
Technical Sciences, 2020, 23(2), 115–130

DOI: https://doi.org/10.31648/ts.5644

Correspondence: Wojciech Sobieski, Katedra Mechaniki i Podstaw Konstrukcji Maszyn, Wy-
dział Nauk Technicznych, Uniwersytet Warmińsko-Mazurski, ul. M. Oczapowskiego 11, 10-957 
Olsztyn, phone +48 (89) 523 32 40, e-mail: wojciech.sobieski@uwm.edu.pl.

GEOMETRY EXTRACTION FROM GCODE FILES 
DESTINED FOR 3D PRINTERS

Wojciech Kiński1, Wojciech Sobieski2

1ORCID: 0000-0003-4973-7604
Department of Mechanical Engineering and Fundamentals of Machine Design 

University of Warmia and Mazury, Olsztyn
2ORCID: 0000-0003-1434-5520

Department of Mechanical Engineering and Fundamentals of Machine Design
University of Warmia and Mazury, Olsztyn

Received 01 July 2020, accepted 22 July 2020, available online 22 July 2020. 

K e y  w o r d s: GCODE, STL, additive manufacturing, 3D printers, reverse engineering. 

A b s t r a c t

The paper presents a method of conversion of GCODE files designed for additive manufac-
turing in 3D printers to a format which may be conveniently visualized. In the investigations 
three different 3D models were created: a) shell model (a casing); b) solid model (a gear); c) model 
with curvilinear elements (a screw). All these models were converted to GCODE files. Next the 
reverse engineering was applied and GCODE files were converted to points sets. These points 
represent particular locations of the print head. In the developed algorithm the linear interpolation 
was added to obtain intermediate points between locations of the print head for longer sections.  
The final part shows an attempt of applying Poisson Surface Reconstruction in order to obtain the 
original geometry. The main motivation to develop a new software resulted from the observation 
that sometimes the original solid model is no longer available, while there is a need to change some 
geometry details or settings before production stage.



Technical Sciences	 23(2) 2020

116	 Wojciech Kiński, Wojciech Sobieski

Introduction

Nowadays the additive manufacturing (3D printing) are very popular and 
their importance grows every year. They are used in many areas of mechanical 
engineering (Shahi 2016), material engineering (Szebényi et al. 2017), civil 
engineering (Shatornaya et al. 2017, Tay et al. 2017), architecture (Mathur 
2016), chemical sciences (Parra-Cabrera et al. 2018), electronics (Xu et al. 2016), 
medicine (Hangge et al. 2018, Tappa et al. 2017), food industry (Godoi et al. 
2016, Pitayachaval et al. 2018) and others. To obtain any printed object, in the 
first place its geometry, considering the limitations of the additive manufacturing 
technology, must be defined. To reach this aim, any software destined for 
preparing 3D geometry (in the STL file format) may be used. At this stage 
the assumptions related to the material used must be taken into account, too.  
It is also very important to note that virtual geometry cannot be printed directly 
with the use of a 3D printer. The geometry must be first converted to a set  
of instructions which will be sequentially read and executed by the printer (Fig. 1). 

Fig. 1. Data flow from a solid model to the finished product

In particular, the movement of the print head and the material feeding speed 
must be specified. Here, a specific programming language, the so-called GCODE, 
is usually used (also RS-274; Kramer et al. 2000). GCODE is a standardized 
command language that is used to operatenumerically controlled devices (CNC) 
(ISO 6983-1:2009). The main motivation to develop a new software resulted 
from own practical experience. It turns out that sometimes the original 3D solid 
model is no longer available, but a need arises to change some details of the 
geometry or settings of the printing process. Two options are possible in such  
a case: creation of the solid model from the beginning or converting the existing 
GCODE file to a format, which may be modify. The hereby paper is a try  
to apply the second approach. The possibility to save the time needed to prepare 
a second solid model is the main advantage of the idea presented.

The methodology applied covers four steps: 
–	preparing exemplary geometries in the STL format; 
–	converting STL files to GCODE files; 



Technical Sciences	 23(2) 2020

	 Geometry extraction from GCODE files destined for 3D printers	 117

–	decoding GCODE files to obtain a points set representing the subsequent 
coordinates of positioning the print head; 

–	surface reconstructing on the basis of the points set.
It should be noted that there are publications related to data conversion 

from STL files to GCODE files (so-called slicing) (Guerrero-de-Miera et al. 
2015, Hu 2017, Topçu et al. 2011) or printing quality (Baumann et al. 2016, 
Wang et al. 2014) as well as articles on reverse engineering dealing with the 
use of 3D printers and scanners (Baronio et al. 2016, Dúbravčík, Kender 
2012, Eslami 2017). However, among them the papers related to decoding  
of the GCODE language are very rare. Apparently, to the best of our knowledge, 
there is only one paper alluding to this issue (Baumann et al. 2017). In this 
paper a reconstruction algorithm is briefly presented. The Authors use similar 
methodology to ours, but the tools applied by them are different and they illustrate 
the algorithm with only one example. In particular, the software for slicing  
a STL model was different (Slic3r, v. 1.2.9 and the main programming language 
was Python). We tried to compare our code with the software developed by 
them, but it turned out, that the webpage indicated by the Authors in the paper 
(Baumann et al. 2017) is not available.

Materials and Methods

Materials

The object of analysis is a set of three files in the GCODE format which 
are intended for the execution of selected geometric objects with the use of 3D  
printing technique. Three basic types of shapes were taken into account  
(i.e. flat, solid and curved) and the most important instructions used in source 
files for 3D printers.

GCODE programming language

The GCODE language is a standardized command language that is very 
oft used to operate numerically controlled (CNC) devices (ISO 6983-1:2009).  
The source code in GCODE language consists of a series of individual instructions 
which, depending on the device, are able to make details by subtractive  
(e.g. CNC milling machine) or additive (3D printer) manufacturing. The GCODE 
commands (Tab. 1) can be created by using the following methods: 

–	creating a list of commands in a text editor; 
–	preparing the code using CAM software; 
–	entering commands directly via the control panel of the device. 



Technical Sciences	 23(2) 2020

118	 Wojciech Kiński, Wojciech Sobieski

In practice, due to the complexity of the geometry of the processed model, 
it is mainly the software dedicated to a given device class that is used. In the 
context of the paper important is, that programs “cutting” three-dimensional 
objects mainly use the commands of simple linear motions. They do not use G2 
and G3 commands that use circular motion. The cutting software treats each 
arc as a set of straight sections.

Table 1
Examples of GCODE language commands used in 3D printers

Command Description Sample
G0 Fast movement G0 X12
G1 Work movement by linear interpolation G1 X90.6 Y13.8 E22.4
G2 Circular motion in a clockwise direction G2 X90.6 Y13.8 I5 J10 E22.4
G3 Movement around the circle counter-clockwise G3 X40.6 Y11.7 I5 J10 E72.4

G28 Axis reset G28

Source: based on Habrat (2007).

Poisson Surface Reconstruction

There are two groups of surface reconstruction methods based on a points 
set: explicit methods, in which the surface must pass through all points of the 
set, and implicit ones in which the surface is approximated on the basis of on 
the points locations (Norlander 2017). However, due to the drawbacks of the 
explicit methods (which are usually based on the Delaunay algorithm) such as 
high sensitivity to data quality and high demand for computing power, there 
were developed implicit methods, such as MarchingCubes (Lorensen, Cline 
1987) or Poisson Surface Reconstruction (Kazhdan et al. 2006), that are most 
commonly used since they are more resistant and faster.

The Poisson Surface Reconstruction is based on calculating the so-called 
indicator function X (a scalar function), whose value is one (inside the surface) 
and zero (outside the surface). If this function is known, then the reconstructed 
surface may be obtained by extracting an appropriate iso-surface. In the Poisson 
method an oriented points set can be treated as a sampling of the gradient 
of the indicator function. In the consequence, the discrete points set may be 
used to define a continuous vector field 𝑉⃗𝑉   representing the gradient field of the 
indicator function. Solving the indicator function X then amounts to finding the 
scalar function whose gradient best matches 𝑉⃗𝑉  . To reach this aim, the Poisson 
equation must be solved:

	 Δ𝑋𝑋 = ∇ · 𝑉⃗𝑉  	 (1)
where:

𝑉⃗𝑉   – the smoothed normal field.



Technical Sciences	 23(2) 2020

	 Geometry extraction from GCODE files destined for 3D printers	 119

Results and Discussion

Solid models

The aim of the first stage of investigations is to create a set of models of three-
dimensional objects, taking into account the most common geometric features 
of elements made on 3D printers. For testing, one thin-wall structure (casing – 
Fig. 2a), one full structure (gear – Fig. 2b) and one structure containing curved 
sections (screw – Fig. 2c) were prepared. The geometries were created in the 
SolidWorks program and then saved in the form of STL files. The dimensions 
of objects in the context of this study are irrelevant.

Fig. 2. 3D models used in investigations; a – casing, b – gear, c – screw

Generation of sample GCODE files

Having prepared the geometry of selected objects in the form of STL files, 
in the second stage of the investigations three GCODE files were created – one 
for each geometry. These files were prepared with the use of the MatterControl 
program (MatterControl Home Page 2019). This is a free Open Source application 
that is used to construct 3D objects for 3D printing. The preparation of the 
GCODE file requires a number of parameters characterizing a specific device as 
well as the properties of the 3D printing process itself, such as the layer height 
or wall thickness. A typical GCODE source file contains the following sections:

–	header – consists of several lines of comments (always beginning with  
a semicolon) informing about the version of the software used, the wall thick-
ness of the model, the width of the extruded path and the diameter of the beam  
of the material being fed;

–	pre-processing data – consists of commands informing about the type 
and location of the centre of the coordinate system used and of commands used 
to prepare the print head and working platform (e.g. heating up to the set 
temperature);



Technical Sciences	 23(2) 2020

120	 Wojciech Kiński, Wojciech Sobieski

–	work area – consists of rows which specify the next positions of the print 
head and the current material feeding speeds;

–	print completion area – consists of commands to be made after printing 
the model, such as axis homing, turning off the print head heaters and the work 
platform;

–	footer – consists of lines informing about print parameters, such as material 
feeding speed, type and density of the model filling and many others.

Fig. 3. Fragment of the GCODE language code for printing a model of a gear

Typically, for one specific printing device, the information necessary for the 
preparation and completion of printing is entered once (Tab. 2). This information 
is then duplicated for the subsequently generated GCODE files. In the context  
of the current article, it is important to emphasize that individual sections do not 
have any markers defining their scope. The beginnings and ends of the section 



Technical Sciences	 23(2) 2020

	 Geometry extraction from GCODE files destined for 3D printers	 121

are determined by analysing the instructions of the following lines. An initial 
part of a source file taken from one of the examples described in the further 
part of the paper is shown in Figure 3. In this figure, the work area begins with 
the 27th line of code (highlighted).

Table 2
Parameters characterizing the generated GCODE files

Name Value
Layer height 0.3 [mm]
Infill 20 [%]
Type of infill grid an angle 45
Permiters 2
The number of bottom layers completely filled 4
The number of top layers completely filled 4

A characteristic feature of GCODE files is that full objects are usually printed 
in the form of a shell filled with a lattice structure (with different shapes of such 
structures). This saves the material and significantly speeds up the printing 
process. An example of a model of a gear with a truss type fill is shown in Figure 4  
(mid-model view).

Fig. 4. View of the gear model in the MatterControl program



Technical Sciences	 23(2) 2020

122	 Wojciech Kiński, Wojciech Sobieski

Geometry extraction

Currently available computer programs allow the visualization of GCODE 
files (jView 2020, NC Viewer 2020). However, they show usually not the geometry 
of the three-dimensional object but the trajectory of the printing head. For this 
reason they are not enough functional, if the User want re-select individual 
3D printing parameters (e.g. specify the type and type of filling or change the 
height of the model layer).

In order to reproduce the geometry of an object for 3D printing based on  
a GCODE file, the coordinates of the subsequent positions of the print head 
must be known. Other parameters, such as filler temperature or feed speed, do 
not matter, but they can be useful for locating characteristic code fragments.  
The basis of the algorithm used in this investigation is to search for and then 
store the X, Y and Z coordinate values in the subsequent lines of code. To realize  
this, subsequent lines of the source code are read (as individual text variables), 
and then by means of text functions of a given programming language,  
the existence of specific sequences of characters in these lines is checked.  
The search starts with a line containing the “LAYER: 0” sequence (denoting 
the beginning of printing of the first layer) and ends with the line of the “M104 
S0” sequence (which means switching off the heating of the print head, and 
consequently the end of the printing process). The numbers of these lines are 
denoted by variables nstart and nstop, respectively. It is important to note that 
the Z coordinate of the first layer (denoted by Z0 symbol) may be sometimes 
defined before the nstart line. Therefore, it should be always checked if this  
is the case and remember the initial value of this coordinate.

Scanning a single line of the code, understood as a multi-character text 
variable, includes the following steps: 

–	checking if the coordinate mark (X, Y or Z) is present in the line; 
–	finding and saving the characters located between the coordinate mark 

and the nearest space or between the coordinate mark and the end of the line; 
–	converting characters into numbers and saving the result. 
It is important to make sure that each line of the code is checked several 

times in order to find the current coordinate values X, Y and Z one by one.  
If the coordinate mark does not exist in the line being scanned, then the current 
coordinate value is taken as the previously read value. This means that the 
print head moves parallel to one of the Cartesian coordinate axes. In such 
cases, there is no need to duplicate the same coordinate, so that the files have 
a smaller volume. The values of read variables can be saved directly to a file or 
can be stored in indexed variables. The size of such variables can be determined 
on the basis of the knowledge of nstart and nstop.

A Fortran (GNU Fortran Home Page 2019) code was written to decode GCODE 
files, using internal SCAN and INDEX text functions. The first function allows 



Technical Sciences	 23(2) 2020

	 Geometry extraction from GCODE files destined for 3D printers	 123

to determine the position of a single character in a text string (e.g. character X ), 
the second function determines the position of a particular character subsystem 
(e.g. the “LAYER: 0” sequence). The resulting data, i.e. the coordinates of all 
points found, were saved in the form of ASC and VTK files (The Visualization 
Toolkit 2019). The code that is intended to read the X coordinate value in a given 
line of the GCODE file has the following form:

!if the line in the GCODE file begins from G0 or G1:
if((index(line,’G0’)/=0).or.(index(line,’G1’)/=0))then
 !find position of X sign (0 means that this sign do not exists in this line):
posX=scan(line,’X’)
 !if the X sign exists:
 if(posX>0)then
 !find the position of a space occurring after the X sign:
posNull=scan(line(PosX:),char(32))
 !save all signs from the X sign to a next space located in the same line:
lineX=line(posX:posX+posNull-1)
 !extract the numbers occurring after the sign X:
 write(tmp,fmt=’(A)’)lineX(2:)
 !assign the read out number to the current X coordinate:
 read(tmp,*)x(lp)
 !remember the last known value of the X coordinate:
xw=x(lp)
 !if the X sign do not exists:
 else
 !assign the previous value to the current X coordinate:
 x(lp)=xw
endif
endif

The meaning of variables is as follows: “line” – a character variable containing 
the current line of the GCODE file; “posX” – an integer variable containing the 
position of X sign in the variable “line”; “posNull” – an integer variable containing 
the position of a space in the variable “line” (here the space located after X sign); 
“lineX” – a character variable containing a substring of the variable “line” 
(here X sign together with numbers occurring after this sign); “lp” – counter 
of points in the model; “x(lp)” – a float variable containing the current value  
of the X coordinate; “xw” – a float variable containing the last remembered 
value of the X variable.

In addition to the three basic GCODE files, during the development of the 
algorithm, other variants of these files were also tested. The variants were 
obtained with different settings of the MatterControl program. Depending  



Technical Sciences	 23(2) 2020

124	 Wojciech Kiński, Wojciech Sobieski

on the settings, the movement of the print head can be described with instructions 
G0 or G1 (see Table 1). Another difference appears in the length and content 
of the GCODE file header or footer, in particular the method and location of 
the Z0 coordinate. The program has been written to take into account as many 
possible differences as possible.

In Figures 5a, 6a and 7a there are examples of visualization of subsequent 
positions of the print head obtained after decoding the selected GCODE files. 
Visualizations were made in the ParaView (ParaView Home Page 2019) with the 
use of the automatically generated VTK files. The overall shape of the object is 
visible, but some walls are clearly missing. This effect results from the fact that 
if the print head moves along a straight line (regardless of its length), only the 
coordinates of the beginning and end of this line are saved in the GCODE file. 
To improve the reproduction quality of the original geometry with a pointsset,  
it is preferable to insert intermediate points. In the developed program, in 
relation to straight lines, this stage consists of the following steps:

–	length calculation of the section between the current (i) and previous (i – 1) 
location of the print head:

𝑙𝑙 = √(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−1)2 + (𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖−1)2 ;

–	calculation of the number of intermediate points:

𝑛𝑛𝑙𝑙 = NINT ( 𝑙𝑙
𝑑𝑑𝑑𝑑) ,

where dl is the maximum spatial step defined by the user;

–	calculation of increments of individual coordinates:

𝑑𝑑𝑑𝑑 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1
𝑛𝑛𝜄𝜄

, 𝑑𝑑𝑑𝑑 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−1
𝑛𝑛𝜄𝜄

, 𝑑𝑑𝑧𝑧 = 𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖−1
𝑛𝑛𝜄𝜄

. 

In the last step the coordinates of intermediate points are calculated:

𝑥𝑥𝑗𝑗 = 𝑥𝑥𝑖𝑖−1 ∙ 𝑗𝑗 ∙ 𝑑𝑑𝑑𝑑 , 𝑦𝑦𝑗𝑗 = 𝑦𝑦𝑖𝑖−1 ∙ 𝑗𝑗 ∙ 𝑑𝑑𝑑𝑑 , 𝑧𝑧𝑗𝑗 = 𝑧𝑧𝑖𝑖−1 ∙ 𝑗𝑗 ∙ 𝑑𝑑𝑑𝑑 ,

where j denotes the sequence number of the intermediate point, whereby 𝑗𝑗 ∈ ⟨1, 𝑛𝑛𝑙𝑙⟩ .
Before preparing the output files, the data should be also checked for any 

duplicate points. If they are found, such points should be removed.
The disadvantage of inserting intermediate points is a significant increase 

in the number of points representing the geometry of the object. For dl = 0.5 the 
total number of points for the casing, gear and screw increased from 52,926 
to 186,910, from 64,447 to 233,981 and from 11,151 to 12,776, respectively.  
This is 3.532, 2.127 and 1.146 times more points, respectively. This condition 



Technical Sciences	 23(2) 2020

	 Geometry extraction from GCODE files destined for 3D printers	 125

can lead to difficulties in visualizing such a large points set. The effect deepens 
with the decrease of dl. It should be added that difficulties in visualizing large 
sets of points (a long waiting time for a program to response) occurred only  
in the ParaView software. The MeshLab program (MeshLab Home Page 2019), 
described later in the article, worked much faster.

In Figures 5b, 6b, 7b the final results are visible. They were prepared in 
the ParaView software with the use of the “glyph” tool. This tool allows to draw  
a simple 3D object (arrow, cone, box, cylinder, line, sphere) in every point with 
a specified location. In the figures mentioned, cubes (Fig. 5 and 6) and spheres 
(Fig. 7) were used to prepare the visualisation. In such a way a set of points may 
be visualized as a sets of solids. Such a result may be saved, among others, in 
the STL file format. Unfortunately, such a file consists of many separate objects 
(cubes and spheres) and cannot be applied directly in the same way as the original 
STL file. All tries of merging these objects into one surface or solid body failed.

Fig. 5. Example of visualization of print head positions  
without interpolation (a) and with interpolation, at dl = 0.2 (b)

Fig. 6. Example of visualization of print head positions  
without interpolation (a) and with interpolation, at dl = 0.2 (b)



Technical Sciences	 23(2) 2020

126	 Wojciech Kiński, Wojciech Sobieski

Fig.7. Example of visualization of print head positions  
without interpolation (a) and with interpolation, at dl = 0.5 (b)

The results obtained from the extraction of geometry, in the version with 
interpolation of intermediate points, were also saved in the form of text files 
in the ASC format. This format consists of only three columns of numbers, 
containing the X, Y and Z coordinates of all the points of the set.

Poisson Surface Reconstruction

The previously mentioned MeshLab (MeshLab Home Page 2019) application 
was used to carry out the next stage of work. The choice of this particular 
application was dictated by the fact that it allows to load data in many different 
file formats, among others in the ACS format. What is more, the program 
can be used, for instance, to perform the earlier mentioned Poisson Surface 
Reconstruction.

In the case of dense points sets, such as those obtained in the previous 
stage, the local number of points should be reduced. It may be done by selecting 
an appropriate tool from the main menu: “Filters – Cleaning and Repairing – 
Merge Close Vertices”. Now the normal vectors to the surface in all points of the 
current set may be calculated by selecting the following from the main menu: 
“Filters – Normal, Curvatures and Orientation – Compute normals for points 
sets”. The last step is to select the Poisson Surface Reconstruction tool from the 
main menu. This is done as follows: “Filters – Remeshing, Simplification and 
Reconstruction – Screened Poisson Surface Reconstruction”. It should be added 
that few constants have to be defined while using these tools. The best results 
were obtained for the parameters that were listed in Table 3.



Technical Sciences	 23(2) 2020

	 Geometry extraction from GCODE files destined for 3D printers	 127

Table 3
Surface reconstruction parameters in the MeshLab program

MeshLab Filter Casing Gear Screw

Cleaning and Repairing Merge Close Vertices perc on 150 100 180

Normal, Curvatures 
and Orientation

Compute normals for 
points sets

Neighbour num 10 10 50

Smooth Iteration 0 0 0

Remeshing, Simplifica-
tion and Reconstruction

Screened Poisson 
Surface Reconstruction

Reconstruction 
Deepth

10 8 8

Minimum Number 
of Samples

10 4 3

Integration Weight 4 10 6

In Figure 8a there is the starting points set for the casing model, and to the 
Figure 8b the reconstructed 3D object is visible. Unfortunately, despite many 
attempts, it was not possible to reconstruct the surface in such a way that  
it would accurately represent the output objects. In particular, it was not possible 
to obtain STL files that could be later modified and reused in the printing 
process. Figures 9 and 10 show the reconstruction of the gear model and screw.

It is clearly visible, that the geometry visible in Figures 8, 9 and 10 do not 
correspond with the original 3D models (Fig. 2). It means, that the Poisson 
Surface Reconstruction is not a good method to obtain a file, which may be 
again used as the input file in printing process. The investigation should focus 
rather on the problem described in the previous section, consisting of merging 
many separate objects into one surface or solid body.

Fig. 8. Casingmodel; a – pointsset, b – reconstructed model 



Technical Sciences	 23(2) 2020

128	 Wojciech Kiński, Wojciech Sobieski

Fig. 9. Model of the gear in the form of the starting pointsset (a) and the reconstructed area (b)

Fig. 10. Screw model; a – pointsset, b – reconstructed model 

Summary

The main observations and final conclusions are as follows:
–	It is possible to transform a geometry saved in a GCODE file to a points 

set. In turn, this points set may be visualised (and saved in the STL file format) 
by the use of appropriate software, e.g. ParaView.

–	The movement of the print head must be interpolated to reconstruct filled 
structures.

–	Duplicates of points in points sets should be detected and removed.
–	The decoding process is hindered by the fact that from one geometry many 

differing GCODE files may be obtained (it depends on settings of the algorithm 



Technical Sciences	 23(2) 2020

	 Geometry extraction from GCODE files destined for 3D printers	 129

converting the STL files to the GCODE files). This problem sometimes results  
in the situation when the points appear outside the original geometry. It is 
difficult to develop a universal algorithm to filter such points which could be 
applied to all possible variants of GCODE files.

–	The quality of the reconstructed surface depends on the parameters 
introduced in the MeshLab program. There are no universal parameters that 
reproduce all models in the same way (each model has a different geometry and 
needs different parameters).

–	On the current stage the algorithm described may be used only to view the 
geometry saved in a GCODE file. The main advantage is, that the source code 
of the developed software is very short and concise and may be easy modify. No 
access to the Internet is needed, too.

–	Resulting files with coordinates of points belonging to a point cloud are 
usually very large in volume (in the order few hundred of MB). It causes that 
many software crashes during manipulation with such a files. This problem do 
not occurs in the developed software.

References

Baronio G., Harran S., Signoroni A. 2016. A Critical Analysis of a Hand Orthosis Reverse 
Engineering and 3D Printing Process. Applied Bionics and Biomechanics, 2016: 1-7, article  
ID 8347478.

Baumann F., Bugdayci H., Grunert J., Keller F., Roller D. 2016. Influence of slicing tools on 
quality of 3D printed parts. Computer-Aided Design & Applications, 13(1): 14-31.

Baumann F.W., Schuermann M., Odefey U., Pfeil M. 2017. From GCODE to STL: Reconstruct 
Models from 3D Printing as a Service. IOP Conf. Series: Materials Science and Engineering, 
280: 012033.

Dúbravčík M., Kender Š. 2012. Application of reverse engineering techniques in mechanics system 
services. Procedia Engineering, 48: 96-104.

Eslami A.M. 2017. Integrating Reverse Engineering and 3D Printing for the Manufacturing Process. 
American Society for Engineering Education, Paper ID #18869.

GNU Fortran Home Page. 2018. https://gcc.gnu.org/fortran/ (access: 18.10.2018).
Godoi F.C., Prakash S., Bhandari B.R. 2016. 3D printing technologies applied for food design: 
Status and prospects. Journal of Food Engineering, 179: 44-54.

Guerrero-de-Miera A., Espinosa M.M., Domínguez M. 2015. Bricking: A new slicing method  
to reduce warping. Procedia Engineering, 132: 126-131.

Habrat W. 2007. Obsługa i programowanie obrabiarek CNC. Poradnik operatora. Wydawnictwo 
KaBe, Krosno.

Hangge P., Pershad Y., Witting A.A., Albadawi H., Oklu R. 2018. Three-dimensional (3D) 
printing and its applications for aortic diseases. Cardiovascular Diagnosis and Therapy, 8: 19-25.

Hu J. 2017. Study on STL-Based Slicing Process for 3d Printing. Proceedings of the 28th Annual 
International, Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference. 
Austin TX, August 7-9, 11 p.

ISO 6983-1:2009: Automation systems and integration – Numerical control of machines -- Program 
format and definitions of address words – Part 1: Data format for positioning, line motion and 
contouring control systems. https://www.iso.org/standard/34608.html (access: 18.10.2018).



Technical Sciences	 23(2) 2020

130	 Wojciech Kiński, Wojciech Sobieski

jView. 2020. http://www.jtronics.de/software/jview-simple-g-code-viewer/ (access: 1.04.2020).
Kazhdan M., Bolitho M., Hoppe H. 2006. Poisson surface reconstruction. Proceedings of the 4th 

Eurographics Symposium on Geometry Processing, Sardinia, Italy, p. 1-10.
Kramer T.R., Proctor F.M., Messina E. 2000. The NIST RS274NGC Interpreter – Version 3. 

NISTIR 6556, August 17, p. 121.
Lorensen W.E., Cline H.E. 1987. Marching cubes: a high resolution 3D surface construction 
algorithm. ACM SIGGRAPH Computer Graphics, 21(4): 163-169.

Mathur R. 2016. 3D Printing in Architecture. International Journal of Innovative Science, Engi-
neering & Technology, 3(7): 583-591.

MatterControl Home Page. 2019. https://www.matterhackers.com/ (access: 10.04.2019).
MeshLab Home Page. 2019. http://www.meshlab.net/ (access: 10.04.2019).
NC Viewer. 2020. https://ncviewer.com/ (access: 11.04.2020).
Norlander R. 2017. Make it Complete: Surface Reconstruction Aided by Geometric Primitives. 

http://liu.diva-portal.org/smash/get/diva2:1153573/FULLTEXT01.pdf.
ParaView Home Page. 2019. https://www.paraview.org/ (access: 10.04.2019).
Parra-Cabrera C., Achille C., Kuhn S., Ameloot R. 2018. 3D printing in chemical engineering 
and catalytic technology: structured catalysts, mixers and reactors. Chemical Society Reviews, 1.

Pitayachaval P., Sanklong N., Thongrak A. 2018. A Review of 3D Food Printing Technology. 
MATEC Web of Conferences, 213: 01012.

Shahi B.S. 2016. Advanced Manufacturing Techniques (3D Printing). International Journal  
of Mechanical And Production Engineering, 4(4): 16-23.

Shatornaya A.M., Chislova M.M., Drozdetskaya M.A., Ptuhina I.S. 2017. Efficiency of 3D 
printers in Civil Engineering. Construction of Unique Buildings and Structures, 9(60): 22-30.

Szebényi G., Czigány T., Magyar B., Karger-Kocsis J. 2017. 3D printing-assisted interphase engi-
neering of polymer composites: Concept and feasibility. eXPRESS Polymer Letters, 11(7): 525-530.

Tappa K, Jammalamadaka U., Ballard D.H., Bruno T, Israel M.R., Vemula H., Meacham 
J.M., Mills D.K., Woodard P.K., Weisman J.A. 2017. Medication eluting devices for the field of 
OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof of concept 
study. PLoSONE, 12(8): e0182929.

Tay Y.W.D., Panda B., Paul S.C., Mohamed N.A.N., Tan M.J., Leong K.F. 2017. 3D printing trends 
in building and construction industry: a review. Virtual and Physical Prototyping, 12(3), 261-176.

Topçu O., Taşcioğlu Y., Ünver H.Ö. 2011. A Method for Slicing CAD Models in Binary STL For-
mat. 6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazığ, 
Turkey.

VTK – The Visualization Toolkit. https://www.vtk.org/ (access: 10.04.2019).
Wang W., Chao H., Tong J., Yang Z., Tong X., Li H., Liu X., Liuy L. 2014. Saliency-Preserving 
Slicing Optimization for Effective 3D Printing. COMPUTER GRAPHICS forum, 33(5): 1-12.

Xu Y., Wu X., Guo X., Kong B., Zhang M., Qian X., Mi S., Sun W. 2016. The Boom in 3D-Printed 
Sensor Technology. Sensors, 17: 37.


