
Technical Sciences, 2019, 22(1), 61–74

Correspondence: Tadeusz Witkowski, Instytut Organizacji Systemów Produkcyjnych, Wy-
dział Inżynierii Produkcji, Politechnika Warszawska, ul. Narbutta 85, 02-524 Warszawa, e-mail:
tawit@poczta.onet.pl

PARTICLE SWARM OPTIMIZATION AND DISCRETE
ARTIFICIAL BEE COLONY ALGORITHMS

FOR SOLVING PRODUCTION SCHEDULING PROBLEMS

Tadeusz Witkowski
Faculty of Production Engineering

Warsaw University of Technology in Warsaw

Received 13 December 2018, accepted 6 February 2019, available online 7 February 2019.

K e y w o r d s:	 Discrete Artificial Bee Colony, Particle Swarm Optimization, production schedu-
ling problem, makespan.

A b s t r a c t

This paper shows the use of Discrete Artificial Bee Colony (DABC) and Particle Swarm
Optimization (PSO) algorithm for solving the job shop scheduling problem (JSSP) with the objective
of minimizing makespan. The Job Shop Scheduling Problem is one of the most difficult problems, as
it is classified as an NP-complete one. Stochastic search techniques such as swarm and evolutionary
algorithms are used to find a good solution. Our objective is to evaluate the efficiency of DABC and
PSO swarm algorithms on many tests of JSSP problems. DABC and PSO algorithms have been
developed for solving real production scheduling problem too. The experiment results indicate that
this problem can be effectively solved by PSO and DABC algorithms.

Introduction

The job shop scheduling problem has become a classic scheduling problem.
Although it is mainly associated with industrial engineering, it is required in
other sectors, too. The study of the scheduling problem is carried out taking
inputs from various sources, such as computer science, operations research,
management and manufacturing.

Technical Sciences	 22(1) 2019

62	 Tadeusz Witkowski

Scheduling involves assigning a set of tasks on resources in a time period,
taking into account the time, capability and capacity constraints. Many stud-
ies have been done to solve this problem or to determine the closest approach
to the solution. Commonly used scheduling techniques include the following
(Błażewicz et al. 2007):

–	Exact Algorithms (e.g. Branch and Bounds Methods, Linear Programming,
Dynamic Programming);

–	Approximation Algorithms [Artificial Intelligence Algorithms (e.g. Artificial
Neural Network), Local Search Algorithms (e.g. Greedy Randomized Adaptive
Search Procedure, Taboo Search, Simulated Annealing), Evolutionary Algorithms
(e.g. Genetic Algorithm), Swarm Optimization Algorithms (e.g. Ant Colony
Optimization, Bee Colony Algorithm, Particle Swarm Optimization)].

Witkowski (2016) presents a research study of state-of-the-art algorithms
for FJSP. Therefore, these algorithms can be called swarm-intelligence-based,
bio-inspired, physics-based and chemistry-based, depending on the sources
of inspiration.

Swarm-intelligence-based algorithms include: Accelerated PSO, Ant colony
optimization, Artificial bee colony, Bacterial foraging, Bacterial-GA Foraging,
Bat algorithm, Bee colony optimization, Bee system, BeeHive, Wolf search,
Bees algorithms, Bees swarm optimization, Bumblebees, Cat swarm, Consult-
ant-guided search, Cuckoo search, Eagle strategy, Fast bacterial swarming
algorithm, Firefly algorithm, Fish swarm/school, Good lattice swarm optimi-
zation, Glowworm swarm optimization, Hierarchical swarm model, Krill Herd,
Monkey search, Particle swarm algorithm, Virtual ant algorithm, Virtual bees,
Weightless Swarm Algorithm and other algorithms Anarchic society optimization,
Artificial cooperative search, Backtracking optimization search, Differential
search algorithm, Grammatical evolution, Imperialist competitive algorithm,
League championship algorithm, Social emotional optimization.

Bio-Inspired (not swarm-intelligence-based) algorithms include: Atmosphere
clouds model, Biogeography-based optimization, Brain Storm Optimization,
Differential evolution, Dolphin echolocation, Japanese tree frogs calling, Eco-in-
spired evolutionary algorithm, Egyptian Vulture, Fish-school Search, Flower
pollination algorithm, Gene expression, Great salmon run, Group search optim-
izer, Human-Inspired Algorithm, Invasive weed optimization, Marriage in honey
bees, OptBees, Paddy Field Algorithm, Roach infestation algorithm, Queen-bee
evolution, Shuffled frog leaping algorithm, Termite colony optimization.

Physics- and chemistry-based algorithms include: Big bang-big Crunch, Black
hole, Central force optimization, Charged system search, Electro-magnetism
optimization, Galaxy-based search algorithm, Gravitational search, Harmony
search, Intelligent water drop, River formation dynamics, Self-propelled par-
ticles, Simulated annealing, Stochastic diffusion search, Spiral optimization,
Water cycle algorithm.

Technical Sciences	 22(1) 2019

	 Particle Swarm Optimization and Discrete Artificial Bee Colony Algorithms…	 63

Other algorithms used for job scheduling problem are the following: Raven
roosting optimization algorithm, Camel herds algorithm, artificial flora algo-
rithm, Rhinoceros search algorithm, Beer froth artificial bee colony.

Hence, a variety of heuristics and metaheuristics procedures such as taboo
search, simulated annealing and genetic algorithm have been applied to solve
these problems and find an optimal or near-optimal schedule in a reasonable
time (Witkowski et al. 2010) Swarm intelligence systems are typically made
up of a population of simple agents interacting locally with one another and
with their environment. Particle Swarm, Ant Colony, Bee Colony are examples
of swarm intelligence. A survey (Krause et al. 2013) shows that PSO was the
most frequently found algorithm, representing 25% of all papers analyzed, and
scheduling problems are the most frequently analyzed. The ABC algorithm
came second, representing 13% of the total.

Production Scheduling Problem

The structure of the production scheduling problem can be described as
follows (Mesghouni et al. 2004).

Consider a set of N jobs {Jj}i j N, where these jobs are independent of one an-
other; each job Jj has an operating sequence, called Gj; each operating sequence
Gj is an ordered series of operations, Gij indicating the position of the operation
in the technological sequence of the job; the realization of each operation Oij
requires a resource or a machine selected from a set of machines, {Mk}i j M
(for FJSSP problem); M is the total number of machines existing in the shop,
this implying the existence of an assignment problem; there is a predefined set
of processing times; for a given machine, and a given operation Oij, the process-
ing time is denoted by PijMk; an operation which has started runs to completion
(non-preemption condition); each machine can perform operations one after an-
other (resource constraints). Our objective is to determine the minimal makespan
(Cmax value), where Cmax = max {Cj}, and Cj is the completion time of job Jj.

To evaluate schedules different performance measures or optimality criteria
have been used (Błażewicz et al. 2007): schedule length (makespan), mean
flow time, mean weighted flow time, maximum lateness, mean tardiness, mean
weighted tardiness, mean earliness, mean weighted earliness, number tardy
task and weighted number of tardy tasks.

The flexible job shop scheduling problem (FJSSP) is an extended traditional
JSSP problem. It discards the restriction of unique resources and allows each
operation to be processed by several different machines, and so makes the JSSP
problem more similar to the actual production situation.

Technical Sciences	 22(1) 2019

64	 Tadeusz Witkowski

PSO and ABC algorithms
for Solving the Scheduling Problem

The issues of production scheduling cover a wide range of models and algo-
rithms as well as optimization criteria. Papers on JSSP problems with basic PSO
and ABC algorithms (non-hybrid) were presented, among others, in Surekha
and Sumathi (2010) and Abu-Srhahn and Al-Hasan (2015). In Surekha and
Sumathi (2010), we find a knowledge – based approach to JSSP using Particle
Swarm Optimization and Ant Colony Optimization. The well known Fisher and
Thompson (1963) 10×10 instance (FT10) and Adams et al. (1988) 10×10 instance
(ABZ10) problem are selected as the experimental benchmark problems. Based
on simulation and evaluation results, it is concluded that PSO is the superior
computational intelligence algorithm for solving the JSSP problem.

 A. Abu-Srhahn and M. Al-Hasan (2015) present a hybrid algorithm (Cuckoo
Search Optimizer is used along with a GA) to minimize Cmax value for JSSP.
The algorithms were tested using well known datasets in order to verify the
validity of the proposed algorithm. The instances FT06, FT10, and FT20 are
designed by Fisher and Thompson (1963), and instances LA01 to LA16 are
designed by Lawrence (1984). The results have been compared with GA algorithm
and Ant Colony Optimization Algorithm (ACO) to show the importance of the
proposed algorithm. The results show that the hybrid algorithm yields the best
solutions as measured by Cmax value, and GA algorithm is better then ACO.

 In this paper, Discrete Artificial Bee Colony (DABC) algorithm and Par-
ticle Swarm Optimization (PSO) algorithm are proposed for solving the job
shop scheduling problem with the objective of minimizing makespan (which is
the total length of the schedule, that is, when all the jobs have finished pro-
cessing – Cmax value).

PSO Algorithm

Particle swarm optimization (PSO) is a population-based optimization algo-
rithm. Each particle is an individual and the swarm is composed of particles.
The problem solution space is formulated as a search space. Each position in the
search space is a correlated solution of the problem. Particles cooperate to find
out the best position (best solution) in the search space (solution space). Particles
move toward the pbest position and gbest position with each iteration. The pbest
position is the best position found by each particle so far. Each particle has its
own pbest position. The gbest position is the best position found by the swarm
so far. The particle moves according to its velocity. The velocities are randomly
generated toward pbest and gbest positions. For each particle k and dimension j,
the velocity and position of particles can be updated by the following equations:

Technical Sciences	 22(1) 2019

	 Particle Swarm Optimization and Discrete Artificial Bee Colony Algorithms…	 65

Fig. 1. The detailed flow chart of PSO algorithm to solve JSSP
Source: based on Shua and Hsu (2006).

Technical Sciences	 22(1) 2019

66	 Tadeusz Witkowski

	 Vkj ← w vkj + c1 rand1 (pbestkj – xkj) + c2 rand2 (gbestj – xkj)	 (1)

	 xkj ← xkj + vkj	 (2)

In Equations (1) and (2), vkj is the velocity of particle k on dimension j,
and xkj is the position of particle k on dimension j. The pbest kj is the pbest posi-
tion of particle k on dimension j, and gbest j is the gbest position of the swarm on
dimension j. The inertia weight w is used to control exploration and exploitation.
The particles maintain high velocities with a larger w, and low velocities with
a smaller w. A larger w can prevent particles from becoming trapped in local
optima, and a smaller w encourages particles exploiting the same search space
area. The constants c1 and c2 are used to decide whether particles prefer mov-
ing toward a pbest position or gbest position. The rand1 and rand2 are random
variables between 0 and 1. The process for PSO is as follows (Shua, Hsu 2006):

Step 1:	Initialize a population of particles with random positions and veloc-
ities on d dimensions in the search space.

Step 2:	Update the velocity of each particle, according to Equation (1).
Step 3:	Update the position of each particle, according to Equation (2).
Step 4:	Map the position of each particle into solution space and evaluate

its fitness value according to the desired optimization fitness function. At the
same time, update pbest and gbest position if necessary.

Step 5:	Loop to step 2 until a criterion is met, usually a sufficiently good
fitness or a maximum number of iterations.

Figure 1 shows the detailed flow chart of PSO algorithm to solve JSSP.

DABC Algorithm

The classical artificial bee colony (ABC) algorithm proposed by D. Karaboga
(Karaboga, Basturk 2007) is a population algorithm often used for constrained
optimization problems. As the basic ABC algorithm was originally designed for
continuous function optimization, in order to make it applicable for solving the
problem considered, a discrete version of the ABC algorithm (DABC). Composite
mutation strategies are proposed to enable the DABC to explore the new search
space and solve the permutation flow shop scheduling problem. We consider each
discrete job permutation as a food source (FS) and apply discrete operations to
generate a new neighborhood food source for different bees to make artificial bee
colony algorithm suitable for JSP. Each FS is a permutation of operations. In order
to generate good diversity neighboring solutions several mutation strategies are
proposed to enable the DABC to solve the JSP. Initial population consists of schedule
generated based on a random permutation of operations (priority rule). Whenever
during employed or onlooker bee phase a new food source (schedule) is produced,
for each bee new neighboring solutions are generated using proposed mutations
strategies. Figure 2 shows the flow chart of DABC algorithm to solve JSSP.

Technical Sciences	 22(1) 2019

	 Particle Swarm Optimization and Discrete Artificial Bee Colony Algorithms…	 67

Fig. 2. The flow chart of DABC algorithm to solve JSSP
Source: based on Karaboga and Bastruk (2007).

Experiment Results

This section describes the computational experiments to evaluate the per-
formance of the proposed algorithms. The experiments were performed on
a PC with a processor Intel® Core™ i7-3770 CPU @ 3.40 GHz and RAM: 16 GB.
The DABC algorithm was coded in Java and PSO in C++. We use 10 instances
from three classes of standard JSSP test problems: instances FT06, FT10, FT20
(Fisher, Thompson 1963), instances La02, La19, La21, La27, La30, La40
(Lawrance 1984), and SWV11 instance (Storer et al. 1992).

Technical Sciences	 22(1) 2019

68	 Tadeusz Witkowski

A computational experiment with PSO for JSSP problems

The JSSP test problems are solved by PSO with the number of particles
equaling 30, c1=0.5, c2=0.3, w=0.5, and 10, 100, 1,000 iterations (Shua, Hsu
2006). The proposed algorithm is tested on 10 job shop scheduling benchmark
problems and the outcomes are presented in Table 1.

Table 1
Performance of PSO algorithm (Cmax value)

Problem
size

Performance of PSO (Cmax value)
optimal makespan

BKS
Avg (Best) Cmax

10 iterations
Avg (Best) Cmax
100 iterations

Avg (Best) Cmax
1000 iterations

FT6 55 58.7 (57) 58.2 (57) 57.7 (57)
FT10 930 1,129 (1,075) 1,100 (1,075) 1,070 (1,055)
FT20 1,165 1,313 (1,281) 1,258 (1,215) 1,219 (1,170)
La02 655 743 (704) 707 (685) 668 (664)
La19 842 1,000 (973) 971 (948) 951 (922)
La21 1,046 1,334 (1,303) 1,294 (1,258) 1,266 (1,218)
La27 1,235 1,604 (1,523) 1,570 (1,539) 1,531 (1,490)
La30 1,355 1,648 (1,546) 1,637 (1,605) 1,586 (1,567)
La40 1,222 1,559 (1,538) 1,493 (1,469) 1,462 (1,401)

SWV11 2,983 3,763 (3,668) 3,690 (3,632) 3,651 (3,589)

As can be seen from Table 1, the best Cmax values were obtained with more
iterations. It is obvious that with the increase in the number of iterations we
get better results of the criterion function, which, however, is associated with
a greater amount of calculations. For example, for the SWV 11 problem, the
average calculation time for 10 iterations is 2.01 seconds, while for 1000 iterations
it increases to 176.15 seconds. Table 1 shows that the best solutions have been
found for FT6, FT20 and La02 tasks. Thus, with the growth in the size of the
problem, the efficiency of the algorithm worsens.

A computational experiment with DABC for JSSP problems

Due to several parameters and levels of DABC, full factorial experimental
design requires high computational resources and is time consuming because
of the large number of experimental runs for each replication. The DABC factors
and its combinations (design points) in this work are summarized in Table 2.
Those factors are the combination of the Source Number (SN), the Maximum
Cycle Number (MCN), and Maximum Improvement Trial Number (MITN).

Technical Sciences	 22(1) 2019

	 Particle Swarm Optimization and Discrete Artificial Bee Colony Algorithms…	 69

Table 2
Combinations of SN, MCN, and MINT values used with DABC for solve JSSP

Factor
Combinations (design points)

1 2 3 4 5
SN 50 200 500 1000 2000

MCN 1,000 4,000 10,000 20,000 40,000
MITN 200 400 600 800 1,000

We want to determine if the factors interact with one another, i.e., whether
the effect of one factor in the response depends on the levels of the others.
A number of program start-ups were made for various combinations of factor
values, each time changing only one of them. For each combination the program
was started five times. Results are presented in Figures 3a to 3c.

Fig. 3. Influence: a – source number (SN), b – the maximum cycle number (MCN),
and c – maximum improvement trial number (MINT) on Cmax value

Figure 3a shows that an increase in the population number (number
of food sources – SN) results in achieving a better Cmax value. With SN =1000,
the value reached the lowest average Cmax value, and no progressive decrease
was observed for the average of Cmax with SN = 2,000 value. Figure 3b shows
that increasing the maximum cycle number (MCN) results in obtaining a better
Cmax value, and the spread of results decreases with an increase in the population
number. We can see an improvement of Cmax value compared to the previous test
point, which is a result of an increase in the MCN value. With MCN = 10,000,
the value improvement effect is lower than for previous test points. Figure 3c
shows that the best Cmax value was achieved with MITN equaling 60% of MCN
value, when the average Cmax was the lowest.

Figure 4a to 4b show an influence of other combinations (SN, MCN, and
MINT values) on the average and best Cmax value.

When analyzing Figure 4a, we can see that increasing the maximum cycle
number (MCN) gives better results (lower Cmax value) than increasing the
source number (SN). For example, for the third test point (optimal Cmax value

Technical Sciences	 22(1) 2019

70	 Tadeusz Witkowski

for FT10 equals 930), a tenfold increase of the MCN value produced a result
better by 9 time units (from 980 to 971), which is an almost 1% improvement
compared to the optimal value.

In the experiment, the values of control parameters were adjusted for each
problem according with formulas give in (Karaboga, Basturk 2007), but “num-
ber of operations” is used instead of fixed value “10”: SN = 5 · n; MCN = n · m · o;
and MITN = 2 · n · m; where: n – number of jobs, m – number of machines,
o – number of operations for a job. The proposed algorithm has been tested
on 10 job shop scheduling benchmark problems (with 10 iterations) and
the outcomes are presented in Table 3.

Table 3
Performance of DABC algorithm (Cmax value)

Problem
size

Performance of DABC algorithm (Cmax value)
optimal

 makespan
BKS

average found
makespan

optimal
makespan for

DABC
 RPI [%]

FT6 55 55 55 0.0
FT10 930 1,005 967 8.0
FT20 1,165 1,275 1,216 10.0
La02 655 676 655 3.0
La19 842 885 863 5.0
La21 1,046 1,152 1,102 10.0
La27 1,235 1,402 1,318 14.0
La30 1,355 1,461 1,404 9.0
La40 1,222 1,367 1,345 12.0

SWV11 2,983 3,944 3,844 32.0

Fig. 4. Influence of other combinations (SN, MCN, and MITN values) on
a – the average makespan and b – best makespan (Cmax value)

Technical Sciences	 22(1) 2019

	 Particle Swarm Optimization and Discrete Artificial Bee Colony Algorithms…	 71

Results comparison for JSSP test problems

Kloud and Koblasa (2011) compare SPT, FIFO, and GA taking into
account Cmax values and computational time. Only Cmax values are compared
in this work because of hardware differences. The comparison results are given
in Table 4 (Cmax and RPI values) for GA (Kloud, Koblasa 2011), PSO (Graczyk
2017), DABC (Witkowski et al. 2016), and Teaching-learning-based optimization
(Witkowski et al. 2016).

Table 4
Cmax and RPI values for other algorithms

Problem
size

Algorithms
GA PSO DABC TLBO HPSO DPSO

FT6 57(4.0) 57 (4.0) 55 (0.0) 55 (0.0) – –
FT10 974 (5.0) 1,055 (13) 967 (4.0) 980 (5.0) 930 (0.0) 938 (0.8)
FT20 1,198 (3.0) 1,170 (0.5) 1,216 (4.0) 1,225 (5.0) – –
La02 668 (2.0) 664 (1.0) 655 (0.0) 686 (5.0) 655 (0.0) 655 (0.0)
La19 876 (4.0) 922 (9.0) 863 (2.0) 894 (6.0) 842 (0.0) 842 (0.0)
La21 1,098 (5.0) 1,218 (16) 1,102 (5.0) 1,145 (9.0) 1,078 (2.0) 1,047 (0.1)
La27 1,350 (9.0) 1,490 (20) 1,318 (7.0) 1,373 (11) 1,257 (3.0) 1,236 (0.1)
La30 1,362 (1.0) 1,567 (15) 1,404 (4.0) 1,411 (4.0) – 1,355 (0.0)
La40 1,289 (5.0) 1,401(14) 1,345 (10) 1,326 (9.0) 1,224 (0.1) 1,229 (0.6)
SWV11 3,330 (12.0) 3,589 (20) 3,844 (29) 3,472 (16) – –

For each algorithm, we use formula RD = 100 (MFM-BKS)/BKS for each
instance to calculate the relative deviation RD, where MFM means the minimum
Cmax found and BKS means the best known solution. We use ARD to denote the
average value of relative deviations for all the analyzed instances.

For small problems FT06, FT10, FT20 and La02, almost all the algorithms
can find good solutions. DABC algorithm shows better Cmax values than TLBO
for GA and PSO with FT10, La02, La19 and La27 problems. PSO algorithm
shows better Cmax values than DABC only for FT20 and SWV11 problems.
TLBO algorithm shows better Cmax values than DABC and PSO and worse
than GA for La 40 and SWV11 problems, and GA works very well for solving
La30, La40 and SWV11 problems.

Contemporary research on the use of PSO and ABC for solving JSSP problems
includes various types of hybrid algorithms resulting from the combination
of PSO and ABC with other algorithms. Examples of such applications are
Song (2008) and Rameshkumar and Rajendran (2018), which were used
to compare the efficiency of the algorithms. Song (2008) proposes an idea
of a hybrid optimization algorithm HPSO. In order to prevent the algorithm falling

Technical Sciences	 22(1) 2019

72	 Tadeusz Witkowski

in a local optimization too early, Taboo Search is adopted to realize local parallel
search, simultaneously improving the local search ability. In Rameshkumar,
Rajendran (2018) the bench-mark JSSP problems are solved by discrete version
of the PSO algorithm. DPSO algorithm show the best-known solutions to 3 out
of 7 problems (La02, La19 and La30) in this work (Tab. 4). Figure 5 present
Cmax values for job shop scheduling test problems.

Fig. 5. Cmax. values for job shop scheduling test problems

A computational experiment with PSO, DABC
and other algorithms for a real system

For a real production system the input data include: the matrix of groups
of technologically interchangeable machines, the matrix of technological routes,
the matrix of operations with an accuracy of group of technologically inter-
changeable machines, the matrix of processing times tij i-th of an operation,
the matrix of processing times of a setup of machines before proceeding the j-th
operation and i-th part. The data set contains 10 parts which need to be processed
by 27 machines and 160 operations. The objective is to minimize Cmax value for
the FJSSP problem with a serial type production flow. In a serial production
flow an entire batch of parts is processed on one machine and only when all
of the parts in the batch have been processed are they sent to the next machine.
Table 4 present a comparison of the results (Cmax value) achieved by the different
algorithms under discussion in the two versions of the problem, i.e., the serial
flow and the serial-parallel flow (only the GA algorithm). For the real job shop
problem with a serial-parallel route, it is not possible to compute Cmax value
analytically.

Analyzing the effectiveness of algorithms is a difficult task. For example, in
Table 5 we can see that for the FJSSP problem with serial production flow ANN
(Witkowski et al. 2007), PSO (Graczyk 2017), TLBO and DABC (Witkowski
et al. 2016) algorithms give better Cmax values than the genetic algorithm

Technical Sciences	 22(1) 2019

	 Particle Swarm Optimization and Discrete Artificial Bee Colony Algorithms…	 73

(Witkowski 2016). But the GA algorithms were not as thoroughly tested as
was the case with PSO, DABC and TLBO. There are specific values for mu-
tation and crossover probability as well as many different types of mutation
operators, crossover operators and type of selections for which we can obtain
best experiment results. The following are applied in GA: population number
= 1,000, generation number = 50, single swap mutation, order-based crossover
and roulette wheel selection.

Table 5
Cmax values for real scheduling problem

Production flow
Algorithms

GA ANN PSO DABC Optimal Cmax
value

Serial flow 57,636.0 50,242.2* 50,242.2* 50,242.2* 50,242.2
Serial-parallel flow 32,084.0 – – – ?

Conclusions

This work examined the JSSP problems with the objective of minimizing
makespan. Computational results for JSSP problems were compared with
some algorithms such as: GA, TLBO (non-hybrid algorithms) and HPSO,
DPSO (hybrid algorithms). According to the theorem of No Free Lunch, no
intelligent optimization algorithm is better than other intelligent algorithms.
That is, every algorithm has its corresponding application circumstances.
For small problems (FT6-La21) almost all the algorithms can find good solutions
for JSSP problems. For relatively large problems (La30-SWV11), the results
of the proposed algorithms DABC and PSO are worse than GA. The computational
experiment shows that results given by the DABC and PSO for real job shop
scheduling problem generated optimal Cmax values. In future, we can expect
more research to be done on the serial-parallel production flow, where individual
items in a batch are sent to the machines as soon as they have been processed
on the previous machine.

References

Abu-Srhalm A., Al-Hasan M. 2015. Hybrid Algorithm using Genetic Algorithm and Cuckoo Search
Algorithm for Job Shop Scheduling Problem. International Journal of Computer Science Issues,
12(2): 288-292.

Adams J., Balas E., Zawack D. 1988. The shifting bottleneck procedure for job shop scheduling.
Management Science, 34(3): 391–401.

Technical Sciences	 22(1) 2019

74	 Tadeusz Witkowski

Błażewicz J., Ecker K., Pesch E., Schmidt G., Węglarz J. 2007. Handbook on Scheduling; From
Theory to Application. Springer, Berlin, Heidelberg, New York.

Fisher H., Thompson G. 1963. Probabilistic Learning combinations of local job shop scheduling
rules. Englewood Cliffs, New York, Prentice-Hall.

Graczyk P. 2017. Particle swarm optimization for job shop scheduling (master thesis). Warsaw
University of Technology, Warsaw.

Krause, J., Cordeiro, J., Parpinelli, R.S., Lopes H.S. 2013. A Survey of Swarm Algorithms
Applied to Discrete Optimization Problems. In: Swarm Intelligence and Bio-Inspired Computa-
tion. Eds. X.-S. Yang, Z. Cui, R. Xiao, A.H. Gandomi, M. Karamanoglu. Elsevier Inc., p. 169-191

Karaboga D., Basturk B. 2007. Artificial Bee Colony (ABC) Optimization Algorithm for Solving
Constrained Optimization Problems. In: Lecture Notes in Artificial Intelligence. Eds. P. Melin,
O. Castillo, L.T. Aguilar, W. Pedrycz. Springer-Verlag, Berlin, Heidelberg, p. 789–798.

Kloud T., Koblasa F. 2011. Solving job shop scheduling with the computer simulation.
The International Journal of Transport & Logistics, 3: 7-17.

Lawrence S. 1984. Resource constrained project scheduling, An experimental investigation
of heuristic scheduling techniques. Technical Report, GSIA, Carnegie Mellon University.

Mesghouni K., Hammadi S., Borne P. 2004. Evolutionary Algorithms for Job Shop Scheduling.
International Journal of Applied Mathematics and Computer Science, 14(1): 91–103.

Rameshkumar K., Rajendran C. 2018. A novel discrete PSO algorithm for solving job shop sched-
uling problem to minimize makespan. IOP Conference Series: Materials Science and Engineering,
310: 10.

Shua D.Y., Hsu Ch.Y. 2006. A hybrid particle swarm optimization for job shop scheduling problems.
Computers & Industrial Engineering, 51: 791-808.

Song X., Yang C., Qiu-Hong M. 2008. Study on particle swarm algorithm for Job Shop Scheduling
Problems. Systems Engineering and Electronics, 30(12): 2398-2401.

Storer R., Wu D., Vaccari R. 1992, New Search Spaces for Sequencing Problems with Application
to Job Shop Scheduling. Management Science, 38: 1495-1509.

Surekha P., Sumathi S. 2010. PSO and ACO based approach for solving combinatorial Fuzzy Job
Shop Scheduling. International Journal of Computer Technology and Applications, 2(1): 112-120.

Witkowski T., Strojny G., Antczak P. 2007. The Application of Neural Networks for Flexible
Job Shop Problem. International Journal of Factory Automation, Robotics and Soft Computing,
2: 116-121.

Witkowski T., Antczak A., Antczak P. 2010. Comparison of Optimality and Robustness between
SA, TS and GRASP Metaheuristics in FJSP Problem. Lecture Notes in Computer Science, 6215:
319-328.

Witkowski T. 2016. Scheduling Algorithms for Flexible Job Shop Scheduling. Wydawnictwo Nau-
kowe PWN, Warszawa.

Witkowski T., Krzyżanowski P., Vasylishyna S. 2016. Comparison of DABC and TLBO Meta-
heuristics for Solve Job Shop Scheduling Problem. 12th International Conference on Natural
Computation, Fuzzy Systems and Knowledge Discovery, Changsha, China (poster).

