina, Amin 2014) 
studied the nonlinear inviscid flows with a free surface under gravity. Also 
(Hossan 2015) applied lie group method to study the boundary layer flow and 
heat transfer of an electrically conducting viscous fluid over a stretching sheet. 
Thus, the main aim of the present work is to study the effects of heat flux and 
internal heat generation on the MHD flow and heat transfer for a rarefied gas 
over a stretching sheet with second order slip velocity.

Mathematical formulation

Let us consider a two-dimensional laminar MHD flow of slightly rarefied 
gas over a stretching sheet which exposed to a heat flux and internal heat 
generation in the presence of second order slip effect. The origin is located at  
a slit, through which the sheet is drawn through the fluid medium. The x-axis is 
chosen along the plane of the sheet and the y-axis is taken normal to the plane. 
We assume that the surface starts stretching from rest with the velocity  uw  
and temperature distribution Tw and the temperature of the fluid at the am-
bient is T∞. On the other hand, the gas fluid is assumed to be an electrically  
conducting in the presence of a uniform magnetic field applied normal to  
the sheet, and the induced magnetic field is neglected under the approximation 
of small Reynolds number.

So, the governing equations of steady boundary layer flow are based on the 
continuity, momentum and the energy equations taking into account the effect 
of heat generation and magnetic field, which are given as :

	
∂𝑢̄𝑢
∂𝑥̄𝑥 +

∂𝑣̄𝑣
∂𝑦̄𝑦 = 0 	 (1)

	 𝑢̄𝑢 ∂𝑢̄𝑢∂𝑥̄𝑥 + 𝑣̄𝑣 ∂𝑢̄𝑢∂𝑦̄𝑦 = 𝜇𝜇
𝜌𝜌
∂2𝑢̄𝑢
∂𝑦̄𝑦2 −

𝜎𝜎𝐵̄𝐵0
2(𝑥̄𝑥)
𝜌𝜌 𝑢̄𝑢 	 (2)

	 𝑢̄𝑢 ∂𝑇𝑇∂𝑥̄𝑥 + 𝑣̄𝑣 ∂𝑇𝑇∂𝑦̄𝑦 = 𝜅𝜅
𝜌𝜌𝑐𝑐𝑝𝑝

∂2𝑇𝑇
∂𝑦̄𝑦2 +

𝑄𝑄(𝑥̄𝑥)
𝜌𝜌𝑐𝑐𝑝𝑝

(𝑇𝑇 − 𝑇𝑇∞) 	 (3)

with boundary conditions

	 𝑦̄𝑦 = 0: 𝑢̄𝑢 = 𝑢̄𝑢𝑤𝑤(𝑥̄𝑥) + 𝑎𝑎(𝑥̄𝑥) ∂𝑢̄𝑢∂𝑦̄𝑦 + 𝑏𝑏(𝑥̄𝑥) ∂
2𝑢̄𝑢

∂𝑦̄𝑦2 , 𝑣̄𝑣 = 0, −𝜅𝜅 ∂𝑇𝑇∂𝑦̄𝑦 = 𝑞̄𝑞𝑠𝑠(𝑥̄𝑥), 	 (4) 

	 𝑦̄𝑦 → ∞: 𝑢̄𝑢 → 0, 𝑇𝑇 → 𝑇𝑇∞ 	 (5) 
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Introducing the non-dimensional parameters:
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 	 (6) 

where Re =𝐿𝐿𝑈𝑈0
𝜈𝜈   is the Reynolds number, U0, L are the characteristic velocity 

and the characteristic length.

Use 𝑢𝑢 = ∂𝜓𝜓
∂𝑦𝑦  , 𝑣𝑣 = −∂𝜓𝜓∂𝑥𝑥   we get

	 𝐻𝐻1 =
∂𝜓𝜓
∂𝑦𝑦

∂2𝜓𝜓
∂𝑦𝑦 ∂𝑥𝑥 −

∂𝜓𝜓
∂𝑥𝑥

∂2𝜓𝜓
∂𝑦𝑦2 −

∂3𝜓𝜓
∂𝑦𝑦3 + 𝑀𝑀*𝐵𝐵02(𝑥𝑥)

∂𝜓𝜓
∂𝑦𝑦 = 0 	 (7)

	 𝐻𝐻2 =
1

𝑞𝑞𝑠𝑠(𝑥𝑥)
𝑑𝑑𝑞𝑞𝑠𝑠
𝑑𝑑𝑑𝑑

∂𝜓𝜓
∂𝑦𝑦 𝜃𝜃 +

∂𝜓𝜓
∂𝑦𝑦

∂𝜃𝜃
∂𝑥𝑥 −

∂𝜓𝜓
∂𝑥𝑥

∂𝜃𝜃
∂𝑦𝑦 −

1
𝑃𝑃𝑃𝑃

𝜕𝜕2𝜃𝜃
𝜕𝜕𝑦𝑦2 + γ*Q(x)θ = 0	 (8)

The boundary conditions (4) and (5) will be

	 𝑦𝑦 = 0; ∂𝜓𝜓
∂𝑦𝑦 = 𝑢𝑢𝑤𝑤(𝑥𝑥) + 𝑎𝑎*(𝑥𝑥) ∂

2𝜓𝜓
∂𝑦𝑦2 + 𝑏𝑏*(𝑥𝑥) ∂

3𝜓𝜓
∂𝑦𝑦3 ,

∂𝜓𝜓
∂𝑥𝑥 = 0, ∂𝜃𝜃∂𝑦𝑦 = −1 	 (9)

	 𝑦𝑦 → ∞; ∂𝜓𝜓
∂𝑦𝑦 → 0, 𝜃𝜃 → 0 	 (10)

where ).(Re)(),(Re)(,, **** xb
L

xbxa
L

xa
Uc

L
U
LM
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====
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
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Symmetry analysis and infinitesimal generators

In this section, we apply the techniques of Lie group theory to the equations 
(7) and (8). Details of the theory can be found in (Olver 1986, Ibragimov 1994). 
To perform this task, we consider the one-parameter (ε) Lie group of infinitesimal 
transformation in (x, y, ψ, θ) which given by :

𝑥̄𝑥 = 𝑥𝑥 + 𝜀𝜀𝜉𝜉1(𝑥𝑥, 𝑦𝑦, 𝜓𝜓, 𝜃𝜃) + 𝑜𝑜(𝜀𝜀2) 

𝑦̄𝑦 = 𝑦𝑦 + 𝜀𝜀𝜉𝜉2(𝑥𝑥, 𝑦𝑦, 𝜓𝜓, 𝜃𝜃) + 𝑜𝑜(𝜀𝜀2) 

𝜓̄𝜓 = 𝜓𝜓 + 𝜀𝜀𝜂𝜂1(𝑥𝑥, 𝑦𝑦, 𝜓𝜓, 𝜃𝜃) + 𝑜𝑜(𝜀𝜀2) 

	 𝜃̄𝜃 = 𝜃𝜃 + 𝜀𝜀𝜂𝜂2(𝑥𝑥, 𝑦𝑦, 𝜓𝜓, 𝜃𝜃) + 𝑜𝑜(𝜀𝜀2) 	 (11) 

here (ξ1, ξ2, η1, η2) are the infinitesimal transformation of the variables x, y, ψ, θ.
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The corresponding infinitesimal generator of Lie group is

	 𝑉𝑉 = 𝜉𝜉1
∂
∂𝑥𝑥 + 𝜉𝜉2

∂
∂𝑦𝑦 + 𝜂𝜂1

∂
∂𝜓𝜓 + 𝜂𝜂2

∂
∂𝜃𝜃 .	 (12)

Now, the infinitesimal transformations ξ1, ξ2, η1 and η2 can be determined 
from the following invariance conditions:

	 𝑉𝑉(3) |𝐻𝐻𝑖𝑖|𝐻𝐻𝑖𝑖=0 = 0, 𝑖𝑖 = 1,2 	 (13) 

here: Hi = 0, i = 1, 2 represent the equations (7) and (8) , V(3) is the third prolon-
gation of infinitesimal generator V and V(3) is given by

	 ,1221

12211
)3(

yyy
yyy

yy
yy

xx
xx

yy
yy

xx
xx

y
y

x
x

y
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x
xVV
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
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
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	 (14) 

where η1x, η1y, η1xx, η1yy, η2x, η2y, η2yy and η1yyy, can be calculated from  
the following equations:
𝜂𝜂1𝑥𝑥 = 𝐷𝐷𝑥𝑥(𝜂𝜂1) − 𝜓𝜓𝑥𝑥𝐷𝐷𝑥𝑥(𝜉𝜉1) − 𝜓𝜓𝑦𝑦𝐷𝐷𝑥𝑥(𝜉𝜉2), 𝜂𝜂1𝑦𝑦 = 𝐷𝐷𝑦𝑦(𝜂𝜂1) − 𝜓𝜓𝑥𝑥𝐷𝐷𝑦𝑦(𝜉𝜉1) − 𝜓𝜓𝑦𝑦𝐷𝐷𝑦𝑦(𝜉𝜉2), 

𝜂𝜂2𝑥𝑥 = 𝐷𝐷𝑥𝑥(𝜂𝜂2) − 𝜃𝜃𝑥𝑥𝐷𝐷𝑥𝑥(𝜉𝜉1) − 𝜃𝜃𝑦𝑦𝐷𝐷𝑥𝑥(𝜉𝜉2), 𝜂𝜂2𝑦𝑦 = 𝐷𝐷𝑦𝑦(𝜂𝜂2) − 𝜃𝜃𝑥𝑥𝐷𝐷𝑦𝑦(𝜉𝜉1) − 𝜃𝜃𝑦𝑦𝐷𝐷𝑦𝑦(𝜉𝜉2), 

𝜂𝜂1𝑥𝑥𝑥𝑥 = 𝐷𝐷𝑥𝑥(𝜂𝜂1𝑥𝑥) − 𝜓𝜓𝑥𝑥𝑥𝑥𝐷𝐷𝑥𝑥(𝜉𝜉1) − 𝜓𝜓𝑦𝑦𝑦𝑦𝐷𝐷𝑥𝑥(𝜉𝜉2), 𝜂𝜂1𝑦𝑦𝑦𝑦 = 𝐷𝐷𝑦𝑦(𝜂𝜂1𝑦𝑦) − 𝜓𝜓𝑥𝑥𝑥𝑥𝐷𝐷𝑦𝑦(𝜉𝜉1) − 𝜓𝜓𝑦𝑦𝑦𝑦𝐷𝐷𝑦𝑦(𝜉𝜉2), 

),()()(),()()( 21222122  yyyyxyyyyyxyxxxxxxxx DDDDDD −−=−−=  

𝜂𝜂1𝑥𝑥𝑥𝑥 = 𝐷𝐷𝑥𝑥(𝜂𝜂1𝑥𝑥𝑥𝑥) − 𝜓𝜓𝑦𝑦𝑦𝑦𝐷𝐷𝑥𝑥(𝜉𝜉1) − 𝜓𝜓𝑦𝑦𝑦𝑦𝐷𝐷𝑥𝑥(𝜉𝜉2), 

	 𝜂𝜂1𝑦𝑦𝑦𝑦𝑦𝑦 = 𝐷𝐷𝑦𝑦(𝜂𝜂1𝑦𝑦𝑦𝑦) − 𝜓𝜓𝑥𝑥𝑥𝑥𝑥𝑥𝐷𝐷𝑦𝑦(𝜉𝜉1) − 𝜓𝜓𝑦𝑦𝑦𝑦𝑦𝑦𝐷𝐷𝑦𝑦(𝜉𝜉2) 	 (15)

where Dx, Dy are the operators of total differentiation with respect to x and y, 
respectively. By applying the third prolongation (14) to the original equations 
(7) and (8), we get

 	
𝜂𝜂1𝑦𝑦𝜓𝜓𝑥𝑥𝑥𝑥 + 𝜂𝜂1𝑥𝑥𝑥𝑥𝜓𝜓𝑦𝑦 − 𝜂𝜂1𝑥𝑥𝜓𝜓𝑦𝑦𝑦𝑦 − 𝜂𝜂1𝑦𝑦𝑦𝑦𝜓𝜓𝑥𝑥 − 𝜂𝜂1𝑦𝑦𝑦𝑦𝑦𝑦 +𝑀𝑀*𝐵𝐵2(𝑥𝑥)𝜂𝜂1𝑦𝑦 + 2𝑀𝑀*𝜉𝜉1

𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑 = 0, 

		
		  (16)

( 𝑑𝑑
𝑑𝑑𝑑𝑑 (

1
𝑞𝑞𝑤𝑤(𝑥𝑥)

𝑑𝑑𝑞𝑞𝑤𝑤
𝑑𝑑𝑑𝑑 )) 𝜉𝜉1𝜓𝜓𝑦𝑦𝜃𝜃 +

1
𝑞𝑞𝑤𝑤(𝑥𝑥)

𝑑𝑑𝑞𝑞𝑤𝑤
𝑑𝑑𝑑𝑑 𝜂𝜂2𝜓𝜓𝑦𝑦 +

1
𝑞𝑞𝑤𝑤(𝑥𝑥)

𝑑𝑑𝑞𝑞𝑤𝑤
𝑑𝑑𝑑𝑑 𝜂𝜂1𝑦𝑦𝜃𝜃 + 𝜂𝜂1𝑦𝑦𝜃𝜃𝑥𝑥 + 

	
𝜂𝜂2𝑥𝑥𝜓𝜓𝑦𝑦 − 𝜂𝜂1𝑥𝑥𝜃𝜃𝑦𝑦 − 𝜂𝜂2𝑦𝑦𝜓𝜓𝑥𝑥 −

1
Pr 𝜂𝜂2𝑦𝑦𝑦𝑦 − 𝛾𝛾*𝜉𝜉1

𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑 𝜃𝜃 − 𝛾𝛾*𝑄𝑄(𝑥𝑥)𝜂𝜂2 = 0 

	 (17)
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Substituting about η1x, η1y, η2x, η2y, η1xy, η1yy, η2yy and η1yyy from equa- 
tions (15) into equations (16), (17) and setting the coefficients involving ψx, ψy, 
ψxx, ψyy, ψxy, ψxyy, ψyyy, θx, θy, θxy, θxx, θxy, θyy, and various products to zero which 
may be leads to a system of coupled partial differential equations. So, we have: 

	 𝜉𝜉1 = 𝑑𝑑1 + 𝑑𝑑2𝑥𝑥, 𝜉𝜉2 = 𝑑𝑑3𝑦𝑦 + 𝐹𝐹(𝑥𝑥), 𝜂𝜂1 = (𝑑𝑑2 − 𝑑𝑑3)𝜓𝜓, 𝜂𝜂2 = 𝑑𝑑3𝜃𝜃 	 (18)

where d1, d2 and d3 are arbitrary constants and F(x) is an arbitrary functions 
depends on x. The functions B(x), qw(x) and Qw(x) are to be determined from the 
following equations:

	 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑 + ( 𝑑𝑑3

𝑑𝑑1 − 𝑑𝑑2𝑥𝑥
)𝐵𝐵(𝑥𝑥) = 0,    𝑑𝑑𝑑𝑑

(𝑥𝑥)
𝑑𝑑𝑑𝑑 + ( 2𝑑𝑑3

𝑑𝑑1 − 𝑑𝑑2𝑥𝑥
)𝑄𝑄(𝑥𝑥) = 0,  

𝑑𝑑𝑞𝑞𝑠𝑠(𝑥𝑥)
𝑑𝑑𝑑𝑑 − ( 𝑑𝑑3

𝑑𝑑1 + 𝑑𝑑2𝑥𝑥
) 𝑞𝑞𝑤𝑤(𝑥𝑥) = 0. 

	

	

𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑 + ( 𝑑𝑑3

𝑑𝑑1 − 𝑑𝑑2𝑥𝑥
)𝐵𝐵(𝑥𝑥) = 0,    𝑑𝑑𝑑𝑑

(𝑥𝑥)
𝑑𝑑𝑑𝑑 + ( 2𝑑𝑑3

𝑑𝑑1 − 𝑑𝑑2𝑥𝑥
)𝑄𝑄(𝑥𝑥) = 0,  

𝑑𝑑𝑞𝑞𝑠𝑠(𝑥𝑥)
𝑑𝑑𝑑𝑑 − ( 𝑑𝑑3

𝑑𝑑1 + 𝑑𝑑2𝑥𝑥
) 𝑞𝑞𝑤𝑤(𝑥𝑥) = 0. 

	 (19) 

This implies that, the system of nonlinear equations (7) and (8) has the 
four-parameter Lie group of point symmetries generated by generators 

𝑉𝑉1 =
∂
∂𝑥𝑥 , 𝑉𝑉2 = 𝑥𝑥 ∂

∂𝑥𝑥 + 𝜓𝜓 ∂
∂𝜓𝜓 , 𝑉𝑉3 = 𝑦𝑦 ∂

∂𝑦𝑦 − 𝜓𝜓 ∂
∂𝜓𝜓 + 𝜃𝜃 ∂

∂𝜃𝜃 , 𝑉𝑉4 = 𝐹𝐹(𝑥𝑥) ∂
∂𝑦𝑦. 	 (20)

From the invariance of the boundary conditions, we get F(x) = 0 and  
the functions uw(x), a(x) and b(x) should satisfy the following equations

	

𝑑𝑑𝑢𝑢𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑑𝑑 − (𝑑𝑑2 − 2𝑑𝑑3

𝑑𝑑1 − 𝑑𝑑2𝑥𝑥
) 𝑢𝑢𝑤𝑤(𝑥𝑥) = 0,   𝑑𝑑𝑎𝑎

*(𝑥𝑥)
𝑑𝑑𝑑𝑑 − ( 𝑑𝑑3

𝑑𝑑1 − 𝑑𝑑2𝑥𝑥
) 𝑎𝑎*(𝑥𝑥) = 0,  

	
𝑑𝑑𝑏𝑏*(𝑥𝑥)
𝑑𝑑𝑑𝑑 − ( 2𝑑𝑑3

𝑑𝑑1 + 𝑑𝑑2𝑥𝑥
) 𝑏𝑏*(𝑥𝑥) = 0. 	 (21) 

From equations (19) and (20) can be obtained on different forms for the 
functions B(x), Q(x), uw(x), a*(x), qs(x) and b*(x) via choosing the constants d1, d2 
and d3 as follows.

Setting d1 = 1, d2 = 1 and d3 ≠ 1 we get: 

	 𝑢𝑢𝑤𝑤 = 𝐴𝐴1𝑒𝑒−2𝑑𝑑3𝑥𝑥, 𝑎𝑎*(𝑥𝑥) = 𝜆𝜆1𝑒𝑒𝑑𝑑3𝑥𝑥,  𝑏𝑏*(𝑥𝑥) = 𝜆𝜆2𝑒𝑒2𝑑𝑑3𝑥𝑥,   𝐵𝐵(𝑥𝑥) = 𝐵𝐵0𝑒𝑒−𝑑𝑑3𝑥𝑥,  	

	 𝑞𝑞𝑠𝑠(𝑥𝑥) = 𝐴𝐴2𝑒𝑒𝑑𝑑3𝑥𝑥, 𝑄𝑄(𝑥𝑥) = 𝑄𝑄0𝑒𝑒−2𝑑𝑑3𝑥𝑥. 	 (22)

Considered the general case in which both constants are involved 

𝑢𝑢𝑤𝑤(𝑥𝑥) = 𝐴𝐴1(𝑑𝑑1 + 𝑑𝑑2𝑥𝑥)
𝑑𝑑2−2𝑑𝑑3

𝑑𝑑2 , 𝑎𝑎*(𝑥𝑥) = 𝜆𝜆1(𝑑𝑑1 + 𝑑𝑑2𝑥𝑥)
𝑑𝑑3
𝑑𝑑2, 𝑏𝑏*(𝑥𝑥) = 𝜆𝜆2(𝑑𝑑1 + 𝑑𝑑2𝑥𝑥)

2𝑑𝑑3
𝑑𝑑2 ,

𝑄𝑄0(𝑥𝑥) = 𝑄𝑄0(𝑑𝑑1 + 𝑑𝑑2𝑥𝑥)
−𝑑𝑑3
𝑑𝑑2 , 𝑞𝑞𝑤𝑤(𝑥𝑥) = 𝐴𝐴4(𝑑𝑑1 + 𝑑𝑑2𝑥𝑥)

−𝑑𝑑3
𝑑𝑑2 , 𝐵𝐵(𝑥𝑥) = 𝐵𝐵0(𝑑𝑑1 + 𝑑𝑑2𝑥𝑥)

−𝑑𝑑3
𝑑𝑑2  

		  (23)
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Choosing d1, d2 ≠ 0 and d3 = 0 we have: 

	
𝑢𝑢𝑤𝑤 = 𝐴𝐴1(𝑑𝑑1 + 𝑑𝑑2𝑥𝑥), 𝑎𝑎(𝑥𝑥) = 𝜆𝜆1, 𝑏𝑏(𝑥𝑥) = 𝜆𝜆2, 𝑞𝑞𝑤𝑤(𝑥𝑥) = 𝑞𝑞0𝑠𝑠, 𝐵𝐵(𝑥𝑥) = 𝐵𝐵0,

𝑄𝑄(𝑥𝑥) = 𝑄𝑄0 	 (24) 

where A1, A2, A3, q0s, A4, λ1, λ2, B0 and Q0 are arbitrary constants.
The solutions of equations (7) and (8) are invariant under infinitesimal 

transformations (11) if V(ψ – ψ(x, y)) = 0 when ψ = ψ(x, y) and V(θ – θ(x, y)) = 0 
when θ = θ(x, y). 

These conditions can be rewritten as 

	 𝜉𝜉1
∂𝜓𝜓
∂𝑥𝑥 + 𝜉𝜉2

∂𝜓𝜓
∂𝑦𝑦 = 0,  𝜉𝜉1

∂𝜃𝜃
∂𝑥𝑥 + 𝜉𝜉2

∂𝜃𝜃
∂𝑦𝑦 = 0. 	 (25)

Equation (25) is called the invariant surface conditions, which are quasi-lin-
ear equations. The subsidiary equations can be expressed as:

	
𝑑𝑑𝑑𝑑

𝜉𝜉1(𝑥𝑥, 𝑦𝑦, 𝜓𝜓, 𝜃𝜃)
= 𝑑𝑑𝑑𝑑
𝜉𝜉2(𝑥𝑥, 𝑦𝑦, 𝜓𝜓, 𝜃𝜃)

= 𝑑𝑑𝑑𝑑
𝜂𝜂1(𝑥𝑥, 𝑦𝑦, 𝜓𝜓, 𝜃𝜃)

= 𝑑𝑑𝑑𝑑
𝜂𝜂2(𝑥𝑥, 𝑦𝑦, 𝜓𝜓, 𝜃𝜃)

 	 (26) 

From the solution of characteristic equation (26), we get on three constants 
one of them is called similarity variable and other called similarity functions.

Reduction to ordinary differential equations 

Here, we will consider the various reductions of the partial differential equa-
tions (7) and (8). 

1. We consider the combination V1 + d3V3, then the characteristic equations 
would be
	 𝑑𝑑𝑑𝑑

1 = 𝑑𝑑𝑑𝑑
𝑑𝑑3𝑦𝑦

= 𝑑𝑑𝑑𝑑
−𝑑𝑑3𝜓𝜓

= 𝑑𝑑𝑑𝑑
𝑑𝑑3𝜃𝜃

 	 (27)

Solving equation (27), we have the following similarity variable and functions             

	 𝜂𝜂 = 𝑦𝑦𝑒𝑒−𝑑𝑑3𝑥𝑥, 𝜓𝜓 = 𝑒𝑒−𝑑𝑑3𝑥𝑥𝑓𝑓(𝜂𝜂), 𝜃𝜃 = 𝑒𝑒𝑑𝑑3𝑥𝑥𝐺𝐺(𝜂𝜂) .	 (28)

Inserting the similarity variable η and functions into equations (7) and (8) 
yields the following ordinary differential system:

	 𝑓𝑓''' − 𝑑𝑑3𝑓𝑓𝑓𝑓'' + 2𝑑𝑑3𝑓𝑓'2 − 𝑀𝑀𝑀𝑀' = 0, 	 (29) 

	 𝐺𝐺'' − Pr(𝑑𝑑3𝑓𝑓𝑓𝑓' + 2𝑑𝑑3𝑓𝑓'𝐺𝐺 − 𝛾𝛾𝛾𝛾) = 0 	 (30)

and boundary conditions are transformed to

	 𝑓𝑓'(0) = 1 + 𝜆𝜆1𝑓𝑓''(0) + 𝜆𝜆2𝑓𝑓'''(0), 𝑓𝑓(0) = 0, 𝐺𝐺'(0) = −1,  at η = 0	 (31)
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	 𝑓𝑓'(∞) = 0, 𝐺𝐺(∞) = 0,  at η → 0	 (32)

where the functions uw(x), a(x), b(x), B(x), Q(x) are defined in equation (22) and  
A1 = 1, M = M*B0

2, γ = γ*Q0.
2. Consider the general case d1V1 + d2V2 + d3V3, then equation (26) take the form

	 𝑑𝑑𝑑𝑑
𝑑𝑑1 + 𝑑𝑑2𝑥𝑥

= 𝑑𝑑𝑑𝑑
𝑑𝑑3𝑦𝑦

= 𝑑𝑑𝑑𝑑
(𝑑𝑑2 − 𝑑𝑑3)𝜓𝜓

= 𝑑𝑑𝑑𝑑
𝑑𝑑3𝜃𝜃

 	 (33) 

from equation (33), we get

𝜂𝜂 = 𝑦𝑦(𝑑𝑑1 + 𝑑𝑑2𝑥𝑥)
−𝑑𝑑3𝑑𝑑2, 𝜓𝜓 = (𝑑𝑑1 + 𝑑𝑑2𝑥𝑥)

𝑑𝑑2 − 𝑑𝑑3
𝑑𝑑2

𝑓𝑓(𝜂𝜂), 𝜃𝜃 = (𝑑𝑑1 + 𝑑𝑑2𝑥𝑥)
𝑑𝑑3
𝑑𝑑2𝐺𝐺(𝜂𝜂) 	 (34)

Consequently, substituting equation (34) into equations (7) and (8) and bound-
ary conditions (9) and (10), we obtain the following similarity equations

	 𝑓𝑓''' + (𝑑𝑑2 − 𝑑𝑑3)𝑓𝑓𝑓𝑓'' − (𝑑𝑑2 − 2𝑑𝑑3)𝑓𝑓'2 − 𝑀𝑀𝑓𝑓' = 0, 	 (35) 

	 𝐺𝐺'' + Pr((𝑑𝑑2 − 𝑑𝑑3)𝑓𝑓𝑓𝑓' − (𝐴𝐴4 + 1)𝑑𝑑3𝑓𝑓'𝐺𝐺 + 𝛾𝛾𝛾𝛾) = 0 	 (36)

and boundary conditions take the form

	 𝑓𝑓'(0) = 1 + 𝜆𝜆1𝑓𝑓''(0) + 𝜆𝜆2𝑓𝑓'''(0), 𝑓𝑓(0) = 0, 𝐺𝐺'(0) = −1,  at η = 0 	 (37)

	 𝑓𝑓'(∞) = 0, 𝐺𝐺(∞) = 0,  at η → 0 	 (38)

where the functions uw(x), a(x), b(x), B(x), Q(x) are defined in equation (23) and 
A1 = 1, M = M*B0

2, γ = γ*Q0. 
3. Consider d1V1 + d2V2, from equation (26) we have

	 𝜂𝜂 = 𝑦𝑦, 𝜓𝜓 = (𝑑𝑑1 + 𝑑𝑑2𝑥𝑥)𝑓𝑓(𝜂𝜂), 𝜃𝜃 = 𝐺𝐺(𝜂𝜂) 	 (39)

Substituting from equation (39) into equations (7) to (10) we get the following 
system of ordinary differential equations:

	 𝑓𝑓''' + 𝑑𝑑2𝑓𝑓𝑓𝑓'' − 𝑑𝑑2𝑓𝑓'2 − 𝑀𝑀𝑀𝑀' = 0, 	 (40) 

	 𝐺𝐺'' + Pr(𝑑𝑑2𝑓𝑓𝑓𝑓' + 𝛾𝛾𝛾𝛾) = 0 	 (41)

and boundary conditions will be

	 𝑓𝑓'(0) = 1 + 𝜆𝜆1𝑓𝑓''(0) + 𝜆𝜆2𝑓𝑓'''(0), 𝑓𝑓(0) = 0, 𝐺𝐺'(0) = −1,  at η = 0	 (42)

	 𝑓𝑓'(∞) = 0, 𝐺𝐺(∞) = 0,  at η → 0	 (43)

where the functions uw(x), a(x), b(x), B(x), Q(x) and qw(x) are defined in equation (24)  
A1 = 1, M = M*B0

2, γ = γ*Q0.
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The physical quantities of interest are the local skin-friction coefficient Cf  
and the local Nusselt number Nux which are defined as:

	 𝐶𝐶𝑓𝑓 = 2𝜏𝜏𝑤𝑤
𝜌𝜌𝑢𝑢𝑤𝑤2 ,    𝑁𝑁𝑢𝑢𝑥𝑥 = 𝑥𝑥𝑞𝑞𝑠𝑠

𝜅𝜅(𝑇𝑇𝑤𝑤 − 𝑇𝑇∞) 	 (44)

Further, τw is the shear stress which given by :

	 𝜏𝜏𝑤𝑤 = −𝜇𝜇(∂𝑢𝑢∂𝑦𝑦)𝑦𝑦=0, 	 (45)

Using Eqs. (39) (The third case), we obtain:

	
)0(

1Re),0(''Re
2
1

2
1

2
1


=−= −

xxfx NufC  	 (46)

where Re𝑥𝑥 =
𝑥𝑥𝑢𝑢𝑤𝑤(𝑥𝑥)

𝜈𝜈    is the local Reynolds number.

Results and discussion

In this section, to get clear insight of the physical problem, numerical results 
for the second order slip flow and heat transfer for a slightly rarefied gas within  
a boundary layer in the presence of heat generation/absorption, magnetic field and 
heat flux effects was performed with the purpose of identifying the characteristics 
of the gas flow over a stretching sheet (third case). Figures 1-7 depict the graphical 
illustrations of the various controlling parameters on the velocity and temperature 
profiles. The dimensionless velocity profiles for some selected values of magnetic 
parameter M are plotted in Figure 1. It is apparent that the velocity decreases 
along the surface with an increase in the magnetic parameter. Physically, it is 
well known that the magnetic field presents a damping effect on the velocity 
field by creating linear magnetic drag force in the form of (–Mf ′) which appear 
in the non-dimensional momentum boundary layer equation (40), is directly 
proportional to M. Therefore greater retarding effect is generated in the flow 
with greater M values which causes a decrease for the velocity distribution inside 
the momentum boundary layer.

Figure 2, shows the effect of magnetic parameter M on the temperature 
profiles above the surface. It is noticed that, an increase in the parameter M 
has the effect of increasing the temperature distribution, the wall temperature  
θ(0) and the thermal boundary layer thickness.
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Fig. 1. The velocity distribution for various values of M

Fig. 2. The temperature distribution for various values of M

The effects of the first order velocity slip parameter on the dimensionless 
velocity and temperature profiles are depicted in Figures 3 and 4, respectively. 
It is clear from these figures that the velocity decreases with the increase of the 
first order velocity slip parameter, while the temperature distribution and the 
wall temperature θ(0) are increased with the increase of the same parameter. 
Physically, as the slip parameter increases in magnitude, causes a creation for 
the friction force which permit more fluid to slip past the sheet, the flow slows 
down for distances close to the sheet and the temperature rise due to the pres-
ence for this force.
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Fig. 3. The velocity distribution for various values of λ1

Fig. 4. The temperature distribution for various values of λ1

Figures 5 and 6, illustrate the effects of the second velocity slip parameter 
on the dimensionless velocity and temperature profiles, respectively. It can be 
seen that the dimensionless velocity is gradually reduced with increasing the 
amount of the absolute value of second velocity slip parameter but the reverse 
is true for the temperature distribution along the thermal boundary layer and 
the wall temperature θ(0).
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Fig. 5. The velocity distribution for various values of λ2

Fig. 6. The temperature distribution for various values of λ2

Figure 7 shows the temperature profile against the similarity variable η for 
various values of heat generation/absorption parameter γ. This figure shows 
that the heat generation or absorption has a profound effect on the thermal 
boundary layer thickness in which the absorption parameter γ < 0 reduces the 
thermal boundary layer thickness and the wall temperature θ(0), whereas heat 
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generation parameter γ > 0 thickens the thermal boundary layer and increases 
the wall temperature θ(0). However, the net effect for the absorption parameter 
is to slow down the temperature distribution but the reverse is true for the heat 
generation parameter. 

Fig. 7. The temperature distribution for various values of γ

Finally, to show the behavior of the quantities of relevant physical interest 
like the local skin-friction coefficient ½Rex

½Cf and the local Nusselt number  
NuxRex

–½ with changes in the first order slip velocity parameter λ1, the second 
order slip velocity parameter λ2, the magnetic parameter M and the heat gen-
eration/absorption parameter γ. One can then see from Table 1 that, increases 
in the first order slip velocity parameter or the absolute value of the second 
order slip velocity parameter leads to a decrease in both the local skin-fric-
tion coefficient and the local Nusselt number. Physically, when the slip velocity 
on the surface rises, friction between the fluid and the surface is reduced.  
With decreasing friction, the heat generated on the surface which transferred 
to the flow is reduced. This leads to a decrease in the rate of heat transfer. Also, 
it is observed from the same table that, an increase in the magnetic parameter 
causes an increase in the local skin-friction coefficient but the reverse trend is 
noted for the local Nusselt number. On the other hand, increases in the heat 
absorption parameter leads to an enhancement in the local Nusselt number. 
Likewise, an increase in the heat generation parameter causes a decrease in 
the local Nusselt number. 
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Table 1

 Values of the local skin-friction coefficient ½Rex
½Cf and the local Nusselt number NuxRex

–½  
for various values of M, λ1, λ2 and γ with Pr = 0.7

NuxRex
–½ ½Rex

½Cf γ λ2 λ1 M

0.730256 0.656093 -0.5 -0.2 0.2 0.0
0.705121 0.748668 -0.5 -0.2 0.2 0.5
0.687691 0.807587 -0.5 -0.2 0.2 1.0
0.720946 0.903753 -0.5 -0.2 0.0 0.5
0.705121 0.748668 -0.5 -0.2 0.2 0.5
0.693715 0.640927 -0.5 -0.2 0.4 0.5
0.687897 0.594106 -0.5 -0.5 0.2 0.5
0.705121 0.748668 -0.5 -0.2 0.2 0.5
0.723733 0.93238 -0.5 0.0 0.2 0.5
1.103830 0.748668 -1.5 -0.2 0.2 0.5
0.927601 0.748668 -1.0 -0.2 0.2 0.5
0.705121 0.748668 -0.5 -0.2 0.2 0.5
0.350826 0.748668 0.0 -0.2 0.2 0.5
0.225079 0.748668 0.1 -0.2 0.2 0.5

Conclusion

This article deals with the effects of MHD second order slip on a slightly 
rarefied gas flow and heat transfer over a stretching surface in the presence 
of internal heat generation and heat flux. The governing partial differential 
equations for the flow and temperature fields are reduced to a system of coupled 
nonlinear ordinary differential equations by deducing suitable similarity trans-
formations via Lie group analysis. These nonlinear differential equations are then 
solved numerically by the shooting method coupled with the fourth-order Runge 
Kutta scheme. As here it clearly brings out, the rate of heat transfer decreases 
with an increase in the heat generation parameter, magnetic parameter, the 
first order slip parameter and the absolute value of the second order slip velocity 
parameter. Also, it was observed that the local Nusselt number increases as the 
heat absorption parameter increases. Thus fast cooling of the stretching sheet 
can be achieved by implementing this effect. Finally, a large value of the first 
order slip velocity parameter and the absolute value of the second order slip 
velocity parameter lead to a decrease in the value of the skin-friction coefficient.
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