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A b s t r a c t

A new optimization method presented in this work – the Least m-Order Central Moments 
method, is a generalization of the Least Squares method. It allows fitting a geometric object into 
a set of points in such a way that the maximum shift between the object and the points after 
fitting is smaller than in the Least Squares method. This property can be very useful in some 
engineering tasks, e.g. in the realignment of a railway track or gantry rails. The theoretical properties 
of the proposed optimization method are analyzed. The computational problems are discussed.  
The appropriate computational techniques are proposed to overcome these problems. The detailed 
computational algorithm and formulas of iterative processes have been derived. The numerical 
tests are presented, in order to illustrate the operation of proposed techniques. The results have 
been analyzed, and the conclusions were then formulated.
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Introduction

Optimization techniques are sometimes applied in engineering tasks. In such 
applications, the problem is usually formulated as fitting a geometrical figure 
into a set of points in 2D or 3D space. In contrast to many estimation problems 
where the solution has to be free of outliers (Caspary 1990, Chang, Guo 2005, 
Hampel et al. 1986, Huber 1981, Kamiński, Wiśniewski 1992, Koch 1996, 
Yang 1999, Yang et al. 2002, Xu 1989, Zhong 1997, Zhu 1996), the opposite 
problem is presented here: an optimization method preferring outliers. This 
feature is beneficial in engineering applications, where constraints concerning 
maximum shifts appear. In some cases, the maximum shifts cannot exceed a 
critical value. Such constraints can appear e.g. during the realignment of a 
railway track (Skała-Szymańska et al. 2014). These constraints result from a 
limited structure gauge, i.e. the width of tunnels, bridges or distances to railway 
platforms, buildings or other objects. The constraints, mentioned above, have to 
be taken into account during the construction process when some elements of a 
structure are installed in a limited space. An example of such civil engineering 
task is to fit elevator guide rails inside the elevator shaft. One of the tools 
for solving the problem of limited shifts can be the min-max algorithm from 
game theory (von Neumann 1947). Also, the Least Squares (LS) method with 
constraints can be applied (Liew 1976, Mead, Renaut 2010, Werner 1990). An 
alternative method is presented here. In the proposed method, the special form 
of the objective function is applied. This form is related to the m-order central 
moments (with m ≥ 2). Thus, the proposed method is a generalization of the LS 
method and the Least Fourth Powers (LFP) method (Cellmer 2014). Special 
attention must be paid to the optimization technique. So far, a lot of interesting 
optimization techniques were proposed e.g. (Fletcher 1987, Nocedal, Wright 
1999, Avriel 2003). It was shown in (Cellmer 2014) that if an inappropriate 
technique of searching for the minimum of the objective function is applied, 
then the computational process is not convergent. In such a case, two alternate 
solutions are obtained in consecutive iterations like in the M-split estimation 
method (Duchnowski, Wiśniewski 2012, Wiśniewski 2009, 2010). In the M-split 
estimation method, this effect was obtained deliberately – it resulted from the 
theoretical foundations of this method. However, in the method considered here, 
a single, unique solution is required. The technique of searching for a solution 
should have the property of skipping local minima and pursue the global one. 
This property was described e.g. in (Martins, Tsuzuki 2009).

 In the next section, the objective function of the Least m-Order Central 
Moments (LmOCM) method is presented. The justification for applying this form 
of the objective function was carried out using certain concepts of estimation 
theory and was illustrated using the plot of weight function for different values 
of the m-exponent. The third section contains the derivation of the formulas 
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of the computational process. Two different techniques of optimization of the 
LmOCM objective function have been discussed and two numerical examples 
were analyzed in the fourth section. The conclusions have been formulated on 
the basis of the results of tests.

Objective function of the LmOCM method and its 
properties

The optimization method proposed in this article is based on minimizing 
the objective function Ψ(v):

	 min
𝐯𝐯
(Ψ(𝐯𝐯) =∑𝑣𝑣𝑖𝑖m

𝑛𝑛

𝑖𝑖=1
) 	 (1)

where vi are elements of the v vector in the simple, linear model:

	 y + v = Ap 	 (2)
where:

y	– vector of entries that are fitted into the A model,
v	– vector of corrections (disclosures),
A	– design matrix,
p	– parameter vector.

The optimization method based on criterion (1), is a generalization of the LS 
or the LFP method (Cellmer 2014). In Cellmer (2014), the properties of the 
LFP method have been described using selected concepts of estimation theory. 
The considered estimation methods belong to the m-estimation class. These 
methods are based on the minimization:

	 min
𝐯𝐯
(Ψ𝐺𝐺(𝐯𝐯) =∑ρ𝑖𝑖(𝐯𝐯)

𝑛𝑛

𝑖𝑖=1
) 	 (3)

The ρi function is a component of the objective function ΨG(v). The objective 
function Ψ(v) in the formula (1) is a special case of the the objective function 
ΨG(v). The form of the component ρi determines the properties of the results. In 
the method proposed here, the ρi function takes the following form:

	  𝜌𝜌𝑖𝑖(𝐯𝐯) = 𝑣𝑣𝑖𝑖m 	 (4) 

One of the properties of the optimization method can be described by the 
weight-function (Kadaj 1988). The form of this function is:

	 w(𝑣𝑣) = ∂𝜌𝜌(𝑣𝑣)
∂𝑣𝑣2  	 (5)
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The plots of the weight function with the values of the m-parameter: 2, 
4, 6, 8, 10 and 12 are depicted in Figure 1. The black line depicts the weight 
function of the LS method (m = 2). As follows from the definition of the weight 
function (5), in the case of the LS method, it is constant. All observations are 
treated equally. In the case of large values of the m-parameter, there is a range 
around the zero value, where the trajectory of the plot of the function is almost 
horizontal. Outside this range, the function value rapidly increases. This means 
that if there are no outliers in the data set, this optimization method provides 
results similar to the results obtained with the LS method. However, if there 
are some outliers in the data set, they have more impact on the solution than 
other observations. The consequence of this is a smaller maximal value of the 
residuals in the optimization process.

Fig. 1. Weight functions. The plots represent the weight functions of the objective functions, 
which are in the form of the central moments of various orders

Optimization techniques

The objective function in minimization problem (1) can be presented in the 
following matrix notation: 

	 Ψ(𝐯𝐯) = 𝐯𝐯rT𝐯𝐯r 	  (6)

where:
	 𝑟𝑟 = m

2
 	  (7)

	 𝐯𝐯r = [𝑣𝑣1
r , 𝑣𝑣2

r , … , 𝑣𝑣𝑛𝑛
r  ]T 	  (8)
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The solution, which is at the point of a minimum of the objective function (6) 
can be found by zeroing the gradient of this function. As was shown in (Cellmer 
2014), this technique cannot be employed in its simple, classic form. The gradient 
of the objective function (6) is derived, based on (2) and (7):

  
∂Ψ
∂p = ∂Ψ

∂𝐯𝐯r

∂𝐯𝐯r
∂𝐯𝐯

∂𝐯𝐯
∂p = 2𝐯𝐯r

T ∙ r ∙ diag(𝐯𝐯r-1) ∙ A  ==  2r ∙ 𝐯𝐯2r-1
T  A = 2𝑟𝑟 ∙ 𝐯𝐯Tdiag(𝐯𝐯m-2)  A 	 (9)

where diag(vm-2) denotes a diagonal matrix, containing elements of the vm-2 – 
vector on a diagonal. Thence the system of normal equations is obtained:

 	 ATWAp − ATWy  =  00 	  (10) 

where:
	 W  = diag(𝐯𝐯m-2)  	 (11)

The solution can be obtained in an iterative process:

p(𝑖𝑖)=(ATW(𝑖𝑖−1)A)−1ATW(𝑖𝑖−1)y 

	 𝐯𝐯(𝑖𝑖) = Ap(𝑖𝑖) –  y , for i = 1, 2, … and W(0) = I	 (12)

The W matrix is formed according to (11) in each iteration. However, as was 
shown in (Cellmer 2014), in the case of the objective function (6), process (12) 
does not work properly. This technique does not ensure proper convergence to the 
correct, unique solution. As a result of using formulas (12), two alternate solutions 
are obtained. They appear alternately in consecutive iterations. A similar effect 
is obtained when using the M-split estimation proposed by (Wiśniewski 2009, 
2010). However, the unique solution of the minimization process of the objective 
function (6) exists. Cellmer (2014) proposed applying one of two optimization 
techniques for obtaining a unique solution in the considered problem. The first 
one is based on the modification of the process (12). The second is based on 
applying the Newton technique of optimization. In the first technique, the iterative 
process (12) is modified to the form:

dy(𝑖𝑖) = y − Ap(𝑖𝑖−1) 

dpp(𝑖𝑖) = k(ATW(𝑖𝑖−1)A)−1ATW(𝑖𝑖−1)dy(𝑖𝑖) 

 pp(𝑖𝑖) = pp(𝑖𝑖−1) + dpp(𝑖𝑖)  	 (13)

 vv(𝑖𝑖) = Adpp(𝑖𝑖) − dy(𝑖𝑖) 

 W(𝑖𝑖) = diag(𝐯𝐯m-2(𝑖𝑖))  for i = 1, 2, … and pp(0) = 𝟎𝟎,  W(0)= II 
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where the vm-2(i) vector in the last row is formed according to (8). In this technique, 
in contrast to process (12), the results obtained from consecutive iterations are 
accepted as the starting point (approximate value of the parameter) in the next 
iteration. This is performed by updating the dy and p vectors. Additionally, the 
reduction parameter k is introduced. This parameter reduces the length of every 
single step in the iterative process of searching for the solution. This was imposed 
to eliminate the effect of jumping over the global solution in consecutive iterations. 
The k parameter has to take the value from the range: (0; 1). Determination of 
the optimal value of this parameter is presented in the next section.

In the second technique, the Newton method of optimization is applied in 
its classic form:

	 p(𝑖𝑖) = p(𝑖𝑖−1) − H−1(p(𝑖𝑖−1))G(p(𝑖𝑖−1)) 	  (14)

where G and H are, appropriately, the gradient and Hessian of the objective 
function Ψ. The gradient of the objective function (8) is expressed by formula (9). 
Let us denote the gradient G as a transpose of (9):

 	 G = 2r  AT𝐯𝐯m-1 	 (15)
or
	 G = m  ATW𝐯𝐯 	 (16) 

The Hessian can then be formed as:

	 H = 𝛛𝛛G
𝛛𝛛p = 𝛛𝛛G

𝛛𝛛𝐯𝐯m-1

𝛛𝛛𝐯𝐯m-1
𝛛𝛛𝛛𝛛

𝛛𝛛𝛛𝛛
𝛛𝛛p = m  AT(m − 1)diag(𝐯𝐯m-2) A = 

= m  (m − 1) ATWA 	 (17)

Thus, in this case the optimization process can be presented as follows:

pp(𝑖𝑖) = pp(𝑖𝑖−1) − 1
m − 1

(ATW(𝑖𝑖−1)A)−1ATW(𝑖𝑖−1)𝐯𝐯(𝑖𝑖−1) 

	 𝐯𝐯(𝑖𝑖) = Ap(𝑖𝑖)– y   for 𝑖𝑖 = 1, 2, … and W(0) = II 	 (18)

The correction vector in the first iteration (v(0)) is calculated using formula (12).

Numerical examples

Table 1 contains the coordinates of the points. The axes are to be fitted into 
each set of these points using criterion (1). In the first example the formula of 
the fitted line is: 
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	 y = ax	 (19) 

whereas in the second example, it is:
	 y = ax + b 	 (20) 

Table 1
Set of points for fitting the axes

Example 1 Example 2

No x
[m]

y
[m] No x

[m]
y

[m]
1
2
3
4
5
6
7
8
9
10

1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000

0.102
0.196
0.302
0.405
0.501
0.603
0.727
0.799
0.914
0.998

1
2
3
4
5
6
7
8
9
10

1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000

0.507
0.603
0.699
0.801
0.897
1.006
1.128
1.202
1.310
1.401

The A matrix and the y vector in each example are formed based on the 
following observation equations:

	 y𝑖𝑖  + 𝑣𝑣𝑖𝑖  = ax𝑖𝑖   (example 1)	 (21)

	 y𝑖𝑖  + 𝑣𝑣𝑖𝑖  = ax𝑖𝑖 + b  (example 2)	 (22)

Hence, in the first example, the A is the column vector of x-coordinates, 
whereas in the second example this is a two-column matrix: the first column 
contains x-coordinates and the second column is a vector of ones. At the start 
point of optimization, the y-vector contains the y-coordinates of the points listed 
in Table 1. The first test was performed in order to determine the optimal value 
of the k-factor in process (13). Therefore, this process was carried out for different 
values of k, and afterwards, the speed of convergence was analyzed for each of 
them. The results are listed in Table 2. It was shown in (Cellmer 2014) that 
if k = 1, the solution splits into two results, repeating alternately in consecutive 
iterations. Therefore, the k-factor values have been assumed here as: 

	 k =
1

 k1
,   for  k1= 2, 3, …, 14   	  (23) 

The first column contains the consecutive values of k1. The next columns 
contain the number of iterations needed to stabilize the solution with a precision 
of 0.0001. An iterative process was terminated when the values of parameters in 
consecutive iterations have differed by less than 0.0001. Each column contains 
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results for a different m-value. The first part of Table 2 concerns the example of 
‘y = ax’, and the second part the example of ‘y = ax + b’. Analyzing minima values, 
we can come to the conclusion that for most cases the fastest convergence is 
observed for k1 = m – 1. The k-factor corresponding to such k1 value is identical 
to the factor in the formula of the Newton method (18). Tables 3 and 4 contain 
results of optimization using processes (13) and (18) for the case of ‘y = ax’ (Tab. 
3) and for ‘y = ax + b’ (Tab. 4). For each ‘m’, the parameter values and maximum 
values of misclosures are given in consecutive iterations. 

Table 2 
Determination of the optimal value of the -factor

k1 
y = ax y = ax+b

m m

4 6 8 10 12 4 6 8 10 12
2
3
4
5
6
7
8
9
10
11
12
13
14

10
3
4
5
6
7
9
10
11
12
13
14
15

-
15
5
3
3
4
5
6
7
7
8
9
9

-
-

15
5
4
4
4
4
5
6
6
7
7

-
-
-

12
7
5
4
4
5
5
6
7
7

-
-
-
-
-

12
8
4
5
5
4
5
5

8
3
5
6
8
9
11
12
14
16
17
19
20

-
13
5
3
5
7
8
9
11
12
13
14
16

-
-

11
4
5
5
5
6
7
8
9
10
11

-
-
-
-

11
7
6
6
5
6
7
7
8

-
-
-
-

16
7
7
7
6
5
6
7
8

v1 max* 
[mm] 21 22

v2 max** 
[mm] 18 18 17 17 17 17 16 16 15 15

* maximal shift in the LS method (m = 2)
**maximal shift in the LmOCM method (m > 2)

Table 3
Results of optimization (y = ax). Table contains the value of the a parameter and maximum shift 

m after fitting axis into a set of points

Iter.
m

4 6 8 10 12
a vmax a vmax a vmax a vmax a vmax

1
2
3
4
5

0.1009
0.1013
0.1012
0.1012
0.1012

0.021
0.018
0.018
0.018
0.018

0.1009
0.1013
0.1014
0.1014
0.1014

0.021
0.018
0.018
0.018
0.018

0.1009
0.1013
0.1014
0.1014
0.1014

0.021
0.018
0.017
0.017
0.017

0.1009
0.1012
0.1014
0.1014
0.1014

0.021
0.019
0.017
0.017
0.017

0.1009
0.1011
0.1014
0.1014
0.1014

0.021
0.019
0.018
0.017
0.017
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In process (13), the k-factor has been assumed as:

	 k =
1

 m −  1 	  (24)

In the case analyzed here, both methods (13) and (18) provided the same 
results in each iteration. The results with a stabilized solution (with a precision 
of 0.0001 for parameters, and 0.001 for maximum misclosure) are in bold. The 
result of the first iteration is merely the Least Squares (LS) solution. The maximal 
shift needed for the axis alignment according to the LS method (vmax) is above 
2 cm in both examples. In the first example, it amounts to 21 mm and in the 
second example 22 mm. This value was reduced using the LmOCM method. In 
the first example this value amounts to 18 mm for m = 4 or 6, and 17 mm for 
m = 8, 10 or 12. In the second example, this value has been maximally reduced 
to 15 mm (for m = 12). In some cases, this reduction can be of critical significance 
(e.g. in such engineering tasks where the values of shifts are limited to a range 
less than 20 mm). The vmax-values for different ‘m’ differ by less than 1 mm in 
the first example, and by less than 2 mm in the second example. It is clearly 
seen, that for the lower required maximal shifts, the higher m-values should 
be taken in the adjustment process – the lowest shift values of 15 mm for the 
greater m-values (10 and 12) are visible in Table 4.

Summary and Conclusions

 In the paper, a generalization of the Least Squares optimization method is 
proposed. A new method is based on the criterion of minimization of a sum of 
misclosures raised to the power of ‘m’. This criterion allows one to reduce the 
maximum misclosure in the optimization problem in comparison to the LS method. 
A crucial problem in the use of this method is ensuring proper convergence of the 
computational process. Two techniques of finding the minimum of the objective 
function were tested: the simple gradient zeroing method and the Newton method. 
Both methods employ an iterative process. The formula of the computational 
process of the first technique contains the k-factor. This factor warrants the 
proper convergence of the computational process. It is proposed here, that the 
value of this factor is calculated as k = (m – 1)-1 if the sum of misclosures to the 
power of ‘m’ is the optimization criterion. In the case study considered here, 
the two optimization techniques provided the same results. The results of this 
case study confirmed the property of reducing the maximum shift in the task 
of the alignment of the axis into a set of points in comparison to the LS method.
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