ABOUT SPECIAL PROPERTIES OF THE HIDDEN STRUCTURE OF TRIANGULAR NUMBERS FOR IMMEDIATE FACTORIZATION

Artur Samojluk
ORCID: 0000-0001-5822-2210
Chair of Mathematics and Computer Science
University of Warmia and Mazury in Olsztyn

Received 9 December 2021, accepted 03 March 2022, available online 28 March 2022.

Keywords: factorization algorithm, RSA, cryptography, numerical experiments, triangular numbers, number theory.

Abstract

The factorization problem belongs to a group of problems important in the security of information systems and cryptography. The article describes a new number factorization algorithm designed based on numerical experiments. We present an extension of number factorization using triangular numbers features. The described algorithm can be used to increase the security of key generation for the RSA algorithm.

Introduction

Cyber security is a problem in the modern world (Kaliski 2006, Command 2012, RSA CyberCrime Intelligence Service 2013). The increase in the number of Internet users means more opportunities for cyber criminals. Some of the most dangerous attacks are money thefts (ScHATZ et al. 2017). Cyber criminals

[^0]find new vulnerabilities in security systems to gain access to areas that should be safe (Stevens 2018, Yost 2015). Such an area is considered to be where asymmetric security is used, i.e. RSA encryption. RSA keys use pseudoprime number N, which consists of two prime numbers P and Q. RSA security uses a mathematical factorization problem where finding a factorization for a number large N is too computationally complex to break the security in a reasonable amount of time. "The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic" (GAUSS 1966).

The search for new solutions requires new tools and approaches to data analysis. Current computational capabilities of computers allow for multidimensional analysis of data.

Massive Data analysis open the way to new observations on data, broader calculations and drawing precise conclusions from performed numerical experiments (Breur 1996, Segaran, Hammerbacher 2009) The use of data mining allowed for a new research perspective to be explored and conclusions to be drawn (HASTIE et al. 2009, FAYYAD et al. 1996).

Algorithms using factorization problem i.e., RSA (Rivest-Shamir-Adleman), are currently one of the most widely used tools for information encryption. The method based on public and private key is used in civil and military cryptography.

Closely related problem is the distribution of prime numbers in the set of natural numbers (ADLEMAN 2005). The sharpest estimates of the distribution are obtained using properties of the so-called by Riemann zeta function, defined by (ADLEMAN et al. 1983, NivEn et al. 1991):

$$
\zeta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \quad \operatorname{Re}(s)>1
$$

If the famous Riemann hypothesis (RiEmann 1859, Moree et al. 2018) is true, then many number theory problems can be solved and the theoretical complexity of the related algorithms can be improved.

The central object of the paper is the so-called triangle numbers T_{n} :

$$
T_{n}=1+2+3+4+\cdots+n
$$

obtained by truncating the above ζ series for $s=-1$. These numbers were studied by Diophantus of Alexandria (c. 150 AD), see also more recent book by Wacław Sierpiński (SIERPIŃSKI 1962). Remark that in certain, well-defined sense, the following limit is true:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{n} "=" \zeta(-1)=-\frac{1}{12} \tag{1}
\end{equation*}
$$

The zero places of the function ζ in the real part less than 1 , can be determined using a recursive formula:

$$
\begin{equation*}
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s) \tag{2}
\end{equation*}
$$

where:
Γ - Euler's Gamma function.
Remark 1. As can be shown using eq. (2) the value of $\zeta(2)=\frac{\pi^{2}}{6}$ above that $\zeta(-1)=-\frac{1}{12} \approx 0.0833333$. This makes sense of the formula (1).

Note that for the values $s=-2,-4,-6 \ldots$ element $\sin \left(\frac{\pi s}{2}\right)=0$ hence these places are called places of trivial zero.

Another interesting relation between the Riemann ζ function (SIERPINSKI 1988) and factorization problem is the formula:

$$
\begin{equation*}
\zeta(s) \cdot \zeta(s)=\sum \frac{d(n)}{n^{s}} \tag{3}
\end{equation*}
$$

where:
$d(n)$ - the number of divisors of n.
The purpose of the work. Based on numerical experiments and our observations of an array of natural numbers arranged in a triangle, we propose a factorization algorithm. For this purpose, an analytical system has been designed that allows the analysis of complex number structures and the identification of new number structures with special properties (SAMOJLUK 2019). Let us move on to briefly discuss the content of the following sections.

In section Solution approach and methodology, the main driver of the methodology and approach to the problem is presented. Then, in section Basic properties of triangular numbers important mathematical elements about triangular numbers and their properties are discussed. The section Observations of numbers presents insights related to extended structures of triangular numbers. In section The extended matrix properties of extended triangular number structures are defined. Then, in section Study of numerical structures we deepen the analysis of extended structures and their properties. Section Algorithm of geometric factorization shows the practical application of the new properties in the form of a factorization algorithm, and the last substantive section 8 describes the main conclusions of the paper. Now we come to the section where we set out the basics of our system.

Solution approach and methodology

Let us move on to discuss our novel solution of using triangular numbers for factorization. This approach is new and does not appear in the already known algorithms such as those found in the works (LEHMAN 1974, COHEN 1993, BACH, Shallit 1996, Dixon 1981, Pollard 1975, Adleman 1991, Williams 1982).

For ease of analysis, numbers with special properties were colour-coded. Then, in a series of numerical experiments on the data, properties of objects (patterns) were identified.

Extracting strings with unique features. In the experiments conducted, matrices of size $5 \cdot 10^{3}$ columns by $5 \cdot 10^{3}$ rows were analyzed. The total number of analyzed records (information) was $2.5 \cdot 10^{7}$. Next, the analysis was performed on the base matrix $K=0$, where the following lines were analyzed: diagonal (DL and DR), horizontal (H) and vertical (V). Different configurations (F) were used to generate strings and arithmetic "jumps" on the analyzed K matrices (see Fig. 1). Over 10^{6} different configurations of arithmetic strings were tested for each K.

Fig. 1. Scheme of mathematical experiments searching for a new number structure

The selection parameter for arithmetic strings was considered strings in which no prime number occurs (except for the first two elements of the string). Next, calculations were performed on matrices from $K=0$ to $K=1,000$. A total of $2.5 \cdot 10^{16}$ of arithmetic operations were performed.

The feature extraction process was optimized using a genetic approach (POLI et al. 2008). The analytical assumptions are illustrated below (Fig. 1).

The colours red (R), blue (B), and yellow (Y) represent numbers with the properties given in section Observations of numbers. The sign p denotes a prime number. F is an arithmetic sequence in the study number space K.

Explanation of the colours of the numbers in the paper: red (R) denotes a prime number, blue (B) denotes a number belonging to the hidden triangular structure (numbers for immediate factorization), yellow (Y) denotes numbers lying on extensions of the hidden triangular structure.

Based on the extracted sequences, observations and mathematical analyses were conducted. In the next part of the paper there is a mathematical analysis of the obtained results. The conclusion presents the constructed and tested the factorization algorithm for blue numbers of arbitrary length in $O(1)$ time.

Basic properties of triangular numbers

The first observations and properties of triangular numbers were described by DIOPHANTUS (III n.e.). He presented his concept of triangular numbers as a stack of stones with one more stone in each row than in the row above it (Fig. 2).

Fig. 2. A stack of stones

So we can define the triangular numbers as recursive formula:

$$
\begin{equation*}
T_{n}=n+T_{n-1}=1+2+3+4+5 \cdots+n \tag{4}
\end{equation*}
$$

where:
$T_{1}=1$,
$n>1$ and is an integer.
The general formula for triangular numbers can be proven by mathematical induction, and is as follows:

$$
\begin{equation*}
T_{n}=\frac{n^{2}+n}{2} \tag{5}
\end{equation*}
$$

We can define triangular numbers for $n=0$ by $T_{0}=0$, and for negative numbers, analogously by:

$$
\begin{equation*}
T_{-n}=-T_{n}=-1-2-3-4-5 \cdots-n \tag{6}
\end{equation*}
$$

where:

$$
n>0 .
$$

Wacław Sierpiński included in his book (SIERPIŃSKI 1962) a hypothesis:
Hypothesis 1. If all subsequent natural numbers are to be written down in subsequent lines, n numbers in the n-th line, that is, if we create an infinite table:

$$
\begin{aligned}
& 1 \\
& 2,3, \\
& 4,5,6, \\
& 7,8,9,10,
\end{aligned}
$$

in each successive row, starting from the second, there will be at least one prime number.

This interesting hypothesis, still unproven, raises the idea of linking triangular numbers to the distribution of prime numbers and thus to the Riemann hypothesis.

It is easy to prove that $T_{n}+T_{n+1}=(n+1)^{2}$, where $n>0$, and consequently an interesting equality is assumed by the Riemann function ζ for $s=2$, then we obtain:

$$
\begin{equation*}
\zeta(2)=1+\frac{1}{T_{1}+T_{2}}+\frac{1}{T_{2}+T_{3}}+\frac{1}{T_{3}+T_{4}}+\frac{1}{T_{4}+T_{5}} \cdots=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \tag{7}
\end{equation*}
$$

Wacław Sierpiński in his book on triangular numbers (SIERPIŃSKI 1962) on page 42 and 43 , presented proofs of the following theorems concerning the relationship of triangular numbers to prime numbers.

Theorem 1. Each triangular number > 3 has at least two different prime numbers divisors.

Theorem 2. There are infinitely many triangular numbers that are products of different prime numbers.

We conclude that the function T_{n} is an attractive object for further exploration.

Observations of numbers

We can not solve our problems with the same level of thinking that created them

Albert Einstein
In the section Basic properties of triangular numbers we saw definitions of numbers arranged in the shape of a triangle. This is the basic object studied in this work. In order to visualize the prime numbers in the table, we highlight them in red (see Fig. $3 a$).

Definition 1. By $K=0$ table we mean the left-justified infinite triangular array of consecutive natural numbers written down in subsequent lines, n numbers in the n-th line, that is, if we create an infinite table.

Fig. 3. Triangular matrix: $a-T=55, b-T=5,050$

Observation 1. (First key observation) On a triangular stack (Fig. 3) formed of consecutive numbers, there are diagonal lines (blue) on which the prime numbers do not lie.

By $T_{(n, m)}$ the note the natural number in n-th row and m-th column at the table.
Fact 1. For $n \geq 1, n \geq m \geq 1$

$$
\begin{equation*}
T_{(n, m)}=T_{n-1}+m=T_{n}-(n-m) \tag{8}
\end{equation*}
$$

Especially $T_{(n, 1)}=T_{n-1}+1$.
Definition 2. Elements $T_{(m+k-1, m)}, k \geq 1$ form the k-th diagonal. The diagonal corresponding to the number $k=T_{r-1}+1$ is called the r-th main diagonal.

Remark 2. These main diagonals are those colored in blue in observation 1.
Fact 2. The r-th main diagonal starts with the number $T_{T r-1}+1$.

Proof. Put $m=1$ and $k=T_{r-1}+1$ into the definition (2) and the formula (8).
Fact 3. The consecutive numbers lying on the r-th main diagonal are of the form:

$$
\begin{equation*}
A_{r, c}=c\left(r+\frac{c-1}{2}\right), \quad c \geq T_{r-2}+1 \tag{9}
\end{equation*}
$$

Remark 3. Parameter c with numerates elements of the diagonal, start from $c=T_{r-2}+1$. We discuss the meaning of elements with $c<T_{r-2}+1$ in the next section.

Proof. These numbers are elements of the table $T_{\left(m+T_{r-1}, m\right)}, m \geq 1$; so we should have $c=m+T_{r-2}$ (A. Doliwa).

Fact 4. If $c \rightarrow$ even, then the divisor $P=\frac{c}{2}$ and $Q=2 r+c-1$. If $c \rightarrow$ odd, the divisior is $P=c$ and $Q=\frac{r+c-1}{2}$.

Fact 5. For natural c and $r, A_{(r, c)}$ is a natural number.
Fact 6. $A_{(r, c)}$ can be prime number, only if $c=1$ or $c=2$.
Fact 7. For every odd c and r there is a factorization of $N=A_{(r, c)}=P \cdot Q$.
Proof. If N is $N=P \cdot Q$ where $1<P \leq Q$ for odd P and Q is $N=A_{(r, c)}$ where $c=P$ and $r+\frac{P-1}{2}=Q$, so $r=Q-\frac{P-1}{2}>0$.

Next we move on to the part of the paper where we discuss the new extended properties of triangular numbers.

The extended matrix

Definition 3. The extended matrix $K=0$ is the matrix enlarged by successive numbers. We extend $K=0$ to the left, each row is completed in sequence with smaller integers. The points of the major diagonals correspond to the formula $T_{\left(m+T_{r-1}, m\right)}$.

To expand the space of numbers, we expand the lines of the figure to the right by incrementing (hyperspace) and to the left by decrementing (subspace). We will get an image $K=0$ for transformation (4).

Observation 2. (Second key observation) The extended blue lines from the observation (1) marked in yellow in figure (4) also do not contain prime numbers, excluding the first two elements of the line.

Fact 8. Elements of the extended array $K=0$ are given by the formula (8).
Definition 4. ($K=r$ table) The left-justified an infinite trapezoidal array of consecutive natural numbers written $m+r$ in row m (see Fig. 4).

Create transformation $K>0$. For this purpose, we expand the main space $K=0$ by subsequent columns. For a $K=k$ transformation, we expand each row $K=0$ by k columns. This means that in each subsequent row of the transformation, the number of elements in the row is equal to $T_{a}+k$.

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\pm\) & \(\because\) & ： & 8 & N & Q & \(\stackrel{3}{8}\) & \(\stackrel{7}{7}\) & 8 & & 8 & 8 & 8 & 8 & \\
\hline \(\stackrel{\square}{2}\) & \(\pm\) & \(\because\) & ¢ & \％ & \％ & 岉 & F & \％ & & 9 & 9 & \(\stackrel{9}{9}\) & & \\
\hline \(\bigcirc\) & 끈 & \(\cong\) & ِ． & N & N & M & ？ & \(\stackrel{\%}{ }\) & & \％ & － & E & & 8 \\
\hline ： & \(\simeq\) & \(\pm\) & ： & － & g & ¢ & 8 & \％ & & 8 & \(\pm\) & \(\pm\) & \(\pm\) & \(=\) \\
\hline 으능 & ＝ & \(\underline{9}\) & 9 & 8 & 吅 & \(\bar{m}\) & \％ & q & & \(=\) & \(\pm\) & \(\stackrel{\sim}{\circ}\) & ． & E \\
\hline © & 은 & \(\pm\) & \(\because\) & 9 & N & 8 & － & 4 & & 15 & \％ & \(=\) & ¢ & 앙 \\
\hline \(\omega\) & の & ＝ & \(\pm\) & \(\ldots\) & \％ & Q & \(\pm\) & \＃ & & 8 & 2 & N & ¢ & ＝ \\
\hline － & \(\infty\) & 은 & \(\stackrel{m}{2}\) & ： & N & ． & 1 & ＊ & & 7 & ¢ֻ & \(\sim\) & \(\pm\) & \％ \\
\hline \(\omega\) & － & の & \(\underset{\sim}{v}\) & 끈 & I & F． & ¢ & 0 & & 5 & 5 & － & \％ & 5 \\
\hline \(\cdots\) & \(\cdots\) & \(\infty\) & \(=\) & \(\pm\) & \(=\) & \(\stackrel{\sim}{\sim}\) & \(=\) & － & & \％ & \＃ & \(=\) & \％ & \(\mathscr{¢}\) \\
\hline \(*\) & \(\cdots\) & \(\cdots\) & \(=\) & \＃ & ＝ & \(\pm\) & \(\stackrel{\sim}{\text { ® }}\) & 9 & & \％ & \％ & \(\bigcirc\) & \％ & \(=\) \\
\hline ＂ & \(\pm\) & \(\sigma\) & － & \(\cdots\) & － & N & ＝ & & & \(\stackrel{\infty}{\square}\) & 8 & 8 & 2 & \％ \\
\hline N & \％ & \(\sim\) & \(\infty\) & \％ & \(=\) & \(\cdots\) & 日 & ¢ & & \(\cdots\) & ก & \(\pm\) & \(\stackrel{\square}{\infty}\) & \％ \\
\hline \％ & a & ＊ & － & ： & \(\stackrel{\square}{\bullet}\) & & \％ & \％ & & \(\stackrel{\square}{7}\) & 1 & \％ & \(\%\) & N \\
\hline － & － & m & \(\cdots\) & 으는 & \(\stackrel{1}{9}\) & i & ¢ & \％ & & \％ & 8 & 8 & \(\stackrel{\infty}{\sim}\) & \(\bar{\square}\) \\
\hline \(\bigcirc\) & 0 & N & \(\sim\) & \％ & \(\pm\) & 2 & N & \(\stackrel{4}{4}\) & & \(\pm\) & 忍 & 8 & E & 8 \\
\hline \％ & \(\bigcirc\) & － & ＊ & \(\infty\) & \(\underline{\square}\) & \(\stackrel{\square}{\square}\) & ： & ल & & \％ & \％ & \％ & 2 & 8 \\
\hline \％ & Y & \(\bigcirc\) & ＂ & － & \(\cdots\) & \(\stackrel{\square}{-}\) & \％ & m & & \％ & \％ & 8 & \(\because\) & 8 \\
\hline Y & ？ & \(\bigcirc\) & N & \(\bigcirc\) & \(=\) & \(\stackrel{\sim}{2}\) & N & ल & & F & － & ¢ & \(\pm\) & ¢o \\
\hline 9 & Y & \％ & － & \(\cdots\) & 은 & \(\bigcirc\) & ก & m & & 아 & 8 & \(\bar{\square}\) & \(\because\) & 8 \\
\hline 9 & 4 & 7 & － & \(\pm\) & の & \(\stackrel{\square}{\square}\) & N & 8 & & g & \％ & 8 & \(\approx\) & \％ \\
\hline \(\cdots\) & 9 & \(\pm\) & \(\div\) & m & \(\cdots\) & \(\pm\) & i & d & & \(\stackrel{\text { ¢ }}{ }\) & 9 & 8 & － & ＊ \\
\hline ¢ & ＇－ & 4 & \％ & \(\sim\) & － & \(\cdots\) & 2 & ® & & \％ & F & 8 & 을 & 8 \\
\hline 9 & 9 & 9 & \％ & － & \(\cdots\) & \(\underset{\sim}{\sim}\) & 9 & \(\cdots\) & & 8 & 9 & ¢ & 8 & ¢ \\
\hline \(\bigcirc\) & 9 & \(\cdots\) & \(\pm\) & \(\bigcirc\) & 4 & ＝ & \(\ldots\) & 1 & & 9 & 4 & 8 & 8 & \(\overline{\text { ¢ }}\) \\
\hline \(\mp\) & \(\bigcirc\) & 9 & 4 & ־ & \(\checkmark\) & 안 & \(=\) & \(\stackrel{\sim}{\sim}\) & & \＃ & ＋ & 8 & ¢ & 8 \\
\hline \(\because\) & \(\div\) & 9 & \(\varphi\) & \(\cdots\) & m & の & \(\bigcirc\) & N & & 9 & 9 & \％ & 8 & \＄ \\
\hline \(\stackrel{?}{\square}\) & \(\cdots\) & \(\bigcirc\) & \(\uparrow\) & \％ & N & \(\infty\) & \(\because\) & \(\cdots\) & & \％ & 7 & \(\stackrel{3}{8}\) & 8 & \(\stackrel{\sim}{\circ}\) \\
\hline \(\stackrel{\square}{\square}\) & \(\stackrel{\square}{\square}\) & \(\bar{\square}\) & ¢ & ＋ & － & － &  & N & & ¢ & \％ & 8 & \＄ & F \\
\hline \(\because\) & \(\stackrel{\square}{\div}\) & \(\because\) & क & \({ }^{9}\) & 0 & \(\bigcirc\) & \(\stackrel{(2}{ }\) & i & & 8 & 9 & ¢ & \％ & \％ \\
\hline
\end{tabular}
Fig．4．Extended triangular space in the \(K=0\) transformation with an array \(K=4\)
```


¢															
へ上さ															
－※															
～															
䋢 0\square ®															

Transformations $K=6$ are now filled with blue lines that appear on it (Fig. 5), and the expanded structure of the yellow lines. We then get:

$$
T_{(n, m)}=T_{n-1}+m \text { where } n \geq 1, m \geq-T_{n-1} .
$$

Definition 5. Transformation K is the part of the extended array having the shape of a trapezoid with the upper left corner $T_{\left(k+1,-T_{k}+1\right)}$, the upper right corner $T_{\left(k+1,-T_{k}+K+1\right)}$, vertical left wall and diagonal right wall.

Observation 3. In the K transformations of the basis matrix, there are new diagonal lines and vertical lines free of prime numbers that extend beyond the unique space of the matrix.

In the next section we will put the blue lines in order and point out their main property related to factorisation.

Study of numerical structures

Let's start with a statement. The elements in the array $T_{(n, m)}$ do not repeat and there are all natural numbers.

Proof. The first row consists of the following numbers $1=T_{\left(K+1,-T_{K}+1\right)}, 2, \ldots$, $K+1=T_{\left(K+1,-T_{K}+K+1\right)}$. The first element in the l line $T_{\left(K+1,-T_{K+1}\right)}$ is greater by one than the last element $T_{\left(K+l-1,-T_{K}+K+l-1\right)}$ in the previous line.

$$
\begin{gather*}
T_{\left(K+l,-T_{K}+1\right)}-T_{\left(K+l-1,-T_{K}+l+K-1\right)}=T_{K+l-1}-T_{K}+1-T_{K+l-2}+T_{K}-l-K+1 \\
=K+l-1+1-l-K+1=1 \tag{10}
\end{gather*}
$$

From the observation (1) (2) we obtain a drawing of the numerical structure (see Fig. 6) which has several important properties.

Fig. 6. Transformation $K=0$

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$
$\mathbf{1}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{1 0}$	$\mathbf{1 5}$	21	$\mathbf{2 8}$	36	$\mathbf{4 5}$	$\mathbf{5 5}$	$\mathbf{6 6}$	$\mathbf{7 8}$	$\mathbf{9 1}$	$\mathbf{1 0 5}$	$\mathbf{1 2 0}$	$\mathbf{1 3 6}$	$\mathbf{1 5 3}$	$\mathbf{1 7 1}$	$\mathbf{1 9 0}$	$\mathbf{2 1 0}$	$\mathbf{2 3 1}$
2	5	9	14	20	27	35	44	54	65	77	90	104	119	135	152	170	189	209	230	252
3	7	12	18	25	33	42	52	63	75	88	102	117	133	150	168	187	207	228	250	273
4	9	15	22	30	39	49	60	72	85	99	114	130	147	165	184	204	225	247	270	294
5	11	18	26	35	45	56	68	81	95	110	126	143	161	180	200	221	243	266	290	315
6	13	21	30	40	51	63	76	90	105	121	138	156	175	195	216	238	261	285	310	336
7	15	24	34	45	57	70	84	99	115	132	150	169	189	210	232	255	279	304	330	357
8	17	27	38	50	63	77	92	108	125	143	162	182	203	225	248	272	297	323	350	378
9	19	30	42	55	69	84	100	117	135	154	174	195	217	240	264	289	315	342	370	399
10	21	33	46	60	75	91	108	126	145	165	186	208	231	255	280	306	333	361	390	420
11	23	36	50	65	81	98	116	135	155	176	198	221	245	270	296	323	351	380	410	441
12	25	39	54	70	87	105	124	144	165	187	210	234	259	285	312	340	369	399	430	462

Fig. 7. Filled matrix θ for $c=21$ and $r=12$

From the drawings (4), (5), (6) we obtain formulas describing the structures of sequences in $K=k$ transformation matrices. Where r is a number of blue line in analyzed structure.

Ordering of the line r to the set θ. The set θ we can draw a one-consistent matrix, where any row is the yellow line and extension is a blue line. For triangular numbers in the columns, we add the ordinal value of the column multiplied by the row number minus 1 (see formula 12). We get a matrix containing the grid of all the complex numbers.

$$
\theta=\left[\begin{array}{ccccccc}
T_{1} & T_{2} & T_{3} & T_{4} & T_{5} & \cdots & T_{c} \tag{11}\\
T_{1}+1 & T_{2}+2 & T_{3}+3 & T_{4}+4 & T_{5}+5 & \cdots & T_{c}+U_{c 1} \\
T_{1}+2 & T_{2}+4 & T_{3}+6 & T_{4}+8 & T_{5}+10 & \cdots & T_{c}+U_{c 2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
T_{1}+U_{1 r} & T_{2}+U_{2 r} & T_{3}+U_{3 r} & T_{4}+U_{4 r} & T_{5}+U_{5 r} & \cdots & T_{c}+U_{c r}
\end{array}\right]
$$

Where T_{c} is formula (5), c is θ column, and r is θ row and value $U_{c r}$ - factor for matrix cell. Next we get:

$$
\begin{equation*}
U_{c r}=c(r-1) \tag{12}
\end{equation*}
$$

The main property of this matrix is that the column number c is its divisor. If the result of division is with the remainder, the divisor of the numbers in the columns will be $2 c$. In the columns where the ordinal number is divisible by the ordinal number of the other columns, some numbers will be repeated. This arrangement of the grid causes it to contain all the complex numbers.

Figure 7 is an example set θ for $\max c=21$ generated using matrix (11). Figure 7 can be represented in binary form (see Fig. 8), where we mark numbers that are blue numbers in blue and numbers that are not - in white. Prime numbers are marked in red. We get then:

Fig. 8. θ matrix - binary representation (blue and non-blue numbers)

Observation 4. In the θ matrix there are structures of increased density duplicating the blue numbers. These appear as diagonal lines that originate near the upper left corner of the matrix and lay diagonally down the matrix.

The blue numbers (which factorise immediately) are distributed in the matrix θ in such a way that their distribution patterns can be determined. The repetition of a blue number N in different columns c of the matrix indicates that the number has more than one distribution factor. In the next last section, we present the factorization algorithm.

Algorithm of geometric factorization

The algorithm presented in the following part of the chapter invoices every blue number. The operation of the algorithm boils down to determining the position of the number N in the space U. Then it checks if the tested number N lies on the line r. If the number lies on the line r it means that it belongs to the matrix θ. Knowing the position of the number in the θ matrix we determine the column c. Determining the column c for a number lying, is equivalent to finding the divisor of the number $N=P \cdot Q$ under study. Let's start with the theorem.

Theorem 3. For each $N \in \mathbb{Z}$ in the unique space U, in the transformation K and lying on a diagonal or vertical line and belonging to line r in the matrix θ, a divisor can be determined.

Execution of the algorithm. In the numerical structure of the space U defined as the transformation $K=0$ there are diagonal lines r belonging to the matrix θ. In the Figure 9 they are marked as yellow-blue lines. In the following steps of the algorithm we will focus on the blue line part.

Fig. 9. Transformation $K=0$ with unique space U

We begin the algorithm by checking the row number in the space U on which the number N we are looking for lies. For this purpose, we will start with a fact:

Fact 10. N is a triangular number if and only if $8 N+1$ is a square number.
Let us define the parameters r_{U} as the line number in the space U, and r_{θ} as the line number in the matrix θ. If r_{U} belongs to a part of any of the blue lines, then $r_{U}=r_{\theta}$. Next we will use one of the most important operations on triangular numbers, which is the ability to instantaneously determine the position of a number in the sequence T_{r} The property is described in W. Sierpiński book Triangular numbers, discussed earlier (SIERPIŃsKi 1962). Using it we determine the value of r_{U} :

$$
\begin{equation*}
r_{U}=\frac{\sqrt{(8 N+1)}-1}{2} \tag{13}
\end{equation*}
$$

Remark 4. The parameter r_{U} takes an integer value only if N lies on an edge of the space U. This means that N is then a triangular number.

Knowing the number of the row r_{U} in which the number N lies, we can determine the first number from this row, this number we denote as F. The number F is necessary to determine the number of the column c_{U} of the number N in the space U. To determine the number F, we use the basic formula for triangular numbers (5), which after substitutions has the form:

$$
\begin{equation*}
F=\frac{\left\lfloor r_{U}\right\rfloor\left(\left\lfloor r_{U}\right\rfloor+1\right)}{2}+1 \tag{14}
\end{equation*}
$$

Remark 5. The parameter r_{U} is rounded down to get the correct result F.
Fact 11. $N \geq F$.
Using this fact we calculate a column c_{U} for number N. Hence, subtract the first number of row F from the factorized number N and add 1:

$$
\begin{equation*}
c_{U}=(N-F)+1 \tag{15}
\end{equation*}
$$

When $c_{U}=0$, the value of c_{U} takes the value r_{U}, so then $c_{U}=r_{U}$. We then compute the diagonal number D for the matrix space U. This is needed to check that this diagonal line is the blue recursive line later in the proof. We round the value of r_{U} up to an integer.

$$
\begin{equation*}
D=\left\lceil r_{U}\right\rceil-\left(c_{U}-1\right) \tag{16}
\end{equation*}
$$

Next we need to check that the given diagonal line D is a blue line. To do so, we will again use the fact (10), the action will be denoted as L. For the result to be correct, assume that the blue line count starts from 0 , so subtract 1 from the value of D. Write the new line number as $D_{\text {new }}=D-1$:

$$
\begin{equation*}
L=\sqrt{8 D_{\text {new }}+1} \tag{17}
\end{equation*}
$$

If the resulting number L is an integer, this means that the number N lies on the blue line θ. It also means that we can immediately decompose this number into factors P and Q.

If the resulting L is a fraction, then the number is not in space. The execution of the algorithm can then be terminated. If $L \in \mathbb{Z}$ then $D_{\text {new }} \in \theta$, then determining the parameter c_{θ} is equivalent to finding a divisor P of the number N. To determine c_{θ}, add the length of the yellow line to the part of the blue line (see Fig. 6 and 9). The part of the yellow line has length $T_{r_{\theta-2}}$. To determine the parameter r_{θ} we will again use the property of triangular numbers to determine the position in a series.

$$
\begin{equation*}
r_{\theta}=\frac{\sqrt{\left(8 D_{\text {new }}+1\right)}-1}{2}+1 \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{\theta}=c_{U}+T_{r_{\theta}-2} \tag{19}
\end{equation*}
$$

Next we determining a divisor of a number N. The final step of the algorithm is to determine the P and Q factors.

$$
\begin{equation*}
Q=\frac{N}{c_{\theta}} \tag{20}
\end{equation*}
$$

If new result $Q \in \mathbb{Z}$ we calculate $P=\frac{N}{Q}$ and finish the algorithm, if the result Q ended with a remainder value of 0.5 then new value of $Q_{\text {new }}$ is:

$$
\begin{equation*}
Q_{\text {new }}=2 Q \tag{21}
\end{equation*}
$$

and we calculate P using the obvious formula:

$$
\begin{equation*}
P=\frac{N}{Q_{\text {new }}} \tag{22}
\end{equation*}
$$

Factorisation results for numbers $N>10^{\mathbf{8 0 0}}$. The numbers shown below are examples of pseudoprime numbers N lying on the blue lines of the matrix θ (see Eq. 11 and Fig. 7). The N numbers have been factorised into products of P and Q at time $O(1)$. The products P and Q, after examination by the Rabin-Miller algorithm, were marked as prime numbers.

Example 1: length of number N is 856 digits.
$N=P \cdot Q$:
24500003634679768990720359931122629789054129036731950939180706695
724290608989365391399846392305826771143790151554444187435543395928 542593168836512046447689574942858308098075864418887107862817126976 471341465593389737655820902769991449125762133266315621946560829012

217486569575750843346328428345270623619604114530311515074001607690 780345002322220472477428702565481557366584957925117989480227077016 093079583758358683039141105250214625262527284733608088542303121151 659434905303009532066332713776738626913406917420721941467029751074 391519374463464365512479708850631016401140509507315469879247073243 379461678874143379726483085496001765044695643443036444505065149804 97748348102407897010690480648235392389980864994210436454182549180 523149303880531964472069480198375530986095092335490853941008205767 880963923845053673137476975088070960479813291521409701014060792537

Result of factorisation:
P :
70000005192399477408083849989158987711194501874717550671620526313 4148262209656036870436099531896687992241043207136022932902040415 626970447860736819513957721087759786715778064520875070721701899318 256382294775878171081892119857992553178225175050874529733723414728 50855988578528203532511240395966199708960174116742592508090056827 64997073137135888100523413792169189813323297374958634120890177222 8300493400711854498892638596052012223

Q :

35000002596199738704041924994579493855597250937358775335810263156 70741311048280184352180497659483439961205216035680114664510202078 1348522393036840975697886054387989335788903226043753536085094965 91281911473879390855409460599289962765891125875254372648668617073 6425427994289264101766255620197983099854480087058371296254045028 4138249853656856794405026170689608459490666164868747931706044508 86114150246700355927249446319298026006119

Example 2: length of number N is 1012 digits.

$N=P \cdot Q$:

1001337220145992155372435015262167286485033778615208102633508519 3435212887472353510690132746387203439990035050263581430792659084 6531515412953739400709910253547978675693831041786679999991426100 480123907551850978610608003711964034995972765928502605266730029 5079909373771851690904520751245733360353205656198817604707606628 7137646046745151106932831141386202002224666798136460080586662387 80103687617131874092057031915108271419093762653172380873640399463 651793548838508467630927465339837186732838031859165950506008983 5353718104766253745131801695566420651623960008959001576510850412 3243422214813950940850598481495768522510636453278449314656578356 2936842877190257051491382053670653461893474039120726222689974091 8811017705986930226637053505526872333523513534363301567603326508

7012478367007908569354828566524587320274399954346933021064165610 7426431996430739860190339109962839012965785473397079077794432205 2177450653693681661476537064503373687218999339537804548952140286 47712633369315659118839807500888531286932571511291341

Result of factorisation:
P:
44751250712041382126107540800165752835106714952155965882614702998 40891416031963816510601574217756824945010749902958954445493896269 53800722678524868367899342385284024493174024894015283513140613578 06480558146884060316949780669261045052471536861677050061257769804 27745316527397093499622166683582438857010195513204376396468272470 38980607000735306053655489546551975668685923732378955161461738654 7153652782063253366449120994005508361345593615043042899524751709 6310440903891739976771831357806364319274476592705969

Q :

22375625356020691063053770400082876417553357476077982941307351499 20445708015981908255300787108878412472505374951479477222746948134 76900361339262434183949671192642012246587012447007641756570306789 0324027907344203015847489033463052252623576843083852503062888490 21387265826369854674981108334179121942850509775660218819823413623 51949030350036765302682774477327598783434296186618947758073086932 73576826391031626683224560497002754180672796807521521449762375854 8155220451945869988385915678903182159637238296352989

Example 3: length of number N is 1970 digits.
$N=P \cdot Q$:
50000049557813450819513337974258437022991928946794095932766147601 45562630179200122684506019831273556068070910116753384878391776037 86409938854477134439597474552836086751413956486939739001499669352 86517177412124326727262822217834286164941337284056452699744272125 36234615671068526402414253933790475700909659727345715409614285995 28745614647973247526656690232060752070600645746675725476636694805 16356682221678471500866015676971663478326891732756290765839913898 03512476186782219451848814338833467571794799158640519022386561952 712161799585147209044898518445263326419761635581380341649717501498 12026291630181307631561707666382704237365317269883216261722255270 42464828354057788763683771083574098553171756204100390344515187324 8293951433653523323822589448187772619950374621366242716066057939 2458761787823265863338256110598542138551323454113009215099426773 327567328447905074684303236308928623648036294444206603167995352 8889421201809624600725296213447393036978509896748705637157010617

7504640253515082951872543868931792719807094769467287787979306135 336879303652424374842603934624730300924410618535455092476246156 3840618191290025995330795912224661225051356972429846381802859173 6502697104578705192322135886609149324126489598222855614969725854 99780465012943257477425679919107004833310770557528317424170216763 17041242879311910181174293198029101075499956163648472508464148139 531297440995899435286370966348946973789030068934712552624457795 7991313089633754401713523118947034181948118119064900759980364924 7276410569885796731774694453060660996185131050179692342369221088 1268863269389818188092477367528834313987674346529383742755684071 0467092889368512053482031213679080177519200913925037039882415159 1694622282270382697961431400924413389643413069539858482182133038 495662089269083346631252773031371871235073034465051636383554603 8005821576011421328875307733875048118164305930992838130243709905 5017634700506564320339842044054884234434275152891479512809977834 1798475362524496179005328042131927398081

Result of factorisation:
P :
10000004955780117094122884525509424638684731274190306155862905990 08433091152686604823911410388180930868952853537625062875445324440 103299295131085962536013229157996539862028181215563582285792741583 586009357780631775151113020349944403871864918054112216636134793251 018869892406101081170790477102899246842958417169007068315048105326 838150559154505637357138041478871263113392819130469967066085685282 348580366162937147976674540772517303505888764527502358716868938388 703374089498898607319095171302453316248934353405875337910342492914 666356766481697969824522782164192929291023564352461243947850484949 277402032283541102225582418003689905068096780776043515436811762791 566980191614162567785768855219787638513345953664396655115933897294 85355321625931228930104451604220413302991988954914420823989919445 505939023653253023490866137985237589574492645157654896322459173518 32069545639255156949336029858510643530736391020375960837904294553 2117472892781807581251781267445388857907501411848395657697076529563

Q :

5000002477890058547061442262754712319342365637095153077931452995 0421654557634330241195570519409046543447642676881253143772266222 0051649647565542981268006614578998269931014090607781791142896370 7917930467889031588757555651017497220193593245902705610831806739 662550943494620305054058539523855144962342147920858450353415752 405266341907527957725281867856902073943563155669640956523498353 3042842641174290183081468573988337270386258651752944382263751179

3584344691943516870447494493036595475856512266581244671767029376 6895517124645733317838324084898491226139108209646464551178217623 0621973925242474638701016141770551112791209001844952534048390388 0217577184058813957834900958070812838928844276098938192566729768 3219832755796694864742677660812965614465052225802110206651495994 47745721041199495972275296951182662651174543306899261879478724632 25788274481612295867591603477281962757847466801492925532176536819 5510187980418952147276605873644639090379062589063372269442895375 0705924197828848538264787

Example 4: length of number N is 2201 digits.
$N=P \cdot Q$:
83241347552730596369787208161338048046042350250242419173402492179 78150948900581696789123636806342654464819748539901787257705501877 113857191579115537794412361439492758746699091210317277318836066190 32098368651676523711729108608617262621563386808582010995423063216 35191821802734402313937053654573529253900548079893006400036741783 33635211317077161893100560165444342040740334840537786375631731103 05620898904041937386400872573261660679161386725791414225807422648 33049890936698228659006358893651450195523192875292973402216765799 18215807316159283686934937783389113673984578099271694839301996626 05996683034481578738600220695978417135744181061796141837358712559 61707924082248675282663744792997454208958712637271721061764506362 20228305084713125208239627852814143676558688761117754479429603097 3902383283898425804602427027663181236283523246036956593230226365 52161510446462640889061359392374302627439432474186876812847122237 44199181267459119135251227704744412985045111859670900629769068978 07455857013445925664956792913338816782439353269307312036137643511 6049752259054336289291913907654421384760814333856238696957090849 64170004790397135322186827889260934121460193509287345872324176117 175291133927909561469620987424240159591881512155752614938010935328 6379956280208674548034967632604657396185428114634305773263962034 0678469277799809007078050919061536577079657628997095909004403928 33838160606812479382596049870296134316813699245839053517539185157 08690716579996409880931625716414962212728457438671491240323493462 99717509401845826446177687639291841946868122577638695077480074344 40916879913186118756155316132312866820152733835899496558767683418 92875653911360933531177331631623192870723257403628255091215573548 4279577895932543449616577455008793838594015965048254868057767900 06484942740568095613042050938057916154406699232363061195821348161 3993195920543132064665966045827150178771346058686949671835253968 9770629607778350499087029759532310998596577475956013209868476075

6290430956426821130337900175371767593630211835467269222851781143 3115063544456735213371128139448282655839975799520562755085798708 8126180845747906270584946985353436955300968423878227237171533100 9772285073027678432560594575532118858558888245980762689979632647

Result of factorisation:
P :
40802291002523521625162861588263467250112145289852010022014879429 2362400454501820056271645000272626359900235562037362212324955780 11709412288452550942463868473127419030615586290599008433091152686 60482391141038818093086895285353762506287544532444010329929513108 59625360132291579965398620281812155635822857927415835860935778063 177515111302034994440387186491805411221663613479325101886989240610 10811707904771028992468429584171690070683150481053268381505591545 05637357138041478871263113392819130469967066085685282348580366162 93714797667454077251730350588876452750235871686893838870337408949 88986073190951713024533162489343534058753379103424929146663567664 81697969824522782164192929291023564352461243947850484949277402032 28354110222558241800368990506809678077604351543681176279156698019 16141625677857688552197876385133459536643966551159338972948535532 1625931228930104451604220413302991988954914420823989919445505939 0236532530234908661379852375895744926451576548963224591735183206 954563925515694933602985851064353073639102037596083790429455321 17472892781807581251781267445388857907501411848395657697076620979

Q :

20401145501261760812581430794131733625056072644926005011007439714 618120022725091002813582250013631317995011778101868110616247789005 85470614422627547123193423656370951530779314529950421654557634330 24119557051940904654344764267688125314377226622200516496475655429 81268006614578998269931014090607781791142896370791793046788903158 87575556510174972201935932459027056108318067396625509434946203050 54058539523855144962342147920858450353415752405266341907527957725 28186785690207394356315566964095652349835330428426411742901830814 68573988337270386258651752944382263751179358434469194351687044749 44930365954758565122665812446717670293766895517124645733317838324 08489849122613910820964646455117821762306219739252424746387010161 4177055111279120900184495253404839038802175771840588139578349009 5807081283892884427609893819256672976832198327557966948647426776 6081296561446505222580211020665149599447745721041199495972275296 9511826626511745433068992618794787246322578827448161229586759160 34772819627578474668014929255321765368195510187980418952147276605 8736446390903790625890633722694428953750705924197828848538310493

Conclusion

The algorithm presented in this paper extends the factorization possibilities previously offered by the properties of triangular numbers. The algorithm is easy to implement and its complexity for factorization in the group of blue numbers is $O(1)$. Using the algorithm in generating new RSA keys increases their security. The presented algorithm is also a new look at experimental approach to the analysis of number spaces generated by triangular numbers and derived patterns.

It should be noted that the disclosure of new hidden triangular number structures may result in the need to check the currently used RSA keys to exclude pseudoprime numbers that are blue numbers. The realization that there may be pseudoprime numbers that lie on the hidden triangular number structure is a new weakness in the cryptographic security of RSA keys. It is recommended to arm the algorithms that generate RSA keys with a verifier that checks if a given pseudoprime number is not a blue number.

Acknowledges

We would like to thank Professor Adam Doliwa for valuable math tips.

References

AdLEMAN L.M. 1991. Factoring numbers using singular integers. Proc. $23^{\text {rd }}$ Annual ACM Symp. on Theory of Computing (STOC), New Orleans, p. 64-71.
ADLEMAN L.M. 2005. Algorithmic number theory and its relationship to computational complexity. Proceedings $35^{\text {th }}$ Annual Symposium on Foundations of Computer Science, p. 88-113. https:// doi.org/10.1109/SFCS.1994.365702.
Adleman L.M., Pomerance C., Rumely R.S. 1983. On distinguishing prime numbers from composite numbers. Annals of Mathematic, 117: 173-206.
Bach E., Shallit J. 1996. Algorithmic number theory. Efficient algorithms. MIT Press, Cambrigde.
Boneh D. 1999. Twenty Years of attacks on the RSA Cryptosystem. Notices of the American Mathematical Society, 46(2): 203-213.
Breur T. 1996. Statistical Power Analysis and the contemporary "crisis" in social sciences. Journal of Marketing Analytics, 4(2-3): 61-65. https://doi.org 10.1057/s41270-016-0001-3.
Cohen H. 1993. A Course in Computational Algebraic Number Theory. Springer-Verlag, Berlin, Heidelberg.
Command and Control in the Fifth Domain. 2012. Command Five Pty Ltd.
DIOPHANTUS. III n.e. Arithmetica.
DIXON J.D. 1981. Asymptotically Fast Factorization of Integer. Mathematics of Computation, 36(153): 255-260.
Fayyad U., Piatetsky-Shapiro G., Smyth P. 1996. From Data Mining to Knowledge Dis-covery in Databases. AI Magazine, Norwich.
Gauss C.F. 1966. Disquisitiones Arithmeticae By Arthur A. Clarke. Yale University Press, New Haven.

Hastie T., Tibshirani R., Friedman J. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York.
Kaliski B. 2006. Growing Up with Alice and Bob: Three Decades with the RSA Cryptosystem. RSA Security.
Lehman R.S. 1974. Factoring Large Integers. Mathematics of Computation, 28(126): 637-646.
MARTÍN-LÓPEZ E., LAING A., LAWSON T. 2012. Experimental realisation of Shor's quantum factoring algorithm using qubit recycling. Nature Photonics, 6: 773-776. arxiv.org. https://doi.org/10.1038/ nphoton.2012.259. arXiv:1111.4147.
Moree P., Petrykiewicz I., Sedunova A. 2018. A Computational History of Prime Numbers and Riemann Zeros. arXiv:1810.05244. https://doi.org/10.48550/arXiv.1810.05244.
Niven I., Zuckerman H., Montgomery H. 1991. An Introduction to The Theory of Numbers. John Wiley and Sons, Hoboken.
Poli R., Langdon W.B., McPhee N.F. 2008. A Field Guide to Genetic Programming. Lulu Enterprises, Morrisville.
Pollard J.M. 1975. A Monte Carlo method for factorization. Nordisk Tidskrift for Informationsbehandlung (BIT), 15: 331-334.
RIEMANN's B. 1859. Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse. On the Number of Primes Less Than a Given Magnitude. Monatsberichte der Berliner Akademie, Berlin.
Rivest R.L., Shamir A., Adleman L. 1978. A Method for Obtaining Digital Signatures and Public-key Cryptosystems. Communications of the ACM, 21(2): 120-126. https://doi. org/10.1145/359340.359342. MIT Laboratory for Computer Science, Cambridge, Massachusetts.
RSA CyberCrime Intelligence Service. 2013. RSA Security, Rsa.com.
Samojluk A. 2019. Algorithm of Geometric Factorization. Master thesis. Chair of Mathematics and Computer Science, Uniwersytet Warmińsko-Mazurski, Olsztyn.
SANJEEV A., Boaz B. 2009. Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge.
Schatz D., Bashroush R., Wall J. 2017. Towards a More Representative Definition of Cyber Security. Journal of Digital Forensics, Security and Law, 12(2).
Segaran T., Hammerbacher J. 2009. Beautiful Data: The Stories Behind Elegant Data Solutions. O'Reilly Media, Sebastopol.
Sierpiński W. 1962. Liczby trójkatne (Triangle numbers). Biblioteczka Matematyczna, t. 12, Państwowe Zakłady Wydawnictw Szkolnych, Warszawa.
Sierpiński W. 1987. Wstęp do teorii liczb. Third Edition. Biblioteczka Matematyczna, t. 12, Państwowe Zakłady Wydawnictw Szkolnych, Warszawa.
Sierpinski W. 1988. Elementary Theory of Numbers. Państwowe Wydawnictwo Naukowe, Warszawa.
Stevens T. 2018. Global Cybersecurity: New Directions in Theory and Methods. Politics and Governance, 6(2): 1-4. https://doi.org/10.17645/pag.v6i2.1569.
Williams H.C. 1982. A p+1 Method of Factoring. Mathematics of Computation, 39(159): 225-234.
Yost J. R. 2015. The Origin and Early History of the Computer Security Software Products Industry. IEEE Annals of the History of Computing, 37(2): 46-58. https://doi.org/10.1109/MAHC.2015.21.

[^0]: Correspondence: Artur Samojluk, Katedra Metod Matematycznych Informatyki, Wydział Matematyki i Informatyki, Słoneczna 54, 10-710 Olsztyn, e-mail: artur.samojluk@uwm.edu.pl.

