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A b s t r a c t

The Cauchy function and characteristic series were applied to solve the boundary value problem
of free transverse vibrations of vertically mounted, elastically supported tapered cantilever columns.
The columns can be subjected to universal axial point loads which considerate – conservative and
follower /tangential/ forces, and to distributed loads along the cantilever length. The general form of
characteristic equation was obtained taking into account the shape of tapered cantilever for attached
and elastically secured. Bernstein-Kieropian double and higher estimators of natural frequency and
critical loads were calculated based on the first few coefficients of the characteristic series. Good
agreement was obtained between the calculated natural frequency and the exact values available in
the literature.

Introduction

Vertical building structures such as towers, chimneys and masts can be
modelled using cantilever columns of variable cross sections, loaded at the free
end with point-applied forces or along the axis with variable distributed loads.
Cantilevers can be elastically supported to the base. Solutions to the boundary
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value problem of critical loads and free transverse vibrations of a non-
prismatic slender rod under the Euler buckling load have been reported in the
literature (SZMIDLA, KLUBA 2011).

In paper (KUKLA, SKALMIERSKI 1993), the authors investigated an effect of
axial loading on transverse vibrations of the Euler-Bernoulli beam of con-
stant parameters. In JAROSZEWICZ, ZORYJ (2000), authors showed how easy it
is to pass from the vibration boundary problem to critical load calculation in
terms of divergence and flutter. The authors proposed an original solution to
transverse vibration of the cantilever beam under the linearly variable load
from dead load, which agreed with Euler’s exact solution. In their analyses,
the authors used the characteristic series method and introduced formulas
for subsequent series coefficients using the influence function or the Cauchy
function. To calculate basic natural frequency and critical forces, they used
Bernstein-Kieropian double estimators, which helped find functional rela-
tionships between these values and the mass-elastic properties of the canti-
lever (JAROSZEWICZ, ZORYJ 1996). The influence function method in the
analysis of the bending curve and relations of elastic supports of the beam
with variable parameters was presented in JAROSZEWICZ et al. (2014). Such
problems cannot be solved exactly for general function of variable cross
section but in special cases, only when the equation is reduced to Euler’s
equation, special Bessel functions can be used to find the solution (ZORYJ

1982). The approach proposed by the author of this paper to apply the
characteristic series method to the analysis of multi-parameter continuous
systems seems warranted (JAROSZEWICZ, ZORYJ 1985, 1994. The literature
reports analyses of this issue carried out using numerical and analytical
methods including the MES, transfer matrix method and approximate
methods based on energy principle such as those of Rayleigh-Ritz, Galerkin-
-Bubnow and Treffz (SOLECKI, SZYMKIEWICZ 1964).

Figure 1 shows three types of well known elastic rods loaded by non-
conservative follower forces (BIDERMAN 1972). Figure 1a features a cantilever
elastic column subjected to a follower torque M, whose vector follows the
direction along the tangent to the deformed shaft axis. In Figure 1b, the
cantilever rod has a rigidly fixed disc. Force P, maintaining the vertical
orientation, does not connect to the material points of the disc but slides on its
surface. Figure 1c shows the cantilever rod forced to the deformed axis of the
rod. In all these cases, forces are external. To realize them, external follower
devices should be used, such as aerodynamic propellers, pneumatic nozzles or
similar systems as external energy sources. These problems are named after
the researchers that were first to investigate them, Nikolai’s problem, Reut’s
problem and the Beck’s problem, respectively.
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Fig. 1. Cantilever models under non-conservative forces
Source: BIDERMAN (1972).

In BIDERMAN (1972) the boundary problem of vibrations and critical loads
is solved for vertical cantilevers elastically supported to the cone-shaped base.

The influence function and the partial discretization method were proposed
in JAROSZEWICZ (1999) to solve the boundary value problem of free transverse
vibrations of a non-homogeneous cantilever with a concentrated mass attached
to its free end. In HAŠČUK, ZORYJ (1999), the authors showed that the influence
function method can be effectively used to solve boundary value problems for
one-parameter elastic systems with variable distribution of parameters. Uni-
versal form of a characteristic equation for a vertical cantilever, which does not

Fig. 2. The model of variable cross section column elastically secured bar with point loads:
conservative G and tangential H and with distributed variable load N(x)
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depend on the cantilever shape or the kind of axial load. The shape of the
cantilever and the kind of axial load (JAROSZEWICZ, ZORYJ 1997) were taken
into consideration in the form of the influence function. Form of influence
function suitable to arbitrary change of a cantilever cross-section and distrib-
uted axial load were received.

In this paper, the effect of axial loads on the transverse vibrations of
cantilevers with constant and variable cross sections is investigated. The
cantilever model under investigation is shown in Figure 2. The following
notation is used in Figure 2: f(x), g(x), N(x) are the functions describing the
distribution of the flexural rigidity, mass and axial load along the cantilever
axis, G and H are the conservative and tangential forces acting at the free end
of the cantilever, x and y are Cartesian coordinates, l is the length of the
cantilever.

The study involved detailed investigations of vertical tapered cantilevers
with geometry characterized by taper ratio γ and load parameter η which take
into account conservative force G and tangential force H.

Solving the boundary problem of vibrations of a cone under
conservative force G and tangential force H

The boundary problem reads

(f(x)y’’)’’ + py’’ – Ω2g(x)y = 0 0 < σ < 1 (1)

For the homogeneous or uniform cone, suitable mass-elastic parameters
could be incorporated in these formulas

f(x) = (1 – γx)4, g(x) = (1 – γx)2, γ =
1

, Ω2 = αω2, p =
l2

(G + H),
h1 f0

m0 = g(x) |x = 0

where
h – is length of cone which is parts of sharp cone which length is l,
J(x)– moment of inertia cross section.

E is Young’s modulus, I0 denotes the moment of inertia of the cross section
at the fixed end, m0 is the unit mass corresponding to the cross section at the
fixed end, p and ω are the load and frequency parameters, η is the parameter of
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non-conservatively, and γ is the taper ratio for conical cantilevers and σ is
rigidity coefficient of elastic supports.

α =
m0l4

η =
H

(2)
f0 G + H

The boundary condition for γ(x) ≡ 0 is as follows

y(0) = 0, y’(0) + σ’’(0) = 0, f(x)y’’(x)|x=l = 0, ((f(x)y’’(x))’ + Gy’(x))|x=l = 0
(3)

The boundary conditions in the case when attached cantilever σ = 0 and
with consideration for N(x) can be written as

y(0) = y’(0) = 0, f(x)y’’(x)|x=1 = 0 and G ≡ 0 (4)

(f(x)y’’(x)’) – N(x)y’(x)|x=1 = 0 (5)

As in ZORYJ (1982), the general solution has the form

y(x,α) = K(x,α) + K̇(x,α) + K
..
(x,α) + K

…
(x,α) (6)

where:
K(x,α) – Cauchy’s function derivatives with respect to K̇(x,α) + K

..
(x,α) + K

…
(x,α).

Substituting expression (6) into conditions (3–4) yields the system of
equations with respect to unknown constants C0, C1, C2 and C3. Equating the
determinant of the above equation to zero, we obtain the characteristic
equation.

∇ ≡ f(x)[K’(x,α)K’’’(x,α) – K’’’(x,α)K’’(x,α] +
(7)

+pN(x)[K’(x,α)K’’(x,α) – K’’(x,α)K’(x,α)] = 0|x=1
α=0

It is common practice in engineering neglect some loads, namely, N(x) ≡ 0
and G = H – 0. In this case, characteristic equation (6 and 7) becomes as

∇ ≡ [K’’(x,α)K
.
’’’(x,α) – K’’’(x,α)K

.
’’(x,α)] – K’’(x,α)K

.
(x,α)]| = 0|x=1 (8)
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The above equations are a direct consequence of the definition of Cauchy’s
function (JAROSZEWICZ, ZORYJ 1997, 2014). Equation (8) is a universal charac-
teristic equation, taking into account all considered cases of longitudinal load
and any change in transverse cross section of the bracket. As will be shown in
the following paragraphs, the basic problem of solving the equation (8) is to
determine the appropriate form of Cauchy’s influence function for the case in
question.

The Cauchy function with respect to the four variables corresponding to
the bracket of any continuous load (N(x)) has the following form JAROSZEWICZ,
ZORYJ (1997):

∞
K(x,α,p,µ) = f(α)ΣµiIi(x,α,p) (9)

i=0

where:
x

Ii(xα,p,µ) = ∫ g(t)I0(x,t,p)Ii=1(x,α,p)dt,
α

∞

I0(x,α,p) = Σ(–p)kVk(x,α),
k=0

x

Vk(x,α) = –∫ N(t)V0(x,t)W’k–1(t,α)dt,
α

x

V0(x,α) = ∫(x – s)(s – α)
ds.

f(s)α

The form of the influence function (9) ensures that the characteristic
equations will be power series with respect to the parameter with the coeffi-
cients Ak dependent on the load parameter p:

∞

Σ Ak(l,0)µk = 0 (10)
k=0

Cantilever loaded conservative and tracking forces

The coefficients of the characteristic series (10) in this case (N(x) 0, M = 0)
can be determined using the formulas (JAROSZEWICZ, ZORYJ 1997):

Ak(x,α) = Σ Vi,k–i(x,α) ’4 p(1 – η)Wi,k–i(x,α) (11)
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where
Vi,j(x,α) = (J’’i J’’’j – J’’’i J’’j )f 2(α)f (x) (12)

Wi,j(x,α) = (Ji J’’j – J’’i J’j )f 2(α) (13)

The first three coefficients of the series defined by (11) are:

A0(x,α) = V00 – p(1 – η)W00 (14)

A1(x,α) = V01 + V10 – p(1 – η)(W01 + W10) (15)

A2(x,α) = V02 + V11 + V20 – p(1 – η)(W02 + W11 + W20) (16)

Considering the truncated cone support, for which stiffness and mass
functions have been given the following form of function Ji(x, α) i U(x, α)
(JAROSZEWICZ, ZORYJ 1997):

x

J0(x,α) = ∫ (x – t)U(t,α)
dt (17)

f(t)α

x

Ji(x,α) = ∫ g(t)J0(x,t)Ji–1(t,α)dt (18)
α

U(x,α) =
1

sin[ϕ(x,α)(x – α)] (19)
ϕ (x,α)

ϕ (x,α) = √p
(20)

(1 – γ x)(1 – γ α)

with the help of which factors were built (14), (15), (16).
The equating zero to the first coefficient of series (10), we obtain the

equation, whose element with respect to the variable p gives the critical load in
Euler’s sense for the bracket:
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η + (1 – η)(1 – γ) [cos √p
+

γ
sin √p ]= 0 (21)

1 – γ √p 1 – γ

Example of calculation double estimators of base frequency:
lower ω2

– and higher ω2
+ and critical loads

The case of the fixing rigidity δ = 0 and non-conservative load with force
H(G = 0) is considered as first. Table 1 summarizes the natural frequencies of
the rod depending on the compression force H. Table 2 summarizes the
calculated results for the frequencies of the cantilever with the clamping
elasticity δ ≠ 0 taken into account.

Table 1
Results of calculation natural frequency estimators for the attached cantilever δ = 0

γ = 0 γ = 0.2 γ = 0.5 γ = 0.7

p ω2
– ω2

+ p ω2
– ω2

+ p ω2
– ω2

+ p ω2
– ω2

+

0 12.36 12.36 0 14.81 14.82 1 26.54 26.66 1 43.98 44.60

1 13.25 13.26 1 16.44 16.46 2 33.24 33.50 2 71.27 74.79

5 17.77 17.79 5 25.46 25.55 3 42.06 42.68 3 104.83 119.60

10 26.70 26.81 10 48.81 50.04 4 53.94 55.53 3.1 108.56 125.60

15 43.32 44.10 11 57.05 59.50 5 70.35 75.18 3.2 112.54 132.80

19.5 78.01 96.40 12 67.72 73.38 6 94.36 126.80 – – –

19.6 79.32 101.98 13 82.20 104.20 – – – – – –

Source: HAŠČUK, ZORYJ (1999).

Table 2
Calculation results from natural frequency estimators for the elastically secured cantilever 0<δ<20

γ = 0 γ = 0.2 γ = 0.6 γ = 0.8

σ ω2
– ω2

+ σ ω2
– ω2

+ σ ω2
– ω2

+ σ ω2
– ω2

+

1 2.726 2.727 1 3.262 3.263 1 7.016 7.023 1 11.804 11.843

5 0.664 0.665 5 0.786 0.787 5 1.776 1.777 5 3.037 3.039

10 0.342 0.343 10 0.404 0.405 10 0.917 0.918 10 1.573 1.574

15 0.229 0.230 15 0.271 0.272 15 0.618 0.619 15 1.061 1.062

20 0.173 0.174 20 0.204 0.205 20 0.466 0.467 20 0.800 0.801

Source: HAŠČUK, ZORYJ (1999).

In the Figure 8 shows the results of the critical load calculation for the
truncated cone obtained from equation (21) (JAROSZEWICZ, ZORYJ 1997).
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Fig. 3. Euler critical force for a cantilever cone under conservative and follower forces

Conclusion

In the paper shows that the influence function method can be an effective tool
for solving the boundary problem of single- and two-parameter elastic systems
with variable distribution of parameters. The universal characteristic equation (8),
(10) for the vertical tapered cantilevers, which does not depend on the beam
shape and axial load type, has been recorded. The shape and type of load is taken
into account in the form of an influence function (9) that corresponds to any
change in cross-section of the support and continuous axial load with the
condition that functions describing stiffness, and the continuous load was total.

In detail, a conical shaped cone with a convergence coefficient was con-
sidered γ, γ, which is laden with the conservative force G, the tracking force H.
The share of forces G and H is determined by the coefficient of conservatism η.
In this case, the integral expressions for the first three members of the
characteristic series (14), (15), (16) are derived. The general form of the kth
member of the series (11) was also recorded.
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Vertical tapered cantilevers with geometry characterized by coefficient
γ and subjected to conservative force G and tangential force H defined by load
parameter η were investigated in detail.

The method employing characteristic series and equal-tail estimators used
in this paper allows obtaining functional relationships for natural frequency
estimators and critical loads of flutter and divergence types, which in turn
facilitates optimization of mass elastic parameters of the system for the
reduction of dynamic loads – the loss of stability and for preventing resonance.
This method can be of use in engineering calculations.
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