
Technical Sciences, 2021, 24, 331–349

Biosystems Engineering
Chemical Engineering
Civil Engineering
Environmental Engineering
Geodesy and Cartography
Information Technology
Materials Engineering
Mechanical Engineering
Production Engineering

ISSN 1505-4675

 Wydawnictwo
Uniwersytetu Warmińsko-Mazurskiego

w Olsztynie

DOI: https://doi.org/10.31648/ts.7238

Correspondence: Radosław Cybulski, Katedra Metod Matematycznych Informatyki, Wydział
Matematyki i Informatyki, ul. Słoneczna 54, 10-710 Olsztyn, e-mail: radoslaw.cybulski@uwm.edu.pl

PSEUDO-RANDOM NUMBER GENERATOR BASED
ON LINEAR CONGRUENCE

AND DELAYED FIBONACCI METHODE

Radosław Cybulski
ORCID: 0000-0003-1289-5318

Chair of Mathematical Method in Computer Science
University of Warmia and Mazury in Olsztyn

Received 11 November 2021, accepted 04 December 2021, available online 06 December 2021.

K e y w o r d s:	Linear congruential method, Delayed Fibonacci technique, Hybrid pseudo-
random number generator.

A b s t r a c t

Pseudo-random number generation techniques are an essential tool to correctly test machine
learning processes. The methodologies are many, but also the possibilities to combine them in a new
way are plenty. Thus, there is a chance to create mechanisms potentially useful in new and better
generators. In this paper, we present a new pseudo-random number generator based on a hybrid
of two existing generators – a linear congruential method and a delayed Fibonacci technique.
We demonstrate the implementation of the generator by checking its correctness and properties using
chi-square, Kolmogorov and we apply the Monte Carlo Cross Validation method in classification
context to test the performance of the generator in practice.

Introduction

First question is what is it pseudo-random generator. It is generator which
create a numbers in randomness method. To do that we need pseudo-random
generator with good seed. But now is the question what is seed. The seed is
the starting value on the basis of which the remaining numbers are generated.

Technical Sciences	 24, 2021

332	 Radosław Cybulski

Seed must have features two unpredictability, first in forward saying that other
who’s don’t know seed can’t create a good pseudo-random numbers. Second
feature relies on that other can’t create seed when knows created numbers.
This features says why seed is that important in pseudo-random generators.
When we looking on seeds in generators existing to create our method we can
see different between, but it will be show in this introduction. Second question
is how we can use pseudo-random generators. This generator can be used
to Monte Carlo methods simulation, cryptography, and to create computer games
when we need use randomness.

We will briefly introduce the algorithms on the basis of which we create our
hybrid pseudo-random number generation method. Then, we will proceed with
an overview of selected existing generators.

1. Linear congruence generator (Stallings 2012)
The generation of pseudo-random numbers using a linear congruence generator

is based on an iterative algorithm

Xn+1 = (aXn + c) mod m,

where individual parameters have the following meaning:

m – module, m > 0,

a – multiplier, 0 < a < m,

c – growth 0 <= c < m,

X0 – starting value (seed) 0 <= X0 < m.

Each pseudo-random number being generated is from 0 to m – 1 interval.
It is worth noting here that only integers are used for the generator. For the
quality of the generator functioning in this way it is critical to choose the values
of a, c and m. The main advantage of the linear congruence generator is the
choice of two parameters, which are the multiplier (a) and the modulus (m), where
it can happen that the generated sequence of numbers will be indistinguishable
from the sequence of numbers that arise because of random drawing without
returning numbers from the set {1, 2, …, m – 1}.

The disadvantage is that if the intruder knows our parameters, by using which
the generation of pseudo-random numbers occurs, he can map the generated
sequence himself. He will do it using the following equations:

X1 = (aX0 + c) mod m,

X2 = (aX1 + c) mod m,

X3 = (aX2 + c) mod m.

Technical Sciences	 24, 2021

	 Pseudo-Random Number Generator Based on Linear Congruence…	 333

2. Delayed Fibonacci generator (Lagged Fibonacci Generator, online)
A pseudo-random number generator used to improve the linear congruence

generator. Its origins date back to 1958, with contributions from GJ Mitchell
and DP Moore. The algorithm is based on the following formula:

Sn = Sn – j ∗ Sn – k (mod m), 0 < j < k,

where the operator ∗ can be any arithmetic operation or a bit operation. Depending
on the operation used, the generator takes the appropriate name.

The operation of the generator starts with the selection of the j and k number
values (they are the selected indices from the seed that take part in the creation
of pseudo-random numbers). Then, the value of the number m is determined.
The last parameter of the generator is the value val, which is considered as the
seed. With this combination, our values will be drawn from the range of 0 to
m – 1. It is also important to use the m value, which is a power of 2. The generator
is delayed, because it remembers several values generated in the previous steps.

Let us discuss the content of the following sections. In the section 2 we have an
overview of selected pseudo-random number generation methods. In the section 3
we present the idea of our algorithm. Then in section 4 we test our method
using Chi-square and Kolmogorov’s lambda consistency test. In the section 4.3
we conduct a critical discussion of our results. In section 5 we present the
application of our method in practice. Finally, in section 6 we summarise the work.

We proceed to review what we consider to be the more important pseudo-
-random number generation techniques.

Selected pseudo-random number generation techniques

In this section we will present a few pseudo-random generator with normal
distribution.

1. Mersenne Twister (Sulewski 2019)
A popular pseudo-random number generator by Japanese scientists Matsumoto

and Nishimura, generating pseudo-random numbers with a uniform distribution
of massive period 219937 – 1. This algorithm provides a solution for generating
pseudo-random numbers for many software systems. The generator was created
to improve the quality of older generators.

2. Box-Muller (BM) generator (Sulewski 2019, Box, Muller 1958)
Let U1, U2 be U(0, 1) pseudo-random numbers. The Box-Muller method

generates a pair of independent pseudo-random numbers (Y1, Y2) from N(m, s):
–	 𝑎𝑎 = √−2 ln(𝑈𝑈1), b = 2πU2;

–	 X1 = asin(b), X2 = acos(b);

–	 Y1 = sX1 + m, Y2 = sX2 + m.

Technical Sciences	 24, 2021

334	 Radosław Cybulski

3. Polar Generator (Sulewski 2019, Bell 1968, Knop 1969)
Let U1, U2 be U(0, 1) pseudo-random numbers. A polar method generates

a pair of independent pseudo-random numbers (Y1, Y2) from N(m, s):
–	 a = –1 + 2 ∗ U1, b = –1 + 2 ∗ U2;

–	 d = a2 + b2;

–	 If d ≥ 1, go to point 1;

–	 𝑒𝑒 = √−2 ln(𝑑𝑑)
𝑑𝑑 ;

–	 X1 = ae, X2 = be;

–	 Y1 = s ∗ X1 + m, Y2 = s ∗ X2 + m.

4. Quotient method (Sulewski 2019, Kinderman, Monahan 1977, Wieczor-
kowski, Zielinski 1997)

Let U1, U2 be the pseudo-random numbers U(0, 1). A quotient method generating
a pseudo-random number Y from N(m, s):

–	 𝑢𝑢 = 𝑈𝑈1, 𝑒𝑒 = exp(1), 𝑣𝑣 = −√2/𝑒𝑒 + 2√2/𝑒𝑒𝑈𝑈2 ;
–	 X = �/�;

–	 If X2 ≤ 2�3 – �(4 + �)�, go to point 6;

–	 If X2 ≤ 2/� – 2� and X2 ≤ – 4 ln(�), go to point 6;

–	 Go to point 1;

–	 Y = sX + m.

5. Ahrens-Dieter (AD) generator (Sulewski 2019, Ahrens, Dieter (1988)
Let U1, U2, U3 be U(0, 1) pseudo-random numbers. The Ahrens-Dieter method

generates a pair of independent pseudo-random numbers (Y1, Y2) from N(m, s):
–	 If U1 < 0.5 then a = 1. Go to point 3;

–	 a = – 1;

–	 b = – ln(U2);

–	 c = tg[π(U3 – 0.5)];

–	𝑑𝑑 = √ 2𝑏𝑏
1 + 𝑐𝑐2 ;

–	 X1 = ad, X2 = cd;

–	 Y1 = s ∗ X1 + m, Y2 = s ∗ X2 + m.

Now we turn to discuss the methodological details of our new pseudo-random
number generation technique.

Technical Sciences	 24, 2021

	 Pseudo-Random Number Generator Based on Linear Congruence…	 335

Proposed Methodology

First, what we do, to create pseudo-random numbers, is the creation
of generator seed. Seed is a message, whose input chars are changed into array
ASCII codes. When we have seed, the next step to create pseudo-random numbers
is to choose two numbers j and k (both numbers be in range between 0 and length
seed, for example if our input message has 10 chars, j and k be in range between
0 and 9). These numbers are indexes from the array ASCII codes. Next we select
number m that sets the generator range, if our m is 342, the biggest pseudo-
-random number will be equal 341. The last thing what we should do creates
number n, that will determine how many sequences the generator will perform.

One sequence includes several operations:
Step 1

a = (Sj XOR Sk) mod m,

b = (Sk ∗ Sk) mod m;
Step 2

j = a mod S,

k = b mod S;
Step 3

Sj = a,

Sk = b.

Two pseudo-random numbers (a and b) are created in one sequence. Next
when we have created the numbers a and b, the numbers j and k are change
based on actions described above. When we have new indexes j and k, old values
on new indexes j and k are replaced by two pseudo-random numbers a and b.

Example of generator action
Input message: gerwok-nkl
Array ASCII codes from input message (S): 103 101 114 119 111 107 45 110 107 108
j = 6
k = 8
m = 16452
n = 312

First sequence
a = (45 XOR 107) mod 16452 = 70 mod 16452 = 70
b = (107 ∗ 107) mod 16452 = 11449 mod 16452 = 11449
j = 70 mod 10 = 0
k = 11449 mod 10 = 9
Sj = 70
Sk = 11449
S = 70 101 114 119 111 107 45 110 107 11449

Technical Sciences	 24, 2021

336	 Radosław Cybulski

Second sequence
a = (70 XOR 11449) mod 16452 = 11519 mod 16452 = 11519
b = (11449 ∗ 11449) mod 16452 = 131079601 mod 16452 = 6517
j = 11519 mod 10 = 9
k = 6517 mod 10 = 7
Sj = 11519
Sk = 6517
S = 70 101 114 119 111 107 45 6517 107 11519
That will be created 624 pseudo-random numbers.

1. Illustration of examples of generated pseudo-random numbers
In this section, we shall present graphs of the distribution of pseudo-random

numbers, A and B. The numbers generated using the three input sets will be
presented. For each set two graphs will be presented, where one will show on
the �-axis the number a and on the y-axis the number b. The second graph will
be the inverse of the first one on the �-axis the number b and on the y-axis the
number a. Additionally, we will show graphs presenting the numbers of generated
pseudo-random numbers in intervals. The number of intervals, the size of the
interval and the first upper limit of the interval is determined by:

𝑘𝑘 ≈ √𝑛𝑛 + 1,
where:

k	– number of intervals,
n	– the number of pseudo-random numbers generated;

ℎ ≈ 𝑟𝑟
𝑘𝑘 ,

where:
h	–	interval size,
r	–	the difference between the largest and smallest pseudo-random numbers

generated,
k	–	number of intervals;

𝑃𝑃1 ≈ 𝑛𝑛min. − (ℎ2) + ℎ ,
where:

P1	 – right limit of the first interval,
nmin.	– the smallest pseudo-random number generated,
h	 – size of the interval.
2. Example 1

Input message: gerwok-nkl
j = 6
k = 8
m = 16452
n = 84

Technical Sciences	 24, 2021

	 Pseudo-Random Number Generator Based on Linear Congruence…	 337

Fig. 1. Plot of distribution pseudo-random numbers A on the x-axis
and pseudo-random numbers B on the y-axis

Fig. 2. Plot of distribution pseudo-random numbers B on the x-axis
and pseudo-random numbers A on the y-axis

Technical Sciences	 24, 2021

338	 Radosław Cybulski

Looking at the graphs (Figs. 1, 2) it can be seen that not all points that were
created during the generation of pseudo-random numbers were placed on the
graph. The reason is that a generator period generates a repeating sequence
of pseudo-random numbers from a certain point onward. In this example, the
period starts with the 31st generator pass, up to this point points not belonging
to the repeating sequence have been generated. While the length of the generator
period for this example is 54. The distribution of the points itself shows a non-
-uniform distribution. If we analyze the generate pseudo-random numbers A and B,
we can see that for the pseudo-random numbers B a repeating sequence of numbers
has been formed, the length of which is 18.

Fig. 3. Interval frequency histogram from generated numbers

The graph (Fig. 3) showing the distribution in numerical intervals shows the
frequencies of pseudo-random numbers in each interval divided into two series.
The first blue shows the distribution of numbers after 30 draws, and the second
orange after 84 draws. The whole graph shows an uneven distribution of the
intervals. Only after 30 draws we can observe small differences between the
intervals. Although the generated unique points were used to build the counts
(i.e. not repeating both values of A and B during the 84 draws, only after the next
pass we will get the numbers A and B in the same configuration: the point created
in the generation number 32 will be repeated in the generation number 85),
we can see a large variation, which can be caused by the repeated values of the
number B from time to time.

Technical Sciences	 24, 2021

	 Pseudo-Random Number Generator Based on Linear Congruence…	 339

3. Example 2
Input message: &*%06frD34>”;/[]234#^(&
j = 6
k = 20
m = 391
n = 138

Fig. 4. Plot of distribution pseudo-random numbers A on the x-axis
and pseudo-random numbers B on the y-axis

The graphs (Figs. 4, 5) shown for the second example show a more true
random distribution. The points marked with four colors show the distribution
of pseudo-random numbers after a certain number of generations. For the second
example, we also notice some distribution of points in intervals (the pseudo-
-random number B falls into a generator period of length 10), but the points
themselves are unique, because after 138 steps of the generator, the first repetition
of a point occurring will be recorded (20 points will be repeated). The generator
period itself will start at 120 draws, thus if the parameter n is greater than 138
for the dataset, points from 120 draws will start to repeat.

Technical Sciences	 24, 2021

340	 Radosław Cybulski

Fig. 5. Plot of distribution pseudo-random numbers B on the x-axis
and pseudo-random numbers A on the y-axis

Fig. 6. Interval frequency histogram from generated numbers

Technical Sciences	 24, 2021

	 Pseudo-Random Number Generator Based on Linear Congruence…	 341

As in the first example, we can observe a large variation between the counts
of the given intervals (see Fig. 6). While presenting this graph lets us notice,
some intervals have zero count after a given number of generator’s passes. It can
be seen, for example, in the range from 121 to 143 where only values after 40
and 80 generations appeared or in the last range where we can see occurrences
after 40 and after 120 generations. The most even distribution between the
intervals is in the case of the first series, where we can see small differences
between the intervals.

4. Example 3
Input message: GujRplS53
j = 2
k = 5
m = 4213
n = 462

Fig. 7. Plot of distribution pseudo-random numbers A on the x-axis
and pseudo-random numbers B on the y-axis

Technical Sciences	 24, 2021

342	 Radosław Cybulski

Fig. 8. Plot of distribution pseudo-random numbers B on the x-axis
and pseudo-random numbers A on the y-axis

The graphs (see Figs. 7, 8) of the third example show the distribution of a large
number of points, which have been divided into six insertion series, each series
containing 80 points after the last. Here, we can see that the points are evenly
distributed over the whole area of the graph. As in the previous examples,
there is a generator period, but its size is much larger than in the other two
examples. The generator period for this example starts at 83 generations and
ends at 462 generations. This means that at 463 generations the values from
the 83rd generation will be repeated.

The graph (see Fig. 9) showing the distribution of the numbers in the intervals
shows a good distribution between the individual intervals. The exception is the
first interval, in which, as we observe on the graphs of distribution, the value 0
is repeated, which overestimates the size of the first interval. As an exception
to the equal abundance between compartments we can also consider the last
allocation, in which the maximum values occur. An even distribution of the

Technical Sciences	 24, 2021

	 Pseudo-Random Number Generator Based on Linear Congruence…	 343

abundance can also be observed if we look at the distribution between the series
that was created when creating the graph.

5. Summary of examples
Summarizing the presented examples, we can observe that the values

of pseudo-random numbers that will be created during the generation depend
on the input parameters. During the generation we can get several generator
periods. During the generation of numbers, there is a generator period only for
the pseudo-random number B, which will cause that the points can be arranged
in a certain characteristic way. Nevertheless, if there is no generator period for
the number A, and we put the obtained numbers on the distribution graph we
will get different points. It can be seen in the graphs of the first two examples.
It also happens that the pseudo-random numbers A and B start to repeat after
some time simultaneously, for example, as in the third example where there is
a simultaneous generator period for both numbers.

Two parameters are of great importance when generating pseudo-random
numbers: the seed and the parameter m. It is advisable that the parameter m
is a large number, at most, it can be equal to 2147483646.

Let us now move on to testing the correctness of our technique.

Fig. 9. Interval frequency histogram from generated numbers

Technical Sciences	 24, 2021

344	 Radosław Cybulski

Validation of our method

1. Chi-square test of compatibility (Wojtatowicz 1998)
It is one of the oldest statistical tests. Allowing us to test the hypothesis that

a population has a certain type of distribution (described by a certain distribution
in the form of a function), which be continuous or stepwise. The only limitation
is that the sample be large, containing at least several dozen samples because
the results be divided into certain classes of values. These classes should not
be too few, at least 8 results should fall into each of them. In the case when
there is a class smaller than 8 in the empirical distribution, this class should be
combined with the neighboring one. For each class in the hypothetical distribution,
theoretical counts are calculated, which are compared with the empirical counts
using the appropriate chi-square statistic. When the discrepancies between the
empirical and theoretical counts are too large, the hypothesis that the population
has the assumed theoretical distribution be rejected.

The chi-square test formula: 2 =∑(𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑛𝑛𝑖𝑖)2
𝑛𝑛𝑛𝑛𝑖𝑖

𝑘𝑘

𝑖𝑖=1
 .

The ranges were established in the same way as in the chart presentation.
Results of the chi-square test for the examples shown.

Table 1
 Chi-square test for the first example

For numbers K R Degrees of freedom Test statistic Critical value

A and B 11 2 8 105.7046 15.5073

A 7 2 4 71.975 9.4877

B 6 2 3 8.3021 7.8147

Table 2
Chi-square for the second example

For numbers K R Degrees of freedom Test statistic Critical value

A and B 13 2 10 172.5347 18.307

A 10 2 7 47.4164 14.0671

B 9 2 6 149,3395 12.5915

Technical Sciences	 24, 2021

	 Pseudo-Random Number Generator Based on Linear Congruence…	 345

Table 3
Chi-square test for the third example

For numbers K R Degrees of freedom Test statistic Critical value

A and B 30 2 27 762.6274 40.1132

A 21 2 18 546.9795 28.8692

B 22 2 19 149.4899 30.1435

The null hypothesis for each test performed was rejected. It can be noted
that the B numbers from the test for the first example were closest to the normal
distribution. For each test, a probability of 0.05 was used to create the critical
value.

In the tables, the parameter k is defined as the number of intervals taken for
the test, r as the number of parameters taken to calculate the normal distribution
(in this case the mean and standard deviation of the generated numbers).

2. Kolmogorov’s lambda consistency test (Wojtatowicz 1998)
In the Kolmogorov’s lambda consistency test, to verify the hypothesis that the

population has a certain type of distribution, one does not, as in the chi-square
test, consider the counts of the empirical series and compare them with the
counts of the hypothetical series, but compares the empirical and hypothetical
distributions. Because when the population has a distribution consistent with
the hypothesis, the values of empirical and hypothetical distributions should
be similar at all tested points. The test begins by analysing the differences
between the two distributions. The largest of which will then be used to construct
the lambda statistic, whose distribution does not depend on the form of the
hypothetical distribution. This distribution determines the critical values in
this test.

The formula for calculating the value of a statistic for a given interval:
𝐷𝐷 = sup|𝐹𝐹𝑛𝑛(𝑥𝑥) − 𝐹𝐹(𝑥𝑥)|

The formula for calculating the value of the test statistic: 𝜆𝜆 = max(𝐷𝐷√𝑛𝑛)
For a fixed confidence level l we read the critical value from the limiting

Kolmogorov distribution. The ranges were determined in the same way as in
the presentation of the graphs.

Table 4
Kolmogorov test for the first example

For numbers Alfa Test statistic Critical value

A and B 0.05 1.2914 1.36

A 0.05 8.4866 1.36

B 0.05 1.3687 1.36

Technical Sciences	 24, 2021

346	 Radosław Cybulski

Table 5
Kolmogorov test for the second example

For numbers Alfa Test statistic Critical value

A and B 0.05 2.3528 1.36

A 0.05 1.6761 1.36

B 0.05 2.3269 1.36

Table 6
Kolmogorov test for the third example

For numbers Alfa Test statistic Critical value

A and B 0.05 2.5839 1.36

A 0.05 2.1126 1.36

B 0.05 1.8966 1.36

The Kolmogorov test values are more approximate as to the critical value.
The null hypothesis was not rejected for the numbers A and B from the first
example, so we can conclude that the generated numbers have a normal
distribution with the parameters of the mean and standard deviation.

3. A critical analysis of our method
A problem associated with the hybrid pseudo-random generator is the creation

of short-range pseudo-random numbers. It is mainly due to the setting of the
parameter m (responsible for the upper range of the generated values), such
an example would be the value 100 or 768. In some cases a small adjustment
of the value of m is enough to get better quality-generated numbers. A superb
choice of m values are prime numbers, in their case it is rare to generate pseudo-
-random values with a small period. It is also not advisable to create a seed
where a character repeats several times.

In the next section we test our method in practice by applying the drawn
objects to the classification process.

Our method in action

The final part of verifying the performance of our technique was to perform
classification using the kNN technique in the Monte Carlo Cross Validation
model. We used an implementation in R language from the kNN library.
Our goal was to check results of performed classification tests, in which objects

Technical Sciences	 24, 2021

	 Pseudo-Random Number Generator Based on Linear Congruence…	 347

of training systems were generated by our method have distribution close to normal.
The effect of the following test on the Statlog (Australian Credit Approval)
Data Set (ICS-a. Online) and on the Statlog (Heart) Data Set (ICS-b. Online)
is presented in the figures Interval frequency histogram from Australian Credit
Approval Data Set and Interval frequency histogram from Heart Data Set.

Fig. 10. Interval frequency histogram from Australian Credit Approval Data Set

Fig. 11. Interval frequency histogram from Heart Data Set

Technical Sciences	 24, 2021

348	 Radosław Cybulski

Test Purpose

The focus of the test is the proportion of zeroes and ones for the entire
sequence. The purpose of this test is to determine whether the number of ones
and zeros in a sequence are approximately the same as would be expected for
a truly random sequence. The test assesses the closeness of the fraction of ones
to ½, that is, the number of ones and zeroes in a sequence should be about the
same. All subsequent tests depend on the passing of this test (Rukhin et al. 2010).

Test description:
–	 conversion pseudo-random numbers to binaries and create binary string;
–	 conversion to ±1 (0 is converted to values -1, 1 is converted to values +1)

and create sum Sn from binary string;

–	 compute the statistic: 𝑆𝑆obs =
|𝑆𝑆𝑛𝑛|
√𝑛𝑛

 where n is length of binary string;

–	 compute P-value = erfc (𝑆𝑆obs
√2

) , where erfc is the complementary error
function.

If P-value is > 0.01, then conclude that the sequency is random.
For our tests binary string was created with first twenty generation from

our examples use in section Proposed Methodology.

1. Test purpose for first example
n = 515
Sn = 107
Sobs = 4.7149
P-value = 2.4173e-06
Sequency is non-random

2. Test purpose for second example
n = 295
Sn = 17
Sobs = 0.9897
P-value = 0.3223
Sequency random

3. Test purpose for third example
n = 434
Sn = 24
Sobs = 1.1520
P-value = 0.2493
Sequency random

Technical Sciences	 24, 2021

	 Pseudo-Random Number Generator Based on Linear Congruence…	 349

Conclusions

In this paper, we have presented a hybrid method of pseudo-random number
generator, which is based on existing techniques for generating pseudo-random
numbers. We have shown how to obtain pseudo-random numbers using the
hybrid generator, examples with the distribution of numbers on graphs and
graphs showing the counts of created values into intervals. In the presentation
of the examples we showed its strengths and weaknesses, which include poor
randomness in cases where we set a small value of the parameter m. As well
as good points in the case of the third example where, despite the occurrence
of a large period of the generator we see excellent randomness. The last stage
that is presented is the tests of the correctness of the generator. If we looking
on our examples in section test purpose we can see good quality of randomness
in examples two and three. Only in first example created binary string is non-
-random. P-value for second example is 0.3223, for third example 0.2493 what
can be mean that randomness for this generated numbers is very good quality.
Only in first example created binary string is non-random.

References

Ahrens J.H., Dieter U. 1988. Efficient table – free sampling methods for the exponential, Cauchy,
and normal distributions. Communication of the ACM, 31(11): 1330-1337.

Bell J.R. 1968. Algorithm 334: Normal random deviates. Communication of the ACM, 11(7): 498.
Box G.E.P., Muller M.E. 1958. A note on the generation of random normal deviates. Annals

of Mathematical Statistics, 29(2): 610-611.
ICS-a. Donald Bren School of Information and Computer Sciences. University of California, Irvine.

https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/australian/australian.dat.
ICS-b. Donald Bren School of Information and Computer Sciences. University of California, Irvine.

https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/heart/heart.dat.
Kinderman A.J., Monahan J.F. 1977. Computer generation of random variables using the ratio
of uniform deviates. ACM Transactions on Mathematical Software, 3(3): 257-260.

Knop R. 1969. Remark on Algorithm 334 [g5]: normal random deviates. McGill University, Montreal.
Lagged Fibonacci Generator. Security and So Many Things, Asecuritysite. https://asecuritysite.

com/encryption/fab.
Rukhin A., Soto J., Nechvatal J., Smid M., Barker E., Leigh S., Levenson M., Vangel M.,

Banks D., Heckert A., Dray J., Vo S. 2001. A Statistical Test Suite for Random and Pseudoran-
dom Number Generators for Cryptographic Applications. Special Publication (NIST SP), National
Institute of Standards and Technology, Gaithersburg, MD.

Stallings W. 2012. Kryptografia i bezpieczeństwo sieci komputerowych – matematyka szyfrów
i techniki kryptologii. Helion, Gliwice.

Sulewski P. 2019. Porównanie generatorów liczb pseudolosowych. Wiadomości Statystyczne, 7: 5-31.
Wieczorkowski R., Zielinski R. 1997. Komputerowe generatory liczb losowych. Wydawnictwo

Naukowo-Techniczne, Warszawa.
Wojtatowicz T.W. 1998. Metody analizy danych doświadczalnych. Wydawnictwo Politechniki

Łódzkiej, Łódź.

