Technical Sciences, 2019, 22(1), 45-59

|V| Quarterly peer-reviewed scientific journal Technical
ISSN 1505-4675 SCIENCES

PR e-ISSN 2083-4527
UNIWERSYTET TECHNICAL SCIENCES

WARMINSKO-MAZURSKI .
W OLSZTYNIE Homepage: www.uwm.edu.pl/techsci/

LIE GROUP ANALYSIS OF HEAT FLUX EFFECT
ON MHD SECOND SLIP FLOW FOR
A SLIGHTLY RAREFIED GAS PAST A STRETCHING
SHEET WITH HEAT GENERATION

Ahmed M. Megahed, Reda G. Abdel-Rahman

Department of Mathematics
Faculty of Science
Benha University, Benha, Egypt

Received 29 September 2017, accepted 4 February 2019, available online 7 February 2019.

Keywords: Lie group analysis, second order slip, slightly rarefied gas, MHD, heat flux.

Abstract

The present paper discusses steady MHD second order slip flow and heat transfer for a slightly
rarefied gas due to an impermeable stretching sheet with heat flux and internal heat generation.
By using the Lie group analysis, new similarity transformations are obtained. Employing these
transformations, allows the partial differential equations governing the problem to transform into
a system of ordinary differential equations which are later treated numerically using shooting
method. Effects of the governing parameters on the dimensionless velocity and dimensionless
temperature profiles are outlined graphically. Furthermore, results for the local skin-friction co-
efficient and the local Nusselt number are presented for some different values of the governing
parameters in a tabular form. Also, results show that there is a strong dependency of the dimen-
sionless temperature on the heat flux.

Correspondence: Ahmed M. Megahed, Department of Mathematics, Faculty of Science, Benha
University, Benha, Egypt, e-mail: ah_mg_sh@yahoo.com; Reda G. Abdel-Rahman, e-mail: reda-
khaled2004@yahoo.com



46 Ahmed M. Megahed, Reda G. Abdel-Rahman

Introduction

Of late, there has been a significant interest on the study of rarefied gas flows
over a stretching sheet to obtain a thorough cognition for their behaviors and
their various applications. Motivated by (FANG, AZ1Z 2010), we are interested in
acquiring the knowledge of heat transfer characteristics for the rarified MHD
gas flow over a stretching sheet with heat flux and internal heat generation.
The micro-electro-mechanical systems (MEMS) have an immense interest be-
cause in these systems, the slip flow regime and its behavior must be treated
as a rarefied gas flow (FANG, Aziz 2010). Also, for problems with low density,
the fluid can be also treated as a rarefied gas flow, for example, in outer space
applications (SHIDLOVSKIY 1967). The behavior of a rarefied gas flow can be

determined by the Knudsen number K, which defined as (K,, = #) the mean
e

free path (1) divided by a characteristic length (D,) for the flow. When Knudsen
number is very small, no slip is observed between the surface and the fluid.
Also, when Knudsen number lies in the range 0.001 to 0.1, slip occurs at the
surface fluid interaction and the Navier-Stokes equations with the slip bound-
ary conditions become applicable. But, for large values of Knudsen number, the
Navier-stokes equations are not applicable and the kinetic theory of gases must
be employed (MAHMOUD 2012). For the accurate prediction of gas flow and heat
transfer in many applications second order slip boundary condition is critical.
So, a significant amount of research on the fluid flow and heat transfer caused
by stretched surfaces with second order slip under different conditions and in
the presence of various physical effects has been reported (FANG et al. 2010,
KHADER, MEGAHED 2014).

In our study, we will use the Lie-group method to derive the similarity
solutions for our proposed problem. Lie group method is one of the most pow-
erful methods in order to determine particular solutions of partial differential
equations. It reduces the number of the independent variables of the partial
differential equations under consideration and keeps the system of equations and
associated initial and boundary condition invariant. The basic concepts of Lie
group method can be found in Books (OLVER 1986, IBRAGIMOV 1994). In the field
of viscous fluids there are many papers dealing with aspect of Lie group method.
In 2001, YORUSOY et al. presented exact solution of boundary layer equations
for non-Newtonian fluids by using Lie group method. Lie group method used to
study both problems of natural convection heat and mass transfer flow past an
inclined plate for various parameters by (SIVASANKARAN et al. 2006). LIKEWISE,
in 2010, MEKHEIMER et al. (2010) studied the Lie group analysis and similarity
solutions for a couple stress fluids with heat transfer. The similarity reductions
for the problem of heat and mass transfer over a moving porous plate with hy-
drodynamic slip and thermal convective boundary conditions were investigated
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by (HAMAD et al. 2012). By using the Lie group method (MINA, AMIN 2014)
studied the nonlinear inviscid flows with a free surface under gravity. Also
(HOSSAN 2015) applied lie group method to study the boundary layer flow and
heat transfer of an electrically conducting viscous fluid over a stretching sheet.
Thus, the main aim of the present work is to study the effects of heat flux and
internal heat generation on the MHD flow and heat transfer for a rarefied gas
over a stretching sheet with second order slip velocity.

Mathematical formulation

Let us consider a two-dimensional laminar MHD flow of slightly rarefied
gas over a stretching sheet which exposed to a heat flux and internal heat
generation in the presence of second order slip effect. The origin is located at
a slit, through which the sheet is drawn through the fluid medium. The x-axis is
chosen along the plane of the sheet and the y-axis is taken normal to the plane.
We assume that the surface starts stretching from rest with the velocity u,,
and temperature distribution T, and the temperature of the fluid at the am-
bient is T.,. On the other hand, the gas fluid is assumed to be an electrically
conducting in the presence of a uniform magnetic field applied normal to
the sheet, and the induced magnetic field is neglected under the approximation
of small Reynolds number.

So, the governing equations of steady boundary layer flow are based on the
continuity, momentum and the energy equations taking into account the effect
of heat generation and magnetic field, which are given as :

6u av _o 1
ox 6y ()
6u au _ po*u 0By (%)
e 2)
Yozt "9y " poy? p
or oT _ k_ 0%T Q(x)
i — 3
u6i+ ay pPCy 6y pCy (7= T.) 3
with boundary conditions
_ o i aor
y=0u=1u (X)+a(x)—+b(X)a = ZO'_Ka_quS(x) (4)
yﬁwlﬂ—)O,T—)Tm (5)

Technical Sciences 22(1) 2019



48 Ahmed M. Megahed, Reda G. Abdel-Rahman

Introducing the non-dimensional parameters:

M y:Xer, _E =V JRe, ¢ -4
L U, U, - k+/Re
- (6)
O )_Q( ) ke, 9-T-T7) , _mO
qs ('x) UO
LU, . . .
where Re =—— is the Reynolds number, U, L are the characteristic velocity
v
and the characteristic length.
i}
Useuza_l/),y:——lp we get
dy 0x
oY 02 oy 92 03
H1=—lp—¢——¢—lp— v + M"B,? (x)—= (7)

dy dyox 0x dy? 0dy?

1 dgs0 Yo oYos 1 0%
d4s 0%, 0¥ 06 0999 1076 +Y0()6=0 (8)
qs(x) dx 0y dy dx 0xdy Pray?

2 =

The boundary conditions (4) and (5) will be

o 92 By Y a8
y=0; @—uw(x)+a(x)—+b()a 3 E—O'@__l 9)
Y — o0; g—lj})ﬁﬂ 6-0 (10)
where M*z%, fzp(i,U’ a*(x):\/}LTea(x), b*(x)z%b(x).

Symmetry analysis and infinitesimal generators

In this section, we apply the techniques of Lie group theory to the equations
(7) and (8). Details of the theory can be found in (OLVER 1986, IBRAGIMOV 1994).
To perform this task, we consider the one-parameter (¢) Lie group of infinitesimal
transformation in (x, y, ¥, 6) which given by :

X =x+¢&&(x,y9,0)+ 0(?)
y=y+e&(x,y,1,0) + o(e?)
Y=y +en(xyP0)+o(e?)

6 =6+ en,(x,y,¥,0) + o(e?) (11)

here (&5, &, 14, 1) are the infinitesimal transformation of the variables x, y, 1, 6.
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The corresponding infinitesimal generator of Lie group is

5] 0

0 4]
V=51a+52@+771ﬁ+772ﬁ' (12)

Now, the infinitesimal transformations &, &,, n; and n, can be determined
from the following invariance conditions:
VO |Hlyeo =0, i=12 (13)

here: H;=0, i =1, 2 represent the equations (7) and (8) , V3 is the third prolon-
gation of infinitesimal generator V and V(3) is given by

0 0
VO =V, ——+n, —— 10, —— 1, ——+1,, ——
Ty P , B i , 20, m, agy T ow.

0 0 0
771W a 772Ax 80 772” 80 771;»; a

X

(14)

where 1y, M1y, Ny M1y M2y N2y Nayy @0d 14, can be calculated from
the following equations:

My = Dx(m1) = YD (§1) =¥y Dx(§2), M1y, = Dy(m) — ¥uDy (§1) — ¥y Dy (E2),
M2, = Dx(2) = 0xDx(§1) — 0,D,(§2), M2y, = Dy(m2) — 0xDy (1) — 6,y (&),
My = Da(M1,) = YuxDx (§1) = ¥3Dx(82), M1y, = Dy(1)) — Yy Dy (§1) — 1y Dy (82),
M =D, (1,)=0.D.(5)-0,.D.(S,), m, =D, (1,,)-0,D,(5)-0,D,(S),
My = Dx(1,,) = Wyx Dy (§1) — Wy, D ($2),

Myyy = Dy (nlyy) = Yayy Dy (§1) = Pyyy Dy ($2) (15)

where D, D, are the operators of total differentiation with respect to x and y,
respectively. By applying the third prolongation (14) to the original equations
(7) and (8), we get

dB (x)

=0
(16)

Tl1y1l’xy + Tl1xy¢y N, ¥yy — 771yy1l’x My, T M Bz(x)Th +2M°E,

dx \q,, (x) dx qw(x) dx “dx 1Yy q., () dx

1 dQ(x)
szlpy - 771x9y - 772y1/’x - ﬁ’lzw - 51 dx 06—y Q(x)nz

d 1 dgq 1 dqg, 1 dqg,
(—( —W))flwye Yy — 0+ T 0 +

(17)
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. Substi.tuting ab(?ut N My N2 N2y My My Mayy .and Myyy f?om equa-
tions (15) into equations (16), (17) and setting the coefficients involving 9, [
Vo l/)y , lﬂxy, wxyy, zpyyy, 0, Oy, Oxy, 0,0 Bxy, 0 oy 'and various prodpcts to zero which
may be leads to a system of coupled partial differential equations. So, we have:

§=dy+dyx, & =d3y+F(x), ny=(dy—d3)y, n,=d;0 (18)

where d;, d, and d; are arbitrary constants and F(x) is an arbitrary functions
depends on x. The functions B(x), q,,(x) and Q,, (x) are to be determined from the
following equations:

dB(x) ds B dQ(x) 2d, B
ax T (d1 - dzx) B =0 ——+ <d1 - d2x> Q@) =0,
dg,(x) d (19
dx (dl +3d2x> Gw(x) = 0.

This implies that, the system of nonlinear equations (7) and (8) has the
four-parameter Lie group of point symmetries generated by generators
y =2 V, = L V—a a+96 V= P2 (20)
From the invariance of the boundary conditions, we get F(x) = 0 and
the functions u,(x), a(x) and b(x) should satisfy the following equations

du, (x) (dy — 2d3) B da’(x) < ds ) oo
dx (d1 “dyx) ) =0 & @ —dpx)t =0
db* (x) 2d; N\ .
_ = 21
dx <d1 n dzx)b () =0 21

From equations (19) and (20) can be obtained on different forms for the
functions B(x), Q(x), u,, (%), a’(x), q4(x) and b*(x) via choosing the constants dy, d,
and d; as follows.

Setting d; =1, d, =1 and d; # 1 we get:

w=Ae72%% qa"(x) = 1,e®%,  b'(x) = 1,e?%3%, B(x) = Bye %%,

qs(x) = Aze®%,  Q(x) = Qoe>%¥ (22)

Considered the general case in which both constants are involved

dp-2d; 4o 2d
u, (%) = A;(dy + dyx) %2 ,a’(x) = A (dy + dyx)%2, b (x) = A,(dy +dypx) %2,
—dg —ds —d;
Qo(x) = Qo(dy + dyx) @ LG (X) = Ay(dy + dyx) ©2,  B(x) = By(d; + dpx) %
(23)
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Choosing d;, d, # 0 and d5 = 0 we have:
uy =A;(dy +dyx), alx) =241, b)) =23,qw(x) =qos, B(x) =B,
Q) = Qo (24)
where A, A,, A3, qys Ay Ay, Ay, By and Q, are arbitrary constants.

The solutions of equations (7) and (8) are invariant under infinitesimal
transformations (11) if V(¥ - ¥(x,¥)) = 0 when ¢ = y(x, y) and V(6 - 6(x,¥)) =0
when 6 = 0(x, ).

These conditions can be rewritten as

Y0

d N 0 6 a0
flax fzay— ’

51_x+€2@:0 (25)

0
0

Equation (25) is called the invariant surface conditions, which are quasi-lin-
ear equations. The subsidiary equations can be expressed as:

dx _ dy _ dy _ deo
fl(x,y,l/),e) B fz(x,y,l/),e) B 771(75'3"1/}'9) B n2(x'yllp'9)

From the solution of characteristic equation (26), we get on three constants
one of them is called similarity variable and other called similarity functions.

(26)

Reduction to ordinary differential equations

Here, we will consider the various reductions of the partial differential equa-
tions (7) and (8).
1. We consider the combination V; + d5V5, then the characteristic equations
would be
dx dy dy de
1 diy —dsp daf

(27)

Solving equation (27), we have the following similarity variable and functions

n=ye BY  P=eBf(n), 6=eB*G(n): (28)

Inserting the similarity variable  and functions into equations (7) and (8)
yields the following ordinary differential system:

f = dsff"+ 2dsf"? = Mf' =0, (29)
G" —Pr(d;fG' +2d5f'G—yG) =0 (30)
and boundary conditions are transformed to

O =1+4f"(0)+2,f"(0), f(0)=0, &'(0)=-1atn=0 (31
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fi(©)=0, G(«)=0,atn—0 (32)

where the functions u, (x), a(x), b(x), B(x), Q(x) are defined in equation (22) and
_ — MB2 v = v
A=1,M=MBg,y=7v Q-

2. Consider the general case d,V; + d,V, + d;V,, then equation (26) take the form
dx dy dy do

dy+d,x  dzy (dy—d3)y ds0

from equation (33), we get

] d,—d a3
n=y(di+dox) @, = (dy+dp0) "), 6=(di+d0)RG6n) (34)

2

Consequently, substituting equation (34) into equations (7) and (8) and bound-
ary conditions (9) and (10), we obtain the following similarity equations

f'" 4 (dy = da)ff" = (dy — 2d3)f* —Mf' =0 (35)
G" + Pr((d, — ds)fG' — (Ay + 1)dsf'G +yG) = 0 (36)

and boundary conditions take the form
£10) =1+ 2A4f"(0) + A.f™(0), f(0)=0, G'(0)=-1atn=0 (37)
fl(®@)=0, G(0)=0,atn—0 (38)

where the functions u,, (x), a(x), b(x), B(x), Q(x) are defined in equation (23) and
_ - MR2Z v
A=1,M=MBg§,y=7v Q.

3. Consider d,V; +d,V,, from equation (26) we have
n=y, Y= +d0)f(m), 6=0G6Mm) (39)

Substituting from equation (39) into equations (7) to (10) we get the following
system of ordinary differential equations:

"+ dof f" = dof ? = Mf' =0 (+0)
G" +Pr(d,fG'+yG)=0 (41)
and boundary conditions will be
f10)=1+24f"(0)+2,"(0), f(0)=0 &'(0)=-1atn=0 (42)
fi(©) =0, G()=0,atn—0 (43)

where the functions uw*(x), a(x), b(x), B(x), Q(x) and gw(x) are defined in equation (24)
A1=17M=M*B27y:y QO'
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The physical quantities of interest are the local skin-friction coefficient C r
and the local Nusselt number Nu, which are defined as:

C. = 2Ty, _ xqs (44)

I puw2 ' Nux B K(Tw - Toc)
Further, 7, is the shear stress which given by :
Ju
Tw = _H(E)y=0 (45)
Using Egs. (39) (The third case), we obtain:
1 1
lRe2c, =—f"0),  NuRe,2=—— (46)
2 ’ 6(0)

where Re, = Xty (1) is the local Reynolds number.
v

Results and discussion

In this section, to get clear insight of the physical problem, numerical results
for the second order slip flow and heat transfer for a slightly rarefied gas within
a boundary layer in the presence of heat generation/absorption, magnetic field and
heat flux effects was performed with the purpose of identifying the characteristics
of the gas flow over a stretching sheet (third case). Figures 1-7 depict the graphical
llustrations of the various controlling parameters on the velocity and temperature
profiles. The dimensionless velocity profiles for some selected values of magnetic
parameter M are plotted in Figure 1. It is apparent that the velocity decreases
along the surface with an increase in the magnetic parameter. Physically, it is
well known that the magnetic field presents a damping effect on the velocity
field by creating linear magnetic drag force in the form of (—Mf") which appear
in the non-dimensional momentum boundary layer equation (40), is directly
proportional to M. Therefore greater retarding effect is generated in the flow
with greater M values which causes a decrease for the velocity distribution inside
the momentum boundary layer.

Figure 2, shows the effect of magnetic parameter M on the temperature
profiles above the surface. It is noticed that, an increase in the parameter M
has the effect of increasing the temperature distribution, the wall temperature
6(0) and the thermal boundary layer thickness.

Technical Sciences 22(1) 2019
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£

067 71=0.2,45=-0.2

do=1.0

0.4r M=0.0,05,1.0
0.2+
1 2 3 4 5 6 7 7
Fig. 1. The velocity distribution for various values of M
G(n)

Pr=0.7,y=-0.5

0.8 7 M=0.0,0.5,1.0

04 F

02F

Fig. 2. The temperature distribution for various values of M

The effects of the first order velocity slip parameter on the dimensionless
velocity and temperature profiles are depicted in Figures 3 and 4, respectively.
It is clear from these figures that the velocity decreases with the increase of the
first order velocity slip parameter, while the temperature distribution and the
wall temperature 6(0) are increased with the increase of the same parameter.
Physically, as the slip parameter increases in magnitude, causes a creation for
the friction force which permit more fluid to slip past the sheet, the flow slows
down for distances close to the sheet and the temperature rise due to the pres-
ence for this force.
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0.6 M=0.5,A9=-0.2

[ dz =1.0

0.4
b A1=0.0,0.2,0.4

02r

Fig. 3. The velocity distribution for various values of 1,

G(n)
1.4 §

[ Pr=0.7,y=-0.5
10 F

08F 41=0.0,0.2, 0.4

0.6F

02

T T T T S A | -
1 2 3 4 5 6 7 7

Fig. 4. The temperature distribution for various values of A,

Figures 5 and 6, illustrate the effects of the second velocity slip parameter
on the dimensionless velocity and temperature profiles, respectively. It can be
seen that the dimensionless velocity is gradually reduced with increasing the
amount of the absolute value of second velocity slip parameter but the reverse
is true for the temperature distribution along the thermal boundary layer and
the wall temperature 6(0).
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f'(n)
0.8

M=0.5,11=0.2

0.6 do=1.0

0.4
H A2 =-0.5,-0.2, 0.0

Fig. 5. The velocity distribution for various values of A,

Pr=0.17,y=-0.5

08F 12 =-0.5,-0.2,0.0
06F
041

02F

Fig. 6. The temperature distribution for various values of 1,

Figure 7 shows the temperature profile against the similarity variable n for
various values of heat generation/absorption parameter y. This figure shows
that the heat generation or absorption has a profound effect on the thermal
boundary layer thickness in which the absorption parameter y <0 reduces the
thermal boundary layer thickness and the wall temperature 6(0), whereas heat
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generation parameter y> 0 thickens the thermal boundary layer and increases
the wall temperature 6(0). However, the net effect for the absorption parameter
1s to slow down the temperature distribution but the reverse is true for the heat
generation parameter.

G(n)

11 = 0.2, /12 =-0.2
Pr=0.7,M=0.5

y =-1.5,-1.0,-0.5, 0.0, 0.1

Fig. 7. The temperature distribution for various values of y

Finally, to show the behavior of the quantities of relevant physical interest
like the local skin-friction coefficient 1/zReX1/2Cf and the local Nusselt number
NuXReX‘l/2 with changes in the first order slip velocity parameter 1,, the second
order slip velocity parameter 1,, the magnetic parameter M and the heat gen-
eration/absorption parameter y. One can then see from Table 1 that, increases
in the first order slip velocity parameter or the absolute value of the second
order slip velocity parameter leads to a decrease in both the local skin-fric-
tion coefficient and the local Nusselt number. Physically, when the slip velocity
on the surface rises, friction between the fluid and the surface is reduced.
With decreasing friction, the heat generated on the surface which transferred
to the flow is reduced. This leads to a decrease in the rate of heat transfer. Also,
it is observed from the same table that, an increase in the magnetic parameter
causes an increase in the local skin-friction coefficient but the reverse trend is
noted for the local Nusselt number. On the other hand, increases in the heat
absorption parameter leads to an enhancement in the local Nusselt number.
Likewise, an increase in the heat generation parameter causes a decrease in
the local Nusselt number.
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Table 1

Values of the local skin-friction coefficient %Re,"Crand the local Nusselt number Nu,Re, "

for various values of M, A;, A, and ¥ with Pr=0.7

Nu,Re, " Y:Re,"Cy y A, A M
0.730256 0.656093 -0.5 -0.2 0.2 0.0
0.705121 0.748668 -0.5 -0.2 0.2 0.5
0.687691 0.807587 -0.5 -0.2 0.2 1.0
0.720946 0.903753 -0.5 -0.2 0.0 0.5
0.705121 0.748668 -0.5 -0.2 0.2 0.5
0.693715 0.640927 -0.5 -0.2 0.4 0.5
0.687897 0.594106 -0.5 -0.5 0.2 0.5
0.705121 0.748668 -0.5 -0.2 0.2 0.5
0.723733 0.93238 -0.5 0.0 0.2 0.5
1.103830 0.748668 -1.5 -0.2 0.2 0.5
0.927601 0.748668 -1.0 -0.2 0.2 0.5
0.705121 0.748668 -0.5 -0.2 0.2 0.5
0.350826 0.748668 0.0 -0.2 0.2 0.5
0.225079 0.748668 0.1 -0.2 0.2 0.5
Conclusion

This article deals with the effects of MHD second order slip on a slightly
rarefied gas flow and heat transfer over a stretching surface in the presence
of internal heat generation and heat flux. The governing partial differential
equations for the flow and temperature fields are reduced to a system of coupled
nonlinear ordinary differential equations by deducing suitable similarity trans-
formations via Lie group analysis. These nonlinear differential equations are then
solved numerically by the shooting method coupled with the fourth-order Runge
Kutta scheme. As here it clearly brings out, the rate of heat transfer decreases
with an increase in the heat generation parameter, magnetic parameter, the
first order slip parameter and the absolute value of the second order slip velocity
parameter. Also, it was observed that the local Nusselt number increases as the
heat absorption parameter increases. Thus fast cooling of the stretching sheet
can be achieved by implementing this effect. Finally, a large value of the first
order slip velocity parameter and the absolute value of the second order slip
velocity parameter lead to a decrease in the value of the skin-friction coefficient.

Technical Sciences 22(1) 2019



Lie Group Analysis of Heat Flux Effect on MHD Second Slip Flow... 59

References

FANG T., Az1z A. 2010. Viscous flow with second-order slip velocity over a stretching sheet. Zeitschrift
fir Naturforschung A, 65a: 1087-1092.

FANGT., YAO S., ZHANG J., AZIZ A. 2010. Viscous flow over a shrinking sheet with second order slip
flow model. Communications in Nonlinear Science and Numerical Simulation, 15: 1831-1842.

HAMAD M.A.A., UDDIN M.J., ISMAIL A.I.M. 2012. Investigation of combined heat and mass transfer
by Lie group analysis with variable diffusivity taking into account hydrodynamic slip and thermal
convective boundary conditions. International Journal of Heat and Mass Transfer, 55: 1355-1362.

HossAM S.H. 2015. Symmetry analysis for MHD viscous flow and heat transfer over a stretching
sheet. Applied Mathematics, 6: article ID: 53062,16 pages.

IBRAGIMOV N.C.R.C. 1994. Handbook of Lie group analysis of differential equations. Vol 1: Sym-
metries, exact solutions and conservation laws. CRC Press, Boca Raton, FL.

KHADER M.M., MEGAHED A.M. 2014. Differential transformation method for the flow and heat
transfer due to a permeable stretching surface embedded in a porous medium with a second
order slip and viscous dissipation. ASME Journal of Heat Transfer, 136(7): 072602— 072607.

KHADER M.M., MEGAHED A.M. 2014. Numerical solution for the flow and heat transfer due to
a permeable stretching surface embedded in a porous medium with a second order slip and viscous
dissipation. European Physical Journal Plus, 129: 10.

KHADER M.M., MEGAHED A.M. 2014. Effect of viscous dissipation on the boundary layer flow and
heat transfer past a permeable stretching surface embedded in a porous medium with a second-or-
der slip using Chebysheuv finite difference method. Transport in Porous Media, 105: 487-501.

MAHMOUD M.A.A. 2012. MHD flow and heat transfer in a viscous fluid over a non-isothermal
stretching surface with thermal radiation in slip-flow regime. Chemical Engineering Commu-
nications, 199: 925-942.

MEKHEIMER K.S., HUSSENY S.Z.A., ALI A.T., ABO-ELKHAIR R.E. 2010. Lie Group Analysis and
Similarity Solutions for a Couple Stress Fluid with Heat Transfer. Journal of Advanced Research
in Applied Mathematics, 2: 1-17.

MINA B.M., AMIN A.M. 2014. Lie group analysis of nonlinear inviscid flows with a free surface under
gravity. Journal of Computational and Applied Mathematics, 258: 17-29.

NANDEPPANAVAR M.M, VAJRAVELU K., ABEL M.S., SIDDALINGAPPA, M.N. 2012. Second order slip
flow and heat transfer over a stretching sheet with non-linear Navier boundary condition. Inter-
national Journal of Thermal Science, 58: 143-150.

OLVER P. 1986. Applications of Lie groups to differential equations. Springer-Verlag, New York.

RamMasaMI E.K. 2006. Lie group analysis of natural convection heat and mass transfer in an in-
clined porous surface with heat generation. International Journal of Applied Mathematics and
Mechanics, 2: 34-40.

RamasamI E.K. 2006. Lie group analysis of natural convection heat and mass transfer in an inclined
surface. Nonlinear Analysis: Modelling and Control, 11: 201-212.

SHIDLOVSKIY V.P. 1967. Introduction to the Dynamics of Rarefied Gases. American Elsevier Pub-
lishing Company Inc., New York.

SIVASANKARAN S., BHUVANESWARI M., KANDASWAMY P., STEPHANI H. 1989. Differential Equations:
Their Solution Using Symmetries. Cambridge University Press, New York.

WU L. 2008. A slip model for rarefied gas flows at arbitrary Kundsen Number. Applied Physics
Letters, 93: 253103.

YURUSOY M., PAKDEMIRLI M., NOYAN O.F. 2001. Lie group analysis of creeping flow of a second
grade fluid. International Journal of Non-Linear Mechanics, 36: 955-960.

Technical Sciences 22(1) 2019






