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A b s t r a c t

Brinkman’s law is describing the seepage of viscous fluid through a porous medium and is more
acurate than the classical Darcy’s law. Namely, Brinkman’s law permits to conform the flow through
a porous medium to the free Stokes’ flow. However, Brinkman’s law, similarly as Schrödinger’s
equation was only devined. Fluid in its motion through a porous solid is interacting at every point
with the walls of pores, but the interactions of the fluid particles inside pores are different than the
interactions at the walls, and are described by Stokes’ equation. Here, we arrive at Brinkman’s law
from Stokes’ flow equation making use of successive iterations, in type of Born’s approximation
method, and using Darcy’s law as a zero-th approximation.

Introduction

Many problems of interest, involve the motion of fluid through a porous
solid, which interacts at every point with the diffusing fluid (MORSE, FESHBACH

1953). The classical equation describing the fluid seepage through a porous
solid is known as Darcy’s law

ν = –
K

∇ (p + U) (1)
η
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It expresses the fluid velocity ν (understood as the filter velocity rather
than as the true velocity in pores) by the gradient of the pressure p and the
volume force potential U. The permeability coefficient K describes the porosity
of the solid, and η denotes the viscosity of the fluid.

Equation (1) was proposed by Henry Darcy in 1855 on the basis of his
experiments (cf. DARCY 1856), and can be motivated by contemporary asym-
ptotical methods (cf. SANCHEZ-PALENCIA 1980). The equation patterned on
others transport equations (Fourier’s, Ohm’s) does not render aptly the
specificity of the fluid. A basic objection is that any viscous shear tensor can be
derived from it, as the viscous shearing has been neglected. Related to this
objection are difficulties in posing the boundary conditions, for example for
problems in which the fluid flows concomitantly through porous medium and
adjoining empty space.

In the versatile physical heritage of Henri Coenraad Brinkman involving
quantum physics, physical chemistry, applied physics (cf. e.g. BRINKMAN,
KRAMERS 1930, BRINKMAN 1947) one finds also his equation describing seepage
of the fluid through porous medium, cf. (BRINKMAN 1949). The equation gives
the following expression for the fluid velocity

ν =
K

[– ∇ (p + U) + η’ ∆ν] (2)
η

Equation (2) is known as Brinkman’s equation or Brinkman’s seepage law.
It is known also as Darcy-Brinkman’s equation (cf. VALDES-PARADA et al.
2007).

In comparison with Darcy’s Equation (1) the term with ∆ν was added at the
right hand side of Equation (2). The coefficient η’ (known also as the effective
viscosity) is a modified fluid viscosity which may be different from η. Frequent-
ly, η’ ≈ η. Both, η and η’ are assumed to be constant. Equation (2) is completed
by the potential U, which was absent in the original Brinkman’s paper
(BRINKMAN 1949).

Experimental measurements and computer simulation results have sug-
gested that the Darcy-Brinkman equation should incorporate an effective
viscosity.

Equation (2) can be written also in the form

– ∇ (p + U) =
η ν – η’ ∆ν
K

more convenient for a discussion. We see that for low values of K, and small
spatial variations of the velocity ν this equation is approximated by Darcy’s
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Equation (1). For high values of K Stokes’ equation for a steady flow of fluid
with the viscosity η’ is obtained (cf. LANDAU, LIFSHITZ 1987)

0 = – ∇ (p + U) + η’ ∆ν

Equation (2) was proposed by Brinkman without giving any proof (BRIN-

KMAN 1949).
Indirect, experimental proofs of validity of Brinkman’s equation are pro-

vided by Gordon S. Beavers and Daniel D. Joseph (BEAVERS, JOSEPH 1967) and
by Geoffrey Ingram Taylor (TAYLOR 1971). The proofs are more valuable as,
apparently, these authors did not know Brinkman’s paper (BRINKMAN 1949).

In theoretical way Brinkman’s law was obtained by Enrique Sanchez-
-Palencia and Thérèse Lévy, who considered the fluid flow through an array of
fixed particles (SANCHEZ-PALENCIA 1983, LÉVY 1983) and applied asymptotic
expansions in series. These papers deal with idealized models of porous
medium, represented by an array of rarely distributed balls. However, both
Darcy’s and Brinkman’s laws are macroscopic ones, and some macroscopic
argument seems to be needed in deriving Brinkman’s equation.

Francisco J. Valdes-Parada et al. gave a theoretical back-up for the
existence and meaning of an effective viscosity for the Stokes flow within
a porous medium (VALDES-PARADA et al. 2007).These authors have shown that
the use of a slip boundary condition is required to obtain an effective viscosity
different from the one corresponding to the fluid phase. The proof is done by
means of an up-scaling procedure based on volume averaging methods, which
provides a boundary-value problem to compute the underlying effective viscos-
ity (VALDES-PARADA et al. 2007, WHITAKER 1999).

The scattering process of the fluid flow against the porous canals walls
suggests an idea of applying Born’s approximation used favorably in descrip-
tion of scattering in quantum mechanics (BORN 1926, also MORSE, FESHBACH

1953, SHANKAR 1994). Born’s approximation constitutes a version of successive
approximation method. We apply it because Brinkman’s equation is formally
similar to Schrödinger’s equation. This approximation, applied in quantum
scattering theory consists of taking the incident field in place of the total field
as the driving field at each point in the scatterer. In our case, the role of driving
field is realised by Darcy’s flow. The term driving field is explained in
Appendix 1. Now, starting from Stokes’ flow equation and Darcy’s law, we are
going to obtain Brinkman’s law by Born’s method as a correction of Darcy’s
law.
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Brinkman’s law derived by Born’s approximation

Consider Stokes’ equation with potential U

0 = – ∇ (p + U) + η ∆ν (3)

and assume that the flow is incompressible, it is

∇ · ν = 0 (4)

We apply the operator ∇ to Equation (3), and by Equation (4) we get

∆ (p + U) = 0 (5)

The same harmonicity property has the sum (p + U) in Darcy’s law (1) and
in Brinkman’s law (2).

It was shown by asymptotic methods that Stokes’ Equation (3) subject to
periodic boundary conditions for the velocity ν at walls of pores in a given
porous medium leads to Darcy’s law (1) (cf. SANCHEZ-PALENCIA 1980, WOJNAR

2014).
Hence, as a zero-th approximation of solution of Equation (3) for the flow in

porous medium we take just Darcy’s law

ν0 = –
K0

∇ (p + U) (6)
η

where K0 is a constant. According to the method of Born’s approximation, we
look for a corrected solution in the form

ν = ν0 + λ ν 1 (7)

where λ is a small number, or, by (6)

ν = –
K0

∇ (p + U) + λ ν 1 (8)
η

We substitute the relation (8) into Equation (3), and using harmonicity (5)
of the sum (p + U) we get

0 = – ∇ (p + U) + η ∆ (λ ν 1) (9)
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This equation differs from Equation (3) only by notation of the velocity
vector, here we have λ ν1 instead of ν in (3). Thus, in analogy with the
expression (6) the approximated solution of Equation (9) reads

λ ν 1 = –
K1

∇ (p + U) (10)
η

where K1 is a new constant, or again by Equation (3)

λ ν 1 = –
K1

η ∇ ν (11)
η

Therefore, by (8) and (11) we find

ν = –
K0

∇ (p + U) –
K1

η ∆ ν (12)
η η

Now, if we substitute K0 ≡ K and K1 = – Kν’/ν we get Brinkman’s Equation (2).
Notice, that introducing the constant K1 is equivalent to introducing the
Brinkman’s effective viscosity.

Non-homogeneous porous medium

Now, we show that proposed method of derivating Brinkman’s equation
can be applied to the linearly non-homogeneous porous medium, it is to the
case

K = a0 + a1x1 — a2x2 + a3x3 (13)

where:
a0 and ai, i = 1,2,3 are constants,
while xi, i = 1,2,3 are the position x components.

Just for clarity, apart from the direct symbolic vector notation, we will use
the indicial notation. The subscripts range from 1 to 3, and Einstein’s
summation convention over repeated subscripts is observed.

For a non-homogeneous porous medium Darcy’s law still reads

ν 0
i = –

K ∂ (p + U)
(14)

η ∂ xi
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but now the permeability K depends on the position x = (x1, x2, x3) = (xi) with
i = 1,2,3,

K = K(x)

and, naturally, the viscosity η is constant, it is x – independent. Hence, Stokes’
Equation (3) holds

–
∂ (p + U)

+ η ∂ 2 ν i = 0 (15)
∂ xi, ∂ xk ∂ xk

After applying ν – operator to both sides of the last equation, and using the
incompressibility condition (4) we get, cf. Equation (5),

∂ 2 (p + U)
= 0 (16)

∂ xk ∂ xk

On its turn, the incompressibility condition (4) expressed on (14) reads

∂ (K ∂ (p + U)) = 0 (17)
∂ xi ∂ xi

or

∂ K ∂ (p + U)
+ K

∂ 2 (p + U)
= 0

∂ xi ∂ xi ∂ xk ∂ xk

or, by (16)

∂ K ∂ (p + U)
= 0 (18)

∂ xi ∂ xi

Hence, after differentiation

∂ K ∂ 2(p + U)
= –

∂ 2 K ∂ (p + U)
(19)

∂ xi ∂ xk ∂ xi ∂ xk ∂ xi ∂ xi
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As in the previous section, we look for a corrected Darcy’s law in the form

νi = –
K 0 ∂ (p + U)

+ λ ν 1
i (20)

η ∂ xi

We submit the relation (20) into Stokes’ Equation (3)

–
∂ (p + U)

+ η ∂ 2 (– K0 ∂ (p + U)
+ λ ν 1

i) = 0 (21)
∂ xi ∂ xk ∂ xk η ∂ xi

Now

∂ (K0 ∂(p + U)) =
∂ 2 K0 ∂ (p + U)

+ 2
∂ K0 ∂ 2(p + U)

+ K0 ∂ 3(p + U)
∂ xk ∂ xk ∂ xi ∂ xk ∂ xk ∂ xi ∂ xk ∂ xk ∂ xi ∂ xk ∂ xk ∂ xi

By Equation (16) the last term vanishes, and after substituting (19) we have

∂ 2 (K0 ∂ (p + U)) =
∂ 2 K0 ∂ (p + U)

– 2
∂ 2 K0 ∂ (p + U)

∂ xk ∂ xk ∂ xi ∂ xk ∂ xk ∂ xi ∂ xk ∂ xi ∂ xk

and by the linear relation (13) this whole term vanishes. Then, Equation (21)
takes form

–
∂ (p + U)

+ η ∂ 2(λ ν 1
i) = 0 (22)

∂ xi ∂ xk ∂ xk

This is Stokes’ type equation with unknown function λ ν 1
i. Similarly as in

the previous section, we regard Darcy’s law to be an approximate solution of
this equation

λ ν 1
i = –

K1 ∂ (p + U)
(23)

η ∂ xi

or by Stokes’ Equation (15)
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λ ν 1
i = –

K1

η ∂ 2 νi (24)
η ∂ xk ∂ xk

and after substitution K0 ≡ K and K1 = – K η’/η the corrected Darcy’s Equation (20)
reads

ν i = –
K (∂ (p + U)

+ η’
∂ 2 ν i ) (25)

η ∂ xi ∂ xk ∂ xk

This is Brinkman’s equation again.

Anisotropic viscous fluid

For such a fluid Darcy’s law is of the form

ν i = – κ ij
∂ (p + U)

(26)
∂ xj

where κ ij is a symmetric matrix of constant coefficients, and x = (xi), i = 1,2,3
denotes the position. By incompressibility (4) we get

κ ij
∂ (p + U)

= 0 (27)
∂ xi ∂ xj

For flow of anisotropic fluid, Stokes’ equation is of the form (cf. LANDAU,
LIFSHITZ 1987),

–
∂ (p + U)

+
∂ (ηijmn

∂νm) = 0
∂ xi ∂ xi ∂ xn

where ηijmn is the viscosity tensor. It satisfies the symmetry conditions

ηijmn = ηmnij = ηjimn = ηijnm
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For constant coefficients ηijmn we get the following form of Stokes’ equation

–
∂ (p + U)

+ηijmn
∂ 2νm = 0 (28)

∂ xi ∂ xj ∂ xn

We apply operator κik ∂ /∂ xk to both sides of the last equation, and get

– κ ik
∂ 2(p + U)

+ κ ik ηijmn
∂ 2νm = 0 (29)

∂ xk ∂ xi ∂ xn ∂ xn ∂ xn

or by (27)

κ ik ηijmn
∂ 2νm = 0

∂ xn ∂ xn ∂ xn

We look for a corrected seepage equation in the form

ν i = – κ ij
∂ (p + U)

+ λ ν 1
i (30)

∂ xj

where ν1 is a correction. We submit the expression (30) into Stokes’ Equation (28)
and receive

–
∂ (p + U)

+ηijmn
∂ 2 (– κ mk –

∂ (p + U)
+λ ν 1

m) = 0
∂ xi ∂ xj ∂ xn ∂ xk

or

–
∂ (p + U)

+ηijmn κ mk –
∂ 3 (p + U)

+ η ijmn
∂ 2(λ ν1

m)
= 0 (31)

∂ xi ∂ xj ∂ xn ∂ xk ∂ xj ∂ xn

If the vector r defined as

ri ≡ η ijmn κmk
∂ 3 (p + U)

(32)
∂ xj ∂ xn ∂ xk

vanishes, it is, if
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ri = 0 (33)

Equation (31) takes the Stokesian form, cf. Equation (28),

–
∂ (p + U)

+ ηijmn
∂ 2(λ ν1

m)
= 0 (34)

∂ xi ∂ xi ∂ xn

and we arrive at the situation, similar to that after Equation (9) for the
isotropic problem. Thus, the velocity correction ν1 satisfies Darcy’s type
equation

λ ν1
i = – κ ij

∂ (p + U)
∂ xj

or, by (34)

λ ν1
i = – κ ij ηkjmn

∂ 2νm (35)
∂ xj ∂ xn

Substitution into (30) gives

ν i = – κ ik (∂ (p + U)
+ ηkjmn

∂ 2νm ) (36)
∂ xk ∂ xj ∂ xn

what is a form of Brinkman’s equation for seepage of an anisotropic fluid
through a porous medium. But (36) was obtained with the assumption (33)
only.

A discussion for cubic anisotropy of the fluid

For isotropic fluid

η ijmn = η(δimδjn + δinδjm) + (ζ +
2 η) δmn δij3

Thus, the number of non-zero moduli (the viscosities) for an isotropic fluid is
two: η and ζ. We observe that now
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η1111 – η1122 – 2η1212 = 0

The least number of non-zero moduli (the viscosity tensor components) for
cubic anisotropy (the next most symmetric fluid after the isotropic one),
obtained by a suitable choice of the co-ordinate axes is three (cf. LANDAU,
LIFSHITZ 1970). We take the axes along the three fourth-order axes of symme-
try. The symmetry is tetragonal, and there remain only three different moduli
of viscosity: η1111, η1122 and η1212.

For the cubic symmetry the permeability tensor is isotropic (cf. LANDAU,
LIFSHITZ 1970), it is κij = κ δij and the vector r defined by (32) is

ri ≡ κ η ijkn
∂ 3 (p + U)
∂ xj ∂ xn ∂ xk

For i = 1 and for the cubic symmetry of the tensor ηijmn we get

r1 = κ ∂ [η1111
∂ 2(p + U)

+ (2η1212 + η1122)(∂ 2(p + U)
+

∂ 2(p + U))] (37)
∂ x1 ∂ x2

1 ∂ x2
2 ∂ x2

3

and similar expressions for i = 2 and i = 3. Strictly speaking, only for an
isotropic case, when

η1111 – 2η1212 – η1122

the term in braces reduces to full Laplacian, but one may hope that compo-
nents ri, i = 1,2,3 can be neglected, when the difference (η1111 – η1212 – 2η1122)
is small. Thus, Brinkman’s equation can be derived also for nearly isotropic
fluids of cubic symmetry.

Conclusions

Applying an heuristic method of Born’s approximation we have derived
Brinkman’s equation as a corrected Darcy’s law. The derivation was given for
isotropic Newtonian fluid for isotropic porous medium, with constant permea-
bility, and with permeability linearly dependent on space coordinates. For
anisotropic cubic fluids our methods works only in approximation.

Perhaps our method reconstructs Brinkman’s reasoning. As it was men-
tioned in Introduction, the form of Brinkman’s equation resembles somewise
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the time independent quantum wave equation, and Brinkman, who worked
much in quantum physics surely knew Born’s approximation method. Perhaps
we have found the way of his arrival to his equation.

Appendix 1: Born’s approximation

This method of successive approximation is a basic tool of calculus. It
enables to solve a vast array of problems that other methods cannot handle.
Also the scattering of particles on a potential V(r) can be described by
a successive approximation method, when we treat the potential as a perturba-
tion. This is Born’s approximation method (cf. also SAFRONO 2011, VALENTÍ

2014).
Time independent Schrödinger’s wave equation can be written in the form

∆u + k2u – λ U(r) u = 0 (38)

where

k2 =
2 m E

and λ U =
2 m V

h2 h2

Here k is a wave vector, k = |k |, and E is a total energy of the particle of the
mass m. The parameter λ expresses the smallness of the disturbing term with
the potential V(r). The vector r = (x, y, z) determines the position, and r – |r |.
The value of the reduced Planck constant is: h = 1.054571800 (13) × 10–34 J · s.

In zero-th approximation, it is for λ = 0 we have

u0 = ei k z

as a solution of the equation

∆u0 + k2u0 = 0 (39)

As the first approximation we take the sum

u = u0 + λ u1

We substitute this expression into (38) and after accounting for (39) we get
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∆ u1 + k2 u1 = U(r)u0 (40)

This nonhomogeneous differential equation for the function u1 has the general
solution

u1 = u0 –
1 ∫ d r’

eik(r – r’)
U(r’) u0(r’)

4π | r – r’ |

The obtained result may be the starting point of the Born series.
In this example we see that in scattering theory and in particular in

quantum mechanics, the Born approximation consists of taking the incident
field in place of the total field as the driving field at each point in the scatterer.

Applications: The Born approximation is used in several different physi-
cal contexts.

In neutron scattering, the first-order Born approximation is almost always
adequate, except for neutron optical phenomena like internal total reflection in
a neutron guide, or grazing-incidence small-angle scattering.

The Born approximation has also been used to calculate conductivity in
bilayer graphene (KOSHINO, ANDO 2006), and to approximate the propagation
of long-wavelength waves in elastic media (GUBERNATIS et al. 1977).

Born’s approximation conceived for scattering problems in quantum mech-
anics has been used extensively in seismological studies to describe seismic
scattering by small-scale heterogeneities in the Earth. It is shown that
geometrical ray effects, like the travel-time perturbation, ray bending and
focusing, are contained within the Born scattering formalism, provided these
effects are small (cf. HUDSON, HERITAGE 1981, COATES, CHAPMAN 1990).

Appendix 2: Meaning of Brinkman’s effective viscosity

For the illustration of meaning of the effective viscosity η’ in Brinkman’s
equation (2), let us consider steady flow of the liquid with a velocity ν between
two fixed parallel planes in the presence of a constant pressure gradient. It
means that the pressure is a linear function of the coordinate x along the
direction of flow. Let the exterior potential of volume forces vanish, U = 0.
Hence
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∂ p
≡ – γ

∂ x
where:
γ – constant.

We take one of these planes as the x z – plane, with the x – axis in the
direction of ν. The distance between the planes is h, and the space for
– ∞ < y < 0 and h < y < ∞ is occupied by a porous medium with the permeability
K and is permeated by the same liquid flowing under the same pressure
gradient. It is clear that all quantities depend only on y, and that the fluid
velocity is everywhere in the is x – direction. Thus, in the region h > y > 0 the
flow is described by Stokes’ equation

d2ν
+

γ
= 0 (41)

dy2 η’

The seepage in regions for – ∞ < y < 0 and h < y < ∞ is described by Brinkman’s
equation

d2ν
–

η ν +
γ

= 0 (42)
dy2 η’K η’

The integration of Equations (41) and (42) gives:

in the region – ∞ < y < 0

ν = b1 ea y +
K γ
η

in the region 0 < y < h

ν = –
γ

y2 + Cy + C12 η

and in the region h < y < ∞

ν = b2 e–ay +
K γ,
η
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where

a = √ η
(43)

η’K

Both solutions in the regions – ∞ < y < 0 and h < y < ∞ vanish for y → – ∞ and
for y → ∞, respectively.

The constants b1, b2, C and C1 are determined from the boundary conditions
for y = 0 and y = h in which the continuity of the velocity field and the shear
strain rates is assumed. The result is

C =
γ

h, C1 =
γ ( h

+ K), b1 =
γ h

and b2 =
γ h

eah.
2 η η 2a 2η a 2η a

Thus, the solution in the region 0 < y < h reads

ν =
γ (h y – y2 +

h
+ K)2η 2a

and for the case of not permeable walls, it is for K → 0, and in consequence
a → ∞, cf. the formula (43),

ν →
η

(h – y) y
2η

what represents Hagen-Poiseuille’s type flow in two dimensions (cf. LANDAU,
LIFSHITZ 1987).

According to the formula (43) the influence of the effective viscosity η’ is
similar. Vanishing of η’ leads to the infinite value of the constant a, and the
immediate extinction of the exponential terms in the solutions. Then in the
regions – ∞ < y < 0 and h < y < ∞ Darcy’s seepage is existing only.
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