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A b s t r a c t

The paper presents optimization of the drive system in terms of adapting it to the characteristics 
of another engine. Powertrain parameters in a vehicle with an internal combustion engine were 
selected based on the following criteria: fuel consumption, engine dynamics, and emission standards 
for harmful substances. A light-duty passenger vehicle with gross vehicle weight rating (GVWR) 
of 3.5 tons was modified by replacing a spark-ignition engine with a diesel engine. The gear ratio 
in the powertrain had to be modified accordingly to optimize the engine’s performance, enhance 
engine dynamics, minimize fuel consumption and toxic emissions. The optimization of selected 
parameters of the vehicle driveline was performed based on the requirements of the standard 
NEDC and WLTC cycles.
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Introduction

The design of new vehicles and the upgrading and adaptation of the existing 
vehicles require optimization techniques for reducing the time and cost of these 
operations. Optimization techniques also facilitate the search for trade-off 
solutions that account for different and often contradictory customer requirements. 

The process of upgrading vehicles with internal combustion engines involves 
the reduction of engine capacity, improvement of the power-to-weight ratio, the 
introduction of turbochargers, cylinder deactivation systems and start-stop 
systems to minimize fuel consumption in urban traffic. Fraser et al. (2009) 
analyzed the extent to which a decrease in engine cylinder capacity reduces fuel 
consumption. The study was conducted on a D-segment car where a 2.0 L TGDI 
engine was replaced with a 1.2 L MAHLE engine. Driving cycle tests revealed 
a 15% decrease in fuel consumption.

The main goals of modern vehicle design, upgrade and operation are to reduce 
power consumption, increase energy efficiency and minimize vehicles’ negative 
impact on the environment. These processes rely on optimization techniques 
that considerably reduce the time and cost of investments in the automotive 
industry. Optimization techniques are deployed to improve structural solutions 
in vehicles (Fries et al. 2018, Li et al. 2020, Oglieve et al. 2017, Wenchen  
et al. 2016) and to adapt vehicles to operational environments (Bertram, Herzog 
2013, Skugor, Deur 2014, Peng at al. 2018).

To further the development of effective automotive solutions and modern 
powertrain systems, optimization techniques were used in this study to improve 
selected operating parameters of a vehicle with an internal combustion engine. 
Quality criteria, functional limitations and decision parameters need to be 
established to fully harness the potential of optimization techniques. Such 
analyses should also consider the operating conditions of vehicles and systems 
whose performance is determined by many interacting processes. The results  
of such studies can be used to identify the available scope for potential improve- 
ment in powertrain systems. 

Analysis of a vehicle’s operating parameters  
as optimization criteria

Criteria for evaluating a vehicle’s energy consumption 

A vehicle’s energy consumption is measured in kWh. The volume of energy 
consumed per unit distance is determined in kWh/km, and the same measure 
can be applied to evaluate powertrain performance. In a vehicle with an internal 
combustion engine, energy consumption is normally expressed in terms of fuel 
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consumption per unit of distance, usually L/100 km (kg/100 km). The demand 
for energy in a vehicle with an internal combustion engine can be expressed 
with the use of the below formula (Kropiwnicki 2011):

	 𝐸𝐸 = ∫ (𝐹𝐹𝑟𝑟𝑟𝑟 ∙ 𝑉𝑉)
𝑡𝑡𝑐𝑐

0
d𝑡𝑡 	 (1)

where: 
tc	 – cycle time, 
Frf	 – total resistive forces acting on a moving vehicle, 
V	 – vehicle’s linear velocity.
The following resistive forces act on a vehicle:
–	 rolling friction Ff,
–	 air resistance Fair,
–	 gradient resistance Fg,
–	 inertial resistance Fi,
–	 internal resistance Fint.
Rolling friction can be described with the following formula:

	 𝐹𝐹𝑓𝑓 = 𝑓𝑓𝑟𝑟 ∙ 𝑚𝑚 ∙ 𝑔𝑔 ∙ cos 𝛼𝛼 = 𝑓𝑓 ∙ 𝑄𝑄𝑖𝑖 	 (2)

where: 
fr	 – coefficient of rolling friction, 
m	 – vehicle mass, 
α	 – road gradient, 
Qi	 – tire-ground interaction force.
Air resistance is calculated as follows (Mitchke 1977):

	 𝐹𝐹air =
𝑐𝑐𝑥𝑥 ⋅ 𝜌𝜌𝑎𝑎 ⋅ 𝐴𝐴 ⋅ 𝑣𝑣2

2  	 (3)

where: 
Cx	 – coefficient of aerodynamic resistance, 
ρa	 – air density,
A	 – car frontal area,
𝑣	 – linear velocity.
Gradient resistance is determined based on the following formula:

	 𝐹𝐹𝑔𝑔 = 𝑚𝑚 ∙ 𝑔𝑔 ∙ sin 𝛼𝛼 	 (4)

Inertial resistance is associated with translational motion or rotational motion 
of an object (Gillespie 1992, Mitchke 1977, Orzełowski 1969). It is generally 
calculated with the use of the following equation:

	 𝐹𝐹𝑖𝑖 = 𝑚𝑚 ∙ 𝛿𝛿 ∙ d𝑣𝑣d𝑡𝑡  	 (5)
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where: 
d𝑣𝑣
d𝑡𝑡  	–	linear acceleration, 
𝛿	 –	coefficient for converting the inertia of rotating components to the inertia 

of translational motion.

The sum of resistive forces:

	 𝐹𝐹𝑟𝑟𝑟𝑟 = 𝐹𝐹𝑓𝑓 + 𝐹𝐹air + 𝐹𝐹𝑔𝑔 + 𝐹𝐹𝑖𝑖 	 (6)

is used to determine instantaneous power demand:

	 𝑃𝑃𝑟𝑟 = 𝐹𝐹𝑟𝑟𝑟𝑟 ∙ 𝑉𝑉 	 (7)

The thrust force produced by the engine shaft and a vehicle’s velocity can 
be expressed as follows (Gillespie 1992):

	 𝐹𝐹𝑡𝑡 =
𝑀𝑀 ∙ 𝑖𝑖𝑔𝑔 ∙ 𝑖𝑖𝑜𝑜 ∙ 𝜂𝜂𝑡𝑡

𝑟𝑟𝑑𝑑
 	 (8)

	 𝑉𝑉 = 𝜋𝜋 ∙ 𝑛𝑛 ∙ 𝑟𝑟𝑑𝑑
30 ∙ 𝑖𝑖𝑔𝑔 ∙ 𝑖𝑖𝑜𝑜

 	 (9)

where: 
M	 – torque, 
n	 – rotational speed of the engine shaft, 
ig	 – gear ratio of the gear box, 
io	 – gear ratio of the final drive, 
rd	– dynamic rolling radius.

A vehicle’s maximum velocity in a given driving environment can be 
determined with the use of the dynamic coefficient D which is calculated as 
follows:

	 𝐷𝐷 = 𝐹𝐹𝑡𝑡 − 𝐹𝐹air
𝑚𝑚 ∙ 𝑔𝑔  	 (10)

When the remaining resistive forces are considered, the equation can be 
expressed as follows:

	 𝐷𝐷 = 𝑓𝑓𝑟𝑟 + 𝑤𝑤 + 𝛿𝛿
𝑔𝑔 ∙

d𝑣𝑣
d𝑡𝑡  	 (11)

where w is the coefficient of gradient resistance: w = tan 𝛼 ≈ sin 𝛼. If the vehicle 
is moving on a flat roadway (𝛼 = 0) at a constant speed (d𝑣𝑣d𝑡𝑡 = 0 ), then D = fr, 
therefore:

	 𝐹𝐹𝑡𝑡 − 𝐹𝐹air
𝑚𝑚 ∙ 𝑔𝑔 = 𝑓𝑓𝑟𝑟 	 (12)
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𝑀𝑀 ∙ 𝑖𝑖𝑔𝑔 ∙ 𝑖𝑖𝑜𝑜 ∙ 𝜂𝜂𝑡𝑡
𝑟𝑟𝑑𝑑

− 𝑐𝑐𝑥𝑥 ⋅ 𝜌𝜌𝑎𝑎 ⋅ 𝐴𝐴 ⋅ 𝑣𝑣2
2 = 𝑓𝑓𝑟𝑟 ∙ 𝑚𝑚 ∙ 𝑔𝑔 ,

	 𝑣𝑣max = √ 1
𝐶𝐶𝑥𝑥 ∙ 𝜌𝜌𝑎𝑎 ∙ 𝐴𝐴

∙ (
2𝑀𝑀 ∙ 𝑖𝑖𝑔𝑔min. ∙ 𝑖𝑖𝑜𝑜 ∙ 𝜂𝜂𝑡𝑡

𝑟𝑟𝑑𝑑
− 2𝑓𝑓𝑟𝑟 ∙ 𝑚𝑚 ∙ 𝑔𝑔) 	 (13)

where:
igmin. – the gear ratio of the final gear.

The maximum slope that the vehicle can climb is calculated with the following 
formula: 

	 𝑤𝑤 = 𝐷𝐷 − 𝑓𝑓𝑟𝑟 −
𝛿𝛿
𝑔𝑔 ∙

d𝑣𝑣
d𝑡𝑡  	 (14)

If the vehicle moves at a constant speed, then, therefore:

	 𝑤𝑤 = 𝐹𝐹𝑡𝑡 − 𝐹𝐹air
𝑚𝑚 ∙ 𝑔𝑔 − 𝑓𝑓𝑟𝑟 	 (15)

The gear required to achieve the speed of Vf should be considered when 
calculating the acceleration of a vehicle with an internal combustion engine. 
If the last gear is required, and the vehicle has a five-speed gearbox, then  
the time needed to reach speed Vf can be calculated as follows:

	𝑡𝑡𝑎𝑎 = ∫ 𝑚𝑚∙𝛿𝛿
𝑃𝑃𝑡𝑡
𝑉𝑉1
−𝑚𝑚∙𝑔𝑔∙𝑓𝑓𝑟𝑟−0.5∙𝜌𝜌𝑎𝑎∙𝐶𝐶𝑥𝑥∙𝐴𝐴∙𝑉𝑉2

d𝑉𝑉 + ∫ 𝑚𝑚∙𝛿𝛿
𝑃𝑃𝑡𝑡
𝑉𝑉2
−𝑚𝑚∙𝑔𝑔∙𝑓𝑓𝑟𝑟−0.5∙𝜌𝜌𝑎𝑎∙𝐶𝐶𝑥𝑥∙𝐴𝐴∙𝑉𝑉2

d𝑉𝑉 + ∫ 𝑚𝑚∙𝛿𝛿
𝑃𝑃𝑡𝑡
𝑉𝑉3
−𝑚𝑚∙𝑔𝑔∙𝑓𝑓𝑟𝑟−0.5∙𝜌𝜌𝑎𝑎∙𝐶𝐶𝑥𝑥∙𝐴𝐴∙𝑉𝑉2

d𝑉𝑉 +𝑉𝑉3
𝑉𝑉2

𝑉𝑉2
𝑉𝑉1

𝑉𝑉1
0

∫ 𝑚𝑚∙𝛿𝛿
𝑃𝑃𝑡𝑡
𝑉𝑉4
−𝑚𝑚∙𝑔𝑔∙𝑓𝑓𝑟𝑟−0.5∙𝜌𝜌𝑎𝑎∙𝐶𝐶𝑥𝑥∙𝐴𝐴∙𝑉𝑉2

d𝑉𝑉 + ∫ 𝑚𝑚∙𝛿𝛿
𝑃𝑃𝑡𝑡
𝑉𝑉 −𝑚𝑚∙𝑔𝑔∙𝑓𝑓𝑟𝑟−0.5∙𝜌𝜌𝑎𝑎∙𝐶𝐶𝑥𝑥∙𝐴𝐴∙𝑉𝑉2

𝑉𝑉𝑓𝑓
𝑉𝑉4

𝑉𝑉4
𝑉𝑉3

  
(16)

where V1, V2, V3, V4 denote linear speeds at which the maximum engine power 
can be achieved in gears 1, 2, 3 and 4, respectively.

Vehicle simulation model

The presented formulas are used to model vehicles with various types  
of powertrain systems. All processes that describe a vehicle’s motion have to be 
taken into account to solve optimization problems. 

Research into new powertrain systems in the automotive industry contributed 
to the development of comprehensive driving simulators, in particular for 
analyzing the interactions between the system and its individual components 
(Dabadie et al. 2011, Da Costa, Alix 2011), describing the characteristics  
of various components (Husain, Islam 1999), developing and validating control 
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algorithms and vehicle control systems (Sciaretta et al. 2008, Verdonck  
et al. 2010). A driving simulator developed based on the LMS IMAGINE.Lab 
AMESim® platform (https://www.plm.automation.siemens.com/global/en/products/
simcenter/simcenter-amesim.html) is presented in Figure 1.

Fig. 1. Simulation model of a vehicle developed  
in the LMS.IMAGINE.Lab AMESim® environment

The specific character of the optimization procedure should also be considered, 
including iteration algorithms which can perform more than 1,000 individual 
calculations. Empirically determined characteristics of selected components 
in a model of a complex mechanical system can be used to reconcile model 
requirements with research assumptions and the accuracy of the results.  
In a simulation, the model of an internal combustion engine does not rely 
on known methods for calculating basic processes (Heywood 1988). Engine 
parameters in the simulation model were described based on empirical data, 
including the speed characteristics of an internal combustion engine (Grytsyuk, 
Vrublevskyi 2018) and general engine characteristics. 

The proposed model has considerable potential for analyzing the influence  
of structural and operating parameters on a vehicle’s energy consumption, engine 
dynamics and compliance with emission standards. 
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Selection of driving cycles for the optimization problem

A detailed numerical description of tractive force and linear velocity in real-
world driving conditions is relatively complex. Driving cycles that simulate  
a typical driving environment are developed to best represent real-world 
conditions. Depending on the aim of the analysis, driving cycles can simulate 
urban or extra-urban traffic, and they describe changes in the speed  
of a vehicle moving on a flat roadway. Various driving cycles have been developed 
for analyzing energy efficiency in vehicles (Barlow et al. 2009, Giakoumis, 
Zachiotis 2017).

Until recently, the New European Driving Cycle (NEDC) was the mandatory 
driving cycle for assessing emission levels in passenger vehicles. The NEDC was 
developed in the late 1980s, and it does not fully reflect present traffic conditions, 
mostly due to changes in traffic intensity and the number of vehicles. The NEDC 
was designed to represent typical urban driving conditions, including idling 
(Giakoumis, Zachiotis 2017), which largely contributed to the development  
of start-stop systems. Moreover, the assumed acceleration values did not require 
high engine loads in modern vehicles, which prompted designers to downsize 
engines. The cycle was performed on a roller test bench at a temperature  
of 20-30°C. 

The effectiveness of optimization is largely determined by the operating 
parameters of the powertrain. Vehicle performance is generally assessed  
in stationary mode or in test cycles. The WLTC driving cycle produces more 
accurate results, and a vehicle’s real-world performance can be simulated with 
an accuracy of up to 80% (Giakoumis, Zachiotis 2017).

The performance of a four-cylinder 2 dm3 diesel engine in a class 3 vehicle 
was compared in the NEDC and the WLTC (Fig. 2), and the results indicate 
that are engine characteristics are not easy to determine. Unlike in the NEDC, 
the engine operates in non-stationary mode during the entire driving cycle  
in the WLTC test. The engine has the following characteristics: 

–	 idling time is 242 s or 15% of the entire test cycle;
–	 the WLTC involves 6 non-stationary modes during which engine crankshaft 

speed increases from neutral load or, if the vehicle is equipped with a start-stop 
system, the engine is shut down and then started;

–	 instantaneous power momentarily coincides with points in the speed 
characteristic, which is not typical of the NEDC;

–	 the portion of the driving cycle when load is limited to 50% of the maximum 
load and the rotational speed of the crankshaft ranges from 1200 to 3000 rpm 
can be identified.

Fuel consumption in the WLTC is higher than in the NEDC test, in both 
older and brand-new vehicles, approximating real-world fuel consumption.  
In the NEDC, fuel consumption is measured under specific driving conditions, 
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such as urban and extra-urban driving. The transition from the NEDC to the 
WLTC started in 2017, and fuel consumption is currently measured in speed 
intervals. Different testing speeds and maximum speeds are applied to various 
vehicle classes. Fuel consumption in the NEDC and the WLTC is compared  
in Tables 1 and 2. 

Table 1
Fuel consumption in Toyota Yaris

Toyota Yaris 1.5
NEDC WLTC

Test conditions fuel consumption 
[L/100 km] speed fuel consumption 

[L/100 km]
Urban 6.5 low 7.9
Extra-urban 4.3 medium 5.9
Combined cycle 5.1 high 5.2

– – very high 6.1
– – combined cycle 6.0

Source: own elaboration based on the manufacturer’s specifications.

Fig. 2. Indicated mean effective pressure (IMEP) in a light-duty vehicle (GVW 3500 kg)  
in NEDC and WLTC tests
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Table 2
Fuel consumption in Toyota RAV4 SUV

Toyota RAV4 2.0
NEDC WLTC

Test conditions fuel consumption 
[L/100 km] speed fuel consumption 

[L/100 km]
Urban 6.8 low 8.9

Extra-urban 5.4 medium 7.2
Combined cycle 5.9 high 6.3

– – very high 7.7
– – combined cycle 7.3

Source: own elaboration based on the manufacturer’s specifications.

The compared driving cycles produced different results. The WLTC test has 
steeper accelerations and higher engine load than the NEDC. As a result, fuel 
consumption better reflects real-world driving conditions. Regardless of the 
driving cycle, instantaneous engine torque can be expressed as follows:

	 𝑀𝑀𝑒𝑒 =
(𝑚𝑚 ∙ 𝑔𝑔 ∙ 𝑓𝑓𝑟𝑟 ∙ cos𝛼𝛼 + 0.5 ∙ 𝜌𝜌𝑎𝑎 ∙ 𝐶𝐶𝑥𝑥 ∙ 𝐴𝐴 ∙ 𝑉𝑉2 + 𝑚𝑚 ∙ 𝛿𝛿 ∙ d𝑉𝑉d𝑡𝑡 ) ∙ 𝑟𝑟𝑑𝑑

𝑖𝑖𝑔𝑔 ∙ 𝑖𝑖𝑜𝑜 ∙ 𝜂𝜂𝑡𝑡
 	 (17)

When the change in time is relatively small, it can be assumed that the vehicle 
moves in linear motion and its acceleration is constant. Instantaneous torque M 
at any point in the driving cycle can be calculated with formula (17). Depending 
on speed, instantaneous points in the driving cycle denote the operating region 
of the powertrain. The relevant information plays a very important role during 
the development of optimization techniques. Powertrain performance should be 
maximized at points representing higher loads. 

Selection of decision parameters, functional limitations and quality 
criteria 

During optimization, special attention is paid to vehicle dynamics, including 
acceleration (formula 16) and braking distance (Fries et al. 2018, Gillespie 
1992, Li et al. 2020, Waligórski, Kucal 2018). A set of dynamic indicators 
can be used to establish quality criteria as well as functional limitations in the 
optimization problem. 

Oglieve et al. (2017) proposed an effective analytical procedure for calculating 
fuel consumption based on the NEDC speed profile. The analysis involved  
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an integrated optimization procedure to minimize fuel consumption and NOx 
emissions as objective functions. Optimal gear ratios were determined for 4-, 
5- and 6-speed gearboxes as control parameters in the optimization process.  
In the analysis, the gear shifting strategy should be determined by minimizing 
one of the declared objective functions. In the best case scenario, fuel consumption 
is reduced by 7.5% and NOx emissions are reduced by 6.75% in a 6-speed gear 
box where the gear shifting strategy is based on minimal fuel consumption 
for a given engine type. These results indicate that gearbox optimization is an 
effective and cheap method of reducing fuel consumption and harmful emissions. 

The appropriate optimization technique should be applied in the process 
of vehicle modernization. In the bus presented in Table 3, the gear ratio was 
modified when a spark-ignition engine was replaced with a diesel engine,  
as recommended by the manufacturer. Spark-ignition and diesel engines have 
different characteristics (Heywood 1988), and a vehicle’s gear ratio has to be 
adapted accordingly. The effects of different gear ratios on fuel economy, emissions 
and engine dynamics are well known. A multi-criteria optimization technique 
can be applied to make a trade-off between the above parameters. 

Table 3 
Technical specification of a light-duty vehicle (LDV)

Specification RUTA-25d 
(Grytsyuk, Vrublevskyi 2018)

Vehicle dimensions [mm] 7000/2050/2730
Axle width [mm] 3745
Tire size 232/65 R16
Gross vehicle weight rating/curb weight [kg] 1900/1600
Acceleration 0-100 km/h [s] –
Maximum velocity [km/h] 130
Average fuel consumption [l/100 km] 19.5
Maximum output [kW/rpm] 88.3/3200
Rated torque [rpm] 3200
Maximum torque [Nm/rpm] 297/1600-2700

Research methodology for optimizing vehicle design 

Vehicle design can be optimized with the use of the following strategies  
or their combinations (Vrublevskyi, Wojnowski 2019):

–	 Design of Experiments (DoE) methods (Ross 1998). These methods 
facilitate the selection of the optimal solution. However, the DoE approach may 
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produce unsatisfactory results, in particular when only one criterion is selected. 
Various sampling methods can be used in the DoE approach, including orthogonal 
arrays, Sobol sequences (Sobol, Statnikov 2006) and Monte Carlo methods 
(Rubinstein, Kroese 2008);

–	 optimization methods. Various optimization methods have been proposed.  
The selection of the appropriate optimization algorithm is a very important 
consideration because some optimization methods have been designed for 
specific purposes, depending on spatial parameters (spatial modality, continuity, 
linearity, etc.).

The effectiveness of these methods increases when they are applied  
in combination. For example, the first method can be used to plan the experiment, 
test the boundary values of the analyzed parameters and establish a set  
of decision parameters. Ultimately, the appropriate optimization method is used 
to identify the optimal point. In this case, the search for the optimal solution 
does not begin from zero or in a random manner. The DoE approach is used  
at the beginning of the optimization process to determine initial search conditions. 
The optimization problem described in this study was solved with the use  
of Simcenter Amesim 2019 software (Dabadie et al. 2017, Le Berr et al. 2012, 
Li et al. 2020).

Optimization process

Parameter space analysis in a vehicle with an internal combustion 
engine

The relationships between gearbox parameters and selected quality criteria, 
i.e. fuel economy and acceleration, was examined with the use of DoE methods 
to determine the boundary values of the investigated parameters. The results 
obtained in this stage of the analysis can be used to narrow down the search 
space for localizing the global optimum. The relationships presented in Table 4  
were determined by calculating sampling points whose input vectors were 
described with the Monte Carlo method. The values of all parameters had normal 
distribution. The obtained data were used to analyze the influence of gearbox 
parameters on selected performance parameters. When the influence of the 2nd 
and 4th gear ratio on fuel consumption was analyzed, significant differences 
were noted only for the 4th gear ratio. The system was not sensitive to the 2nd 
gear ratio. In turn, an analysis of the 3rd and 4th gear ratios revealed that both 
variables influenced fuel economy. 

Sobol sequences were used to derive input parameter vectors for the sampling 
points, presented in Figure 3. The results of the calculations for each sampling 
point are localized in the plane of fuel economy criteria – difference in acceleration. 
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Table 4
Relationship between fuel consumption and gear ratio

X
Y 1st gear ratio (i1) 2nd gear ratio (i2) 3rd gear ratio (i3) 4th gear ratio (i4)

2nd gear ratio 
(i2)

3rd gear ratio 
(i3)

4th gear ratio 
(i4)

5th gear ratio 
(i5)

Fig. 3. Sampling points in the space of decision criteria for fuel consumption  
and the dynamic performance of a vehicle with an internal combustion engine
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Trade-off solutions can be identified in the resulting set of solutions, and they are 
located on the Pareto optimal curve. These points describe the best combination 
of input parameters, i.e. gear ratios whose implementation contributes to reducing 
fuel consumption or improving engine dynamics. 

Multi-criteria optimization of gearbox parameters

The use of DoE tools in data analysis supports the development of an 
appropriate set of input parameters in the optimization process the selection 
of boundary values of decision parameters and quality criteria, as well as  
the selection of the initial point for localizing the optimum. Two criteria were 
selected for solving the optimization problem where the Non-Linear Programming 
by Quadratic Lagrangian (NLPQL) algorithm was used to upgrade the gearbox 
in a vehicle with an internal combustion engine:

–	 fuel consumption per 100 km;
–	 distance traveled during the simulation.
The first criterion was selected on the assumption that the goal of optimization 

is to reduce fuel consumption during the simulation. The second criterion was 
adopted to accurately reflect changes in the vehicle’s speed based on the speed 
profile of a given driving cycle. The total distance traveled by the vehicle during 
the test was compared. The longest distance was indicative of the highest average 
speed and, consequently, the smallest deviations in linear speed relative to the 
adopted speed profile.

The results of the optimization procedure for the NEDC and the WLTC are 
presented in Table 5. When the gearbox was not adapted for use with a diesel 
engine, fuel consumption was lower by 1 L in the NEDC than in the WLTC.  
The same difference was noted when the optimization problem was based  
on fuel consumption only, with a minor decrease in absolute values. The correlation 
between qualitative variables was maintained when two criteria were applied in 
the optimization process. Minimal fuel consumption was achieved in the NEDC 
test (9.97 L/100 km). 

Table 5
Fuel consumption [L/100 km] in a vehicle with an internal combustion engine

Cycle Before optimization Criterion:
fuel consumption

Criteria: fuel consumption 
and distance

NEDC 10.1885 10.1633 9.97
WLTC 11.6086 11.3575 11.2493
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Dynamic engine performance is also highly desirable in vehicles. Therefore, 
the optimization procedure was based on the time required to achieve a given 
linear speed. The input parameter was the difference between the final velocity 
after 45 seconds of acceleration and the test velocity of 25 m/s. The minimum 
value of the above difference was used to set decision parameters. In this analysis,  
the decision parameter was the gear ratio. Changes in the vehicle’s test velocity, 
the final velocity and the differences between these values are presented  
in Figure 4. 

Fig. 4. Changes in velocity during acceleration to 25 m/s over 45 s:  
a – before optimization, b – after optimization

The difference in final velocity after optimization was 0.16131 m/s. The gear 
ratios for each gear were determined at: ig = 4.11; i1 = 3.34; i2 = 2.32; i3 = 1.49; 
i4 = 1.03; i5 = 0.813.

It should be noted that the NLPQL algorithm is not the only method for 
solving an optimization problem. When a multi-objective genetic algorithm 
(Ghorbanian et al. 2011, Mirjalili 2019, Urbina Coronado et al. 2018) was 
applied to the same decision parameters, a small difference was observed in the 
values of quality criteria and parameters (Tab. 6). However, an analysis of the 
results indicates that the NLPQL generated lower values of fuel consumption 
and CO and NOX emissions; therefore, it appears to be better suited for solving 
the presented optimization problem (Tab. 6).
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Table 6
Comparison of optimization results

Parameter/Criterion Base NLPQL Genetic algorithm
1st gear ratio (i1) 2.8 2.8 2.8
2nd gear ratio (i2) 1.7 1.7 1.7
3rd gear ratio (i3) 1.25 1.25 1.307
4th gear ratio (i4) 0.9 1.026 1.00
5th gear ratio (i5) 0.813 0.813 0.797
Fuel consumption [g] WLTC 1383 975 985
CO emissions [mg] WLTC 150.6 119.9 119.3
HC emissions [mg] WLTC 17.61 14.45 14.49
NOx emissions [mg] WLTC 60.67 35.38 36.00

Conclusions

Optimization techniques have to be applied in the process of designing new 
vehicles and modernizing the existing solutions. Optimization techniques reduce 
the time and cost of such operations and facilitate the search for trade-off solutions 
that account for different and often contradictory customer requirements as well 
as vehicle operating conditions. 

This study demonstrated that the effectiveness of the optimization process 
is determined by the operating conditions of the powertrain. The accuracy  
of the results can be improved under the conditions prescribed in the WLTC test.  
A comparison of the optimization results for a vehicle with an internal combustion 
engine revealed that when the gear box was not adapted for use with a diesel 
engine, fuel consumption was 1 L lower in the NEDC than the WLTC test.  
The same difference was noted when the optimization problem was based on 
only one criterion, i.e. fuel consumption, with a minor decrease in absolute 
values (10.1633 L/100 km and 11.3575 L/100 km). The correlation between 
qualitative variables was maintained when two criteria were applied in the 
optimization process. Minimal fuel consumption was achieved in the NEDC 
test (9.97 L/100 km).

The criteria for selecting powertrain parameters in a vehicle with an 
internal combustion engine were fuel economy, engine dynamics, and toxic 
emissions. When a vehicle with an internal combustion engine was optimized 
with the involvement of the NLPQL algorithm and the genetic algorithm, only 
minor differences were noted in the values of quality criteria and parameters.  
The NLPQL algorithm generated lower values of fuel consumption and CO and 
NOX emissions.
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The results of this study indicate that optimization techniques can be used 
to adapt the powertrain to different types of engines by modifying parameters 
such as the gear ratio. As a result, vehicle parameters can be more accurately 
tailored to specific user needs and requirements. Gearbox parameters can be 
accurately adapted to a specific route and terrain by incorporating GPS data 
and the speed profile in a driving cycle and using real-world road gradients  
in the simulation model, in particular in the process of modifying the design 
of municipal buses. 
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