
Technical Sciences, 2017, 20(4), 405–413

AN EFFICIENT HARDWARE IMPLEMENTATION
OF A COMBINATIONS GENERATOR

Tomasz Mazurkiewicz
Faculty of Cybernetics

Military University of Technology, Warszawa

Received 14 September 2017, accepted 24 September 2017, available online 2 October 2017.

K e y w o r d s: information technology, generator of combinations, field programmable gate arrays.

A b s t r a c t

In this paper an area-efficient hardware implementation of a Bincombgen algorithm was
presented. This algorithm generates all (n,k) combinations in the form of binary vectors. The
generator was implemented using Verilog language and synthesized using Xilinx and Intel-Altera
software. Some changes were applied to the original code, which allows our FPGA implementation to
be more efficient than in the previously published papers. The usage of chip resources and maximum
clock frequency for different values of n and k parameters are presented.

Introduction

The generation of combinatorial patterns is a well-known problem. KNUTH

(2006) traces the history of this problem back to ancient China, India and
Greece. Generation of (n, k) combinations has received much attention over
the last couple of decades. Several algorithms were published in the 1960s. In
those days a number of LEHMER articles (1960, 1964) attracted considerable
interest. Since then, a number of algorithms were proposed (AKL 1987, CHEN,
CHERN 1966, HOUGH, RUSKEY 1988, RUSKEY, WILLIAMS 2009, STOJMENOVIC

1992, TAKAOKA 1999, WEI 2014). Various applications of generators of combi-
nations were found, e.g. parallel processing of combinatorial problems
(KOKOSIŃSKI 1997b).

Correspondence: Tomasz Mazurkiewicz, Instytut Matematyki i Kryptologii, Wydział Cybernetyki,
Wojskowa Akademia Techniczna, ul. Urbanowicza 2, 00-909 Warszawa, email: tomasz.mazur-
kiewicz@wat.edu.pl



KOKOSINSKI (1997a) proposed two algorithms called Combgen and Bincom-
bgen. Both algorithms generate all (n, k) combinations using different combi-
nation representation: respectively conventional and binary. Especially the
second one can be used to perform hardware mask/comparand vector gener-
ation efficiently.

This paper describes an area-efficient hardware implementation of Bincom-
bgen algorithm. A basic model was implemented, which generates 1 combina-

tion per clock cycle. It takes (n) clock cycles to generate all (n, k) combinations.k
We have obtained satisfactory results demonstrating that the generator can be
efficiently implemented in a FPGA device. Our results are also compared to the
results presented by BUBNIAK et al. (2004).

This paper is organized as follows. In the next section Bincombgen
algorithm for generation of combinations is presented. In the third section
details of its hardware implementation are described. Our results are com-
pared to the results in the literature in Section 4. The last section contains
a summary.

The algorithm description

Algorithm Bincombgen generates all (n, k) combinations in the form of
n-bit binary vectors. A pseudocode of the algorithm is presented in Figure 1.
Vectors are generated in a reverse lexicographic order in constant time per
combination. In this paper some changes to the original algorithm were made
to simplify hardware implementation. A modified pseudocode of the algo-
rithm is presented in Figure 2. The order of operations as well as subsets of
indexes for ONE2SUBSET operations have been changed. The potential gain
on parallelization was presented in Figure 3. Operations in the same column
can be done in parallel. Proposed modifications allows all operations in the
generation phase to be performed in the same clock cycle in hardware
implementation. It is possible since 3.1 and 3.3 operations can be done using
combinatorial logic.

Table A and B are initialized at the same time. Table A is initialized by
setting all (k) elements to 1. In the table B the first k bits are set to 1, while
others (n-k) are set to 0. This value will be used to generate first output vector.
For example, if n = 6 and k = 3 the first generated vector will be 111000. At the
same time S and IND registers are initialized. Initialization phase can be done
in parallel (i.e. in one clock cycle).

Tomasz Mazurkiewicz406

Technical Sciences 20(4) 2017



//INITIALIZATION PHASE
1. MAX := n-k+1; IND := 1; S := 1;
2. do in parallel

2.1. ONE2SUBSET(S, A, IND, k);
2.2. ONE2SUBSET(0, B, 1, n);

3. do in parallel
3.1. S := A(IND)+1;
3.2. ONE2SUBSET(1, B, 1, k);

4. do in parallel
4.1. output B;
4.2. IND := k;

//GENERATION PHASE
5. while IND > 0 do

5.1. do in parallel
5.1.1. ONE2SUBSET(S, A, IND, K);
5.1.2. v := IND+S;

5.2. ONE2SUBSET(0, B, v-2, v-2);
5.3. ONE2SUBSET(1, B, v-1, v-1);
5.4. if A[IND] < MAX then

5.4.1. S := A(IND)+1;
5.4.2. if IND<k then

5.4.2.1. do in parallel
5.4.2.1.1. ONE2SUBSET(0, B, v, n);
5.4.2.1.2. IND := k;

5.4.2.2. ONE2SUBSET(1, B, v, IND+S-2);
else
5.4.3. IND := IND – 1;
5.4.4. S := A(IND)+1;

5.5. output B;

ONE2SUBSET(VALUE, SET, LEFT, RIGHT)
for i:=LEFT to RIGHT

do in parallel
SET[i] := VALUE

Fig. 1. Pseudocode of the Bincombgen algorithm
Source: BUBNIAK et al. (2004).

In the generation phase values of A, B, S and IND change in parallel on the
edge of CLK signal. All modifications of B can be applied in one clock cycle,
because subsets of indexes for ONE2SUBSET operations are disjunctive. Bits
from 1 to v-3 are left unchanged. Value of v is modified by combinational logic.
Combinations are generated as long as.

Exemplary sequences generated by modified Bincombgen algorithm for
n = 6 and k = 3 are presented in Table 1.

An Efficient Hardware Implementation... 407

Technical Sciences 20(4) 2017



//INITIALIZATION PHASE
1. do in parallel

1.1. MAX := n-k+1;
1.2. ONE2SUBSET(1, A, 1, K);
1.3. ONE2SUBSET(1, B, 1, K);
1.4. ONE2SUBSET(0, B, K+1, N);
1.5. IND := k;
1.6. S := 2;

2. output B;
//GENERATION PHASE
3. while IND > 0 do

3.1. v := IND + S;
3.2. do in parallel

3.2.1. ONE2SUBSET(S, A, IND, K);
3.2.2. ONE2SUBSET(0, B, v-2, v-2);
3.2.3. ONE2SUBSET(1, B, v-1, v-1);
3.2.4. if S < MAX then

3.2.4.1. if IND < k then
3.2.4.1.1. ONE2SUBSET(0, B, K+S, N);
3.2.4.1.2. ONE2SUBSET(1, B, v, K+S-1);
3.2.4.1.3. IND := k;

3.2.4.2. S := S + 1;
else

3.2.4.3. S := A(IND) + 1;
3.2.4.4. IND := IND – 1;

3.3. output B;

ONE2SUBSET(VALUE, SET, LEFT, RIGHT)
for i:=LEFT to RIGHT

do in parallel
SET[i] := VALUE

Fig. 2. Modified pseudocode of the Bincombgen algorithm

Table 1
Sequences generated using (6,3) generator

No. IND S A[1] A[2] A[3] B (bin) B (hex)

1 3 2 1 1 1 111000 38

2 3 3 1 1 2 110100 34

3 3 4 1 1 3 110010 32

4 2 2 1 1 4 110001 31

5 3 3 1 2 2 101100 2c

6 3 4 1 2 3 101010 2a

7 2 3 1 2 4 101001 29

8 3 4 1 3 3 100110 26

9 2 4 1 3 4 100101 25

10 1 2 1 4 4 100011 23

11 3 3 2 2 2 011100 1c

12 3 4 2 2 3 011010 1a

Tomasz Mazurkiewicz408

Technical Sciences 20(4) 2017



cont. table 1

No. IND S A[1] A[2] A[3] B (bin) B (hex)

13 2 3 2 2 4 011001 19

14 3 4 2 3 3 010110 16

15 2 4 2 3 4 010101 15

16 1 3 2 4 4 010011 13

17 3 4 3 3 3 001110 0e

18 2 4 3 3 4 001101 0d

19 1 4 3 4 4 001011 0b

20 0 5 4 4 4 000111 07

Fig. 3. Possible parallelization of original (a) and modified (b) pseudocode

An Efficient Hardware Implementation... 409

Technical Sciences 20(4) 2017



Hardware implementation

Algorithm described in the section 2 was implemented using a basic model,
which consists of singular registers B (of size n bits), S and IND and table A of
size k. Each element of a table A is p bit wide, where p = [log2(MAX)]. In this
model 1 output vector per clock cycle is generated. It makes an implementation
small and compact and allows the device to work with high clock frequencies.
Both n and k are the inputs of the algorithm, provided to the module as
parameters, which can be modified during module instantiation. Such imple-
mentation can also be easily used to perform efficient hardware mask/com-
parand vector generation.

In order to compare our results with those described by BUBNIAK et al.
(2004), similar interface was used (see Fig. 4). There are three input signals:
CLK, RST–N and START. The first one is a clock signal. The second one is
used to reset the generator if necessary. This input is negative-edge triggered.
Signal START is used to start computations. In each clock cycle an output
(OUT–DATA) of n bits is produced. Signal BUSY indicates that calculations
are in progress.

Fig. 4. Block diagram of the implemented generator

Described algorithm was implemented using Verilog language. Created
generator of combinations was tested and verified using ISE Design Suite 14.7,
Intel Quartus Prime 16.0 and ModelSim-Altera 10.4d. Test values were
generated using software implementation of described algorithm that was
created in Python.

To verify whether the implementation is producing correct results, the
prototypes of the (6,3) and (20,10) generators were synthesized and loaded
onto FPGA devices. Our experiments were carried out on two development
kits:

– Terasic DE2-115 that features Altera (Intel-FPGA) Cyclone IV E device,
– Atlys Trainer Board that features Xilinx Spartan 6 device.
Results for (6,3) generator (implemented on the DE2-115 board), captured

using SignalTap Logic Analyzer, are presented in Figure 5. Clock frequency for
testing purpose was set to 50 MHz. All generated sequences are equal to values
presented in Table 1.

Tomasz Mazurkiewicz410

Technical Sciences 20(4) 2017



Fig. 5. Captured results for (6,3) generator

Table 2
Usage of resources and time parameters obtained from synthesis

(n, k) Reference Slices 4-input LUTs Max. freq. [MHz]

This paper 27 48 231.038
(4, 2)

BUBNIAK et al. 2004 665 1,276 35.155

This paper 42 60 207.308
(6, 3)

BUBNIAK et al. 2004 948 1,835 28.395

This paper 71 135 113.610
(8, 4)

BUBNIAK et al. 2004 1,144 2,193 29.428

This paper 92 173 119.669
(10, 5)

BUBNIAK et al. 2004 1,422 2,734 32.505

This paper 93 173 105.396
(12, 6)

BUBNIAK et al. 2004 1,658 3,196 31.614

This paper 117 220 110.868
(14, 7)

BUBNIAK et al. 2004 1,891 3,630 31.387

This paper 157 295 94.757
(16, 8)

BUBNIAK et al. 2004 2,099 4,028 31.114

This paper 161 297 98.865
(18, 9)

BUBNIAK et al. 2004 2,408 4,628 30.146

This paper 188 330 95.469
(20, 10)

BUBNIAK et al. 2004 2,715 5,233 29.273

(40, 20) This paper 353 658 80.176

(60, 30) This paper 506 937 79.399

(80, 40) This paper 718 1,339 71.045

Generation of the combinations starts when START signal is driven high.
In the following clock cycles consecutive combinations are generated, starting
with 111000 (0×38). Output values change on the positive edge of CLK signal.
Signal BUSY remains driven high as long as the generator produces next
vectors. After completion of computations, BUSY is driven to a logical low and
the value of OUT–DATA output is set to 000000. In case when START signal is
driven high once more, all combinations are generated all over again.

An Efficient Hardware Implementation... 411

Technical Sciences 20(4) 2017



Results

Results obtained from synthesis using ISE WebPACK 6.1 for XC2S100
device were presented by BUBNIAK et al. (2004). Unfortunately, this device in
no longer available in ISE Design Suite 14.7. Therefore, newer Xilinx Spartan
III XC3S50 was chosen as a target device. This device allows implementation to
use up to 1536 4 input LUTs and 768 slices.

Usage of FPGA resources for several values of n and k (k = n / 2) are
presented in Table 2. Additionally, maximum clock frequency was determined.

An implementation described by BUBNIAK et al. (2004) resulted in a high
consumption of logical resources. Synthesis of generators for n>8 and k>4 was
impossible in targeted XC2S100 device due to insufficient FPGA resources. In
contradiction with those results, utilization level of the FPGA resources for our
implementation is quite low. It is interesting to note that XC2S100 offers more
logic resources than used in this paper XC3S50, i.e.1200 slices and 2400 4 input
LUTs. However, in this paper different target device and newer version of
software were used. Presented results thus need to be interpreted with
caution.

In case of the smallest synthesized generator (n = 4, k = 2) around 3% of
available resources is used. In case of the biggest one presented in the
referenced literature (n = 20, k = 10) utilization level does not exceed 25%.
Synthesis of (80,40) generator was possible and it did not exceed the size of the
chip.

Summary

Implemented generator of combinations, based on Bincombgen algorithm,

generates all (n, k) combinations in (n) clock cycles. We have obtainedk
satisfactory results demonstrating that the generator can be efficiently imple-
mented in a FPGA device. A consumption of logical resources is quite low and
maximum clock frequency is relatively high.

We believe our work will be helpful in a hardware implementation of linear
decomposition algorithm (MAZURKIEWICZ, ŁUBA 2017). The hardware imple-
mentation of this algorithm require generating a discernibility matrix (stored
in RAM). Generated values are then read from the memory and a possible
linear decomposition is sought. Generator of combinations could be used to
perform efficient memory addresses generation in this operation, since all n-bit
vectors with Hamming weight equal to k ∈ [2,n] must be generated.

Tomasz Mazurkiewicz412

Technical Sciences 20(4) 2017



References

AKL S.G. 1987. Adaptive and Optimal Parallel Algorithms For Enumerating Permutations and
Combinations. The Computer Journal, 30: 433–436.

BUBNIAK G., GÓRALCZYK M., KARP M., KOKOSIŃSKI Z. 2004. A Hardware Implementation of a Generator
of (N,K)-Combinations. IFAC Proceedings Volumes, 37(20): 228–231.

CHEN G.H., CHERN M.-S. 1966. Parallel Generation of Permutations and Combinations. BIT Numeri-
cal Mathematics, 26(3): 277–283.

HOUGH T., RUSKEY F. 1988. An Efficient Implementation of the Eades, Hickey, Read Adjacent
Interchange Combination Generation Algorithm. Journal of Combinatorial Mathematics and
Combinatorial Computing, 4:. 79–86.

KNUTH D.E. 2006. The Art of Computer Programming. 4, Fasc. 4, Addison-Wesley.
KOKOSIŃSKI Z. 1997a. An Associative Processor for Multicomparand Parallel Searching and Its

Selected Applications. Proc. of Int. Conf. on Parallel and Distributed Processing Techniques and
Applications PDPTA, pp. 1434–1442.

KOKOSIŃSKI Z. 1997b. On Parallel Generation of Combinations in Associative Processor Architectures.
Proc. of IASTED Int. Conf. on Parallel and Distributed Systems Euro-PDS, pp. 283–289.

LEHMER D.H. 1960. Teaching combinatorial tricks to a computer. Proc. of Symposium Appl. Math, 10:
179–193.

LEHMER D.H. 1964. The machine tools of combinatorics. Applied combinatorial mathematics, pp. 5–31,
John Wiley.

MAZURKIEWICZ T., ŁUBA T. 2017. Redukcja liczby zmiennych do reprezentacji funkcji generowania
indeksów. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, 8-9: 795–798.

RUSKEY F., WILLIAMS A. 2009. The Coolest Way to Generate Combinations. Discrete Mathematics,
309(17): 5305–5320.

STOJMENOVIC I. 1992. A Simple Systolic Algorithm for Generating Combinations in Lexicographic
Order. Computers Math. Applic., 34(4): 61–64.

TAKAOKA T. 1999. O(1) Time Algorithms for Combinatorial Generation by Tree Traversal. The
Computer Journal, 42(5): 400–408.

WEI Y. 2014. The Grouping Combination Generating Algorithm. Proc. of International Conference on
Computer, Network Security and Communication Engineering, pp. 670–674.

An Efficient Hardware Implementation... 413

Technical Sciences 20(4) 2017


