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A b s t r a c t

The article presents in a review way the most important numerical methods used in modern 
fluid mechanics. The individual chapters discuss Finite Difference Method, Finite Volume Method, 
Lattice Boltzmann Method, Discrete Element Method and Smoothed Particle Hydrodynamics. 
The aim of the article is to familiarize the reader with the most important concepts, features and 
mathematical equations used in particular methods. The article is intended mainly for people who 
want to get acquainted with the current possibilities of numerical modelling in the field of broadly 
understood fluid mechanics. The material is intended to facilitate the decision on how to implement 
the planned research.

Introduction

In the field of science, regardless of the specific discipline, numerical modelling 
has become one of the essential methods for investigating or predicting the 
behaviour of various systems. The primary challenge is the extensive knowledge 
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required to effectively utilize numerical modelling. Over the years, a wide range 
of techniques has been developed to address various classes of problems. 

A typical numerical modelling process consists of the following stages:
–	preparation of the numerical model for calculations (pre-processing): 

a) determining the geometry of the computational domain, b) discretizing the 
computational domain, c) selecting an appropriate mathematical model, d) defining 
a closure set, e) specifying properties of materials used, f) setting boundary 
conditions, g) establishing initial conditions;

–	performing calculations (solving): a) defining numerical techniques, 
b) determining monitoring parameters for the calculation process, c) configuring 
recording settings, d) defining termination criteria for the calculations, 
e) executing simulations and monitoring the progress;

–	processing and analysis of the resulting data (post-processing): 
a) visualization of the simulation results, b) in-depth analysis of the data, c) data 
processing to extract meaningful information and insights.

In the context of numerical analysis, a computational domain signifies 
a virtual representation of the geometry, encompassing either its entirety 
or a partial depiction of a real-world system. This representation is custom-
tailored to suit the specific demands of numerical simulations. The term “closure” 
in numerical modelling refers to a mathematical model that elucidates a specific 
phenomenon or process. It augments the fundamental set of mathematical 
equations, enabling them to be effectively solved. The 13 stages of numerical 
modelling may seem straightforward at first glance, but each stage entails 
a wealth of extensive and intricate knowledge. Consider, for instance, the 
process of discretizing the computational domain. This process encompasses 
various methods, including the utilization of nodes, pixels, voxels, elements, 
or cells. These objects can form structured or unstructured meshes and may be  
node-centered, cell-centered, multi-nodal, or multi-cellular. Moreover, the selection 
of discretization can be further categorized into structured, unstructured, 
hybrid, multi-block, multi-zone, overlapping, adaptive, movable (with rotary 
or reciprocating movement), and various other techniques. Each type of domain 
discretization necessitates distinct generation techniques and algorithms, each 
characterized by its unique aspects.

Another example is the algorithm required for solving sets of linear equations, 
a common necessity during the solving stage. While developing numerical methods, 
it became apparent that classical methods typically described in textbooks were 
inadequate. New, significantly more intricate techniques had to be devised, 
such as relaxation methods, methods founded on Krylov space, or multi-grid 
methods. Another challenge was determining the most effective way to implement 
these methods. The implementation process, in turn, drove the advancement 
of parallel programming and computational techniques that could harness the 
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power of graphics processors. It is evident that contemporary numerical modelling 
represents a fusion of knowledge from various fields, including mathematics, 
physics, algorithmic, and programming.

It is important to acknowledge that various numerical methods were developed 
during different eras, each with its own set of technological circumstances, 
including operating systems and programming languages. Over the years, 
programming languages like FORTRAN and C were commonly utilized, and 
later on, C++ gained popularity. In the present day, Python has also emerged as 
a widely-used language. Python can be employed directly in the implementation 
of numerical methods or indirectly as an environment that connects various 
software or libraries, often written in FORTRAN, C, or C++. These languages 
continue to dominate the field of numerical modelling due to their high-speed 
computational capabilities, which make them well-suited for complex mathematical 
operations.

All of the factors mentioned above, when considered collectively, make 
it challenging for a single researcher to master all the numerical techniques 
currently in use. Typically, researchers tend to specialize in one particular 
numerical method, especially when their research is focused on a specific type 
of matter, such as solids, fluids, or granular materials. However, in cases involving 
multiphase systems that demand the integration of different numerical techniques, 
researchers may employ multiple methods. This high degree of specialization 
often results in limited knowledge of alternative approaches, even those that 
could be potentially applied within the same research area. It is important 
to note that this is a generalized perspective and may not account for unique 
situations or exceptions.

Having a broader understanding allows for more strategic planning and the 
more efficient allocation of resources to achieve specific objectives. The primary 
goal of the research described in this paper is to introduce selected numerical 
methods, which are frequently employed in the realm of Computational Fluid 
Dynamics (CFD). This introduction encompasses the fundamental principles 
underlying these methods, the primary equations they employ, their key 
characteristics, areas of application, as well as their strengths and limitations. 
The content is designed to cater to two primary groups of readers: those who 
are new to numerical modelling and those who possess some experience in one 
or two specific areas and wish to expand their knowledge in this domain.

It should be emphasized that the starting point for the considerations presented 
in the article is the Finite Volume Method, which is described in the most detail 
for this reason. Other methods either serve as potential alternatives (such as 
the Lattice Boltzmann Method and the Smoothed Particle Hydrodynamics) 
or complement it (such as the Discrete Element Method). The Finite Difference 
Method is described because it is historically the first numerical method used 
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in fluid mechanics and is still used there in some areas today. Some of the 
methods described in the article, especially the Discrete Element Method and 
the Smoothed Particle Hydrodynamics, can be used to model fluid-solid systems 
or materials located at the interface between solids and fluids. In this area, 
they often serve as better tools than methods typically dedicated to fluids. 
A key to understanding the choice of numerical methods described in the article 
is presented further in Figure 5, summarizing the strategies for modelling 
multiphase media. All the numerical methods described in the article can be 
used independently or in combination to implement one of the visible variants. 
It should be noted that the aforementioned figure does not include solid matter, 
which explains why the Finite Element Method is not described in the article. 
Of course, there are issues where this method is coupled with a method designed 
for fluids. Examples include fluid flow in flexible pipes or shells, fluid interaction 
with deformable membranes, etc. It should be added that the Finite Element 
Method can also be used to directly solve flow problems, as evidenced by the 
capabilities of programs such as SolidWorks, COMSOL, or Abaqus, but it has 
never been the focus of the authors, who consider the Finite Volume Method 
to be more suitable for modelling fluid flows than the Finite Element Method. 
The article only describes numerical methods with which the authors had direct 
practical experience, not just theoretical knowledge. For the same reason, many 
other methods or their variants, such as the Discontinuous Galerkin Method, 
the Boundary Element Method, or the Immersed Boundary Method, are not 
described. For those interested in the application of the Finite Element Method 
in the analysis of fluid flow problems, it is recommended to explore publications 
such as Hughes and Zienkiewicz (1979), Weinan and Liu (2000) or Zienkiewicz 
et al. (2005).

Finite Difference Method

The Finite Difference Method (FDM) (Courant et al. 1928, Causon, 
Mingham 2010, Langtangen, Linge 2017) is an Eulerian method that involves 
approximating the derivative of a function using finite differences. It relies on 
a previously defined spatial discrete mesh of nodes. The starting point is the 
Newton-Raphson method, where the derivative of the function at a point equals 
the slope of the tangent line to the function (curve) at that point (Iyengar, Jain 
2009, Burden, Faires 2011). This concept is illustrated in Figure 1. However, 
this definition is not unambiguous because it can be implemented in at least 
three ways: the so-called forward scheme (1), the backward scheme (2), or the 
central scheme (3):
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	 𝑓𝑓′(𝑥𝑥) ≈ 𝑓𝑓(𝑥𝑥𝑜𝑜 + Δ𝑥𝑥) − 𝑓𝑓(𝑥𝑥𝑜𝑜)
Δ𝑥𝑥  	 (1)

	 𝑓𝑓′(𝑥𝑥) ≈ 𝑓𝑓(𝑥𝑥𝑜𝑜) − 𝑓𝑓(𝑥𝑥𝑜𝑜 − Δ𝑥𝑥)
Δ𝑥𝑥  	 (2)

	 𝑓𝑓′(𝑥𝑥) ≈ 𝑓𝑓(𝑥𝑥𝑜𝑜 + Δ𝑥𝑥) − 𝑓𝑓(𝑥𝑥𝑜𝑜 − Δ𝑥𝑥)
2Δ𝑥𝑥  	 (3)

In equations (1-3), only three nodes are utilized (i – 1, i, i + 1). However, higher- 
-order numerical schemes can also be structured, involving 5 or more nodes to 
approximate a derivative. The second derivative of the function f(x) at the point  
x0 is obtained by applying the difference scheme three times. Depending on the 
schemes employed, there can be multiple variations of the second derivative. 
It should be noted that if the equation includes a time-dependent term, time 
must also be discretized. The maximum allowable time step depends on the 
numerical scheme utilized and is sometimes constrained by additional parameters, 
primarily the CFL condition.

Fig. 1. Illustration to the main idea of the FDM

An excellent example of the FDM can be found in the one-dimensional thermal 
diffusion equation (Langtangen, Linge 2017):

	
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 −

𝜆𝜆
𝜌𝜌𝜌𝜌𝑠𝑠

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2 = 0 	 (4)
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where:
T	 – temperature [K], 
t	 – time [s], 
λ	 – thermal conductivity [W/(m·K)], 
ρ	 – density [kg/m3], 
cs	– specific heat [J/(kg·K)], 
x	 – coordinate [m].

By applying the central difference scheme for the second derivative and the 
explicit Euler scheme for time discretization, equation (4) takes the following 
form (Langtangen, Linge 2017):

	 𝑇𝑇𝑖𝑖𝑛𝑛+1 = 𝑇𝑇𝑖𝑖𝑛𝑛 +
𝜆𝜆
𝜌𝜌𝜌𝜌𝑠𝑠

𝑇𝑇𝑖𝑖−1𝑛𝑛 − 2𝑇𝑇𝑖𝑖𝑛𝑛 + 𝑇𝑇𝑖𝑖+1𝑛𝑛

(∆𝑥𝑥)2 ∆𝑡𝑡 	 (5)

where: 
n and n + 1 represent the current and the next time levels, respectively. 

Equation (5) is valid for nodes from to N – 1, where N is the number of nodes 
in the numerical grid. Boundary conditions need to be specified for the extreme 
nodes. For instance, if equation (4) is assumed to describe the heat flow through 
a single-layer homogeneous wall with Newton’s law of cooling on both sides, then:

	 𝑇𝑇1𝑛𝑛+1 =
𝜆𝜆𝑇𝑇2𝑛𝑛+1+𝛼𝛼Δ𝑥𝑥𝑇𝑇𝑙𝑙

𝛼𝛼Δ𝑥𝑥+𝜆𝜆     and    𝑇𝑇𝑁𝑁𝑛𝑛+1 =
𝜆𝜆𝑇𝑇𝑁𝑁−1𝑛𝑛+1+𝛼𝛼Δ𝑥𝑥𝑇𝑇𝑟𝑟

𝛼𝛼Δ𝑥𝑥+𝜆𝜆  	 (6)

where: 
α	 – heat transfer coefficient [W/(m2·K)], 
Tl	 – outside temperature on the left side of the wall [K], 
Tr	 – outside temperature on the right side of the wall [K].

It soon became evident that the FDM is well-suited for solving relatively simple 
differential equations (examples shown in Fig. 2). However, the method proved 
to be inadequate for both solid and fluid mechanics applications. Its primary 
limitations included challenges in adapting the mesh to complex geometries, issues 
related to calculation stability, difficulties in handling boundary conditions, often 
resulting in a loss of accuracy, the necessity for uniform grid spacing, and the 
associated requirement for a large number of nodes. These challenges prompted 
the search for alternative numerical modelling methods that could better meet 
the specific needs of various physics departments. In modern Computational 
Fluid Dynamics, the FDM is rarely employed. Nevertheless, it holds a significant 
place in the history of numerical modelling, representing an important milestone 
in the development of simulation techniques.
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Finite Volume Method

The Finite Volume Method (FVM) (McDonald 1971, MacCormack, Paullay 
1972, Moukalled et al. 2016) is designed for modelling fluid flows within 
a discretized computational domain (Ω) using the Eulerian approach. This 
method relies on a mesh-based approach, where a fundamental role is played 
by the concept of the Finite Volume or Control Volume (CV). A Control Volume 
is a volume V ∈ Ω enclosed by a closed surface S. The orientation of this surface 
is defined by the outward-directed vector 𝑛⃗𝑛   (as depicted in Fig. 3). In numerical 
models, control volumes represent the cells of the computational grid. The FVM 
is based on two types of balance equations: surface and volumetric balance 
equations.
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Fig. 2. Examples of using the FDM: a – resolving the diffusion equation in 2D space 
and modelling of the spread of smell in the layout of laboratory rooms, b – resolving the wave 
equation in 2D and modelling of waves propagation on a surface with random falling drops
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Fig. 3. Schematic representation of a Control Volume in a calculation domain

The surface balance describes the possibility to exchange the value of with 
the surroundings through the fluxes flowing through the surface:

	
𝜕𝜕Θ
𝜕𝜕𝜕𝜕 |𝑆𝑆

= ∫(Θ𝑣⃗𝑣 ∙ 𝑛⃗⃗𝑛)𝑑𝑑𝑑𝑑
𝑆𝑆

 	 (7)

where: 
Θ – any physical quantity, e.g. mass, momentum or energy, 
𝑣⃗𝑣  – fluid velocity, 
𝑛⃗𝑛   – surface directional vector. 

An example of a quantity that requires surface balancing is heat flux. 
The resulting value is determined by summing up the flows entering (with 
a negative sign) and exiting (with a positive sign) through the surface S 
of a Control Volume (CV).

The volumetric balance equation describes the ability to change the value 
of Θ within the volume V:

	 𝜕𝜕Θ
𝜕𝜕𝜕𝜕 |𝑉𝑉

= ∫(𝑠𝑠Θ)𝑑𝑑𝑑𝑑
𝑉𝑉

 	 (8)

where: 
sΘ – source of the Θ quantity. 

An example of a quantity that requires volumetric balancing is the heat 
generated in a combustion process. In this case, the source term has a positive 
sign, but in general, a source term may increase or decrease the value of the 
balance quantity in a control volume, depending on its physical meaning. After 
applying the surface and volume balances to the entire computational mesh within 
the domain Ω, the following set of balance equations is obtained (Moukalled 
et al. 2016):
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𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜌𝜌) + div(𝜌𝜌𝑣⃗𝑣) = 0 	 (9)

 	
𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜌𝜌𝑣⃗𝑣) + div(𝜌𝜌𝑣⃗𝑣𝑣⃗𝑣) = div(−𝑝𝑝𝐼⃡𝐼 + 𝜏⃡𝜏𝑙𝑙 + 𝜏⃡𝜏𝑡𝑡) + 𝜌𝜌𝑠𝑠𝑚𝑚 	 (10)

	
𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜌𝜌𝜌𝜌) + div(𝜌𝜌𝑣⃗𝑣𝑒𝑒) = div[(−𝑝𝑝𝐼⃡𝐼 + 𝜏⃡𝜏𝑙𝑙 + 𝜏⃡𝜏𝑡𝑡)𝑣⃗𝑣 + 𝑞⃗𝑞𝑙𝑙 + 𝑞⃗𝑞𝑡𝑡] + 𝜌𝜌𝑠𝑠𝑒𝑒  	 (11)

where: 
ρ	 – density [kg/m3], 
p	 – pressure [Pa], 
𝐼⃡𝐼 	 – unit tensor [-], 
𝜏⃡𝜏𝑙𝑙  	 – laminar stress tensor [Pa], 
𝜏⃡𝜏𝑡𝑡  	 – turbulent stress tensor [Pa], 
𝜌𝜌𝑠𝑠𝑚𝑚 	– momentum source term [N/m3], 
e	 – unitary energy (a sum of internal and kinetic energies) [J/kg], 
𝑞⃗𝑞𝑙𝑙 	 – laminar heat flux [J/(m2·s)], 
𝑞⃗𝑞𝑡𝑡 	 – turbulent heat flux [J/(m2·s)],
𝜌𝜌𝑠𝑠𝑒𝑒 	 – energy source term [J/(m3·s)].

Equations (9-11) represent the Mass Balance Equation (MaBE), the 
Momentum Balance Equation (MoBE), and the Energy Balance Equation (EBE), 
respectively. These equations can be expressed in what is known as vector form:

	 𝜕𝜕
𝜕𝜕𝜕𝜕 [

𝜌𝜌
𝜌𝜌𝑣⃗𝑣
𝜌𝜌𝜌𝜌

] + div [
𝜌𝜌𝑣⃗𝑣

𝜌𝜌𝑣⃗𝑣𝑣⃗𝑣 + 𝑝𝑝𝐼⃡𝐼
𝜌𝜌𝑣⃗𝑣𝑒𝑒 + 𝑝𝑝𝐼⃡𝐼𝑣⃗𝑣

] = div [
0

𝜏⃡𝜏𝑙𝑙 + 𝜏⃡𝜏𝑡𝑡
(𝜏⃡𝜏𝑙𝑙 + 𝜏⃡𝜏𝑡𝑡)𝑣⃗𝑣 + 𝑞⃗𝑞𝑠𝑠𝑙𝑙 + 𝑞⃗𝑞𝑠𝑠𝑡𝑡

] + [
0

𝜌𝜌𝑠𝑠𝑚𝑚
𝜌𝜌𝑠𝑠𝑒𝑒

] 	 (12)

where the similarities between specific balance equations become much more 
apparent (please note that the terms containing pressure are now positioned 
on the left side).

The first part of equation (12) represents the time-dependent term, which 
describes the rate of change of the balanced quantity with respect to time. 
For steady-state flows this term is equal to zero. The second term in equation (12) 
is the so-called convection term, which describes the exchange of the balanced 
quantity between the current control volume (CV) and neighbouring cells. 
The components of this term are reversible, meaning they can be converted. 
An example is the transfer of pressure energy during compression and release 
during fluid expansion. The third term in equation (12) is the dissipative term, 
which describes irreversible phenomena. This encompasses all phenomena related 
to viscosity, turbulence, diffusion, radiation, etc. The final part of equation (12) 
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is the source term, which accounts for the possibility of changing the balance 
quantity within a CV, such as due to the influence of external forces.

The FVM is based on cell-centered meshes, which are typically structured 
or unstructured. The mesh is generated within the domain, and its boundaries 
coincide with the domain boundary. However, in the literature another approach 
may be found, the so-called Immersed Boundary Method (Peskin 1977), in which 
the domain is immersed in the grid and does not conform with the boundary. 
In the immersed boundary method, special treatment has to be taken at the 
boundary to incorporate the boundary conditions. The main advantage of the 
Immersed Boundary Method is the use of structured meshes, which are easy 
to generate, and the calculations performed on them are faster. The greatest 
difficulty of the method is the imposition of boundary conditions.

The equations set (9-11) has to be supplemented by other mathematical 
dependencies (closures mentioned before). Two of them are in particular critical: 
the laminar stress tensor, in which the key role plays the choice of the appropriate 
fluid model (rheology is the branch of physics that deals with this issue) and the 
turbulent stress tensor, which can be described in many different ways. In fact, 
turbulence modelling is the most fundamental issue in the fluid mechanics still 
not fully solved.

In Figure 4, an overview of applied turbulence models is visible. Reynolds- 
-Averaged Navier-Stokes (RANS) is a group of turbulent flow simulation methods 
based on the concept of decomposing the Reynolds velocity field, in which the 

Fig. 4. Main concepts in turbulence modelling
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velocity and pressure fields are separated into mean values and fluctuation 
components. In frames of this group two main trends can be distinguished: 

–	based on the concept of turbulent viscosity – in this approach, turbulent 
stresses are proportional to the deformation rate, analogous to viscous stresses 
(the turbulent stress tensor serves as a form of correction to the viscous stress 
tensor); 

–	not based on the turbulent viscosity concept – in this approach, the com-
ponents of the turbulent stress tensor are calculated directly from additional 
equations, algebraic (ASM), differential (RSM) or evolution. 

The evolution equations are added to the system of equations (12) (they must 
have the same structure) and are solved using the same numerical techniques. 
The evolution equations are not used to determine a new balance quantity but 
a variable necessary to solve the mass, momentum, or energy balance equation. 
Typically, evolution equations are needed to determine the turbulent stress 
tensor. Equations from the RSM group are not included in the set (12) and are 
solved independently of them.

Direct Numerical Simulation (DNS), as proposed by Orszag in 1970, 
is a method for simulating turbulent flows. It involves the direct solution of the 
Navier-Stokes equations without any simplifications, which means that all 
turbulence scales are considered in the calculations. Calculations performed 
with the DNS method enable the correct reconstruction of the dynamics of all 
spatial and temporal scales of turbulence, which, unlike the RANS methods, 
are not modelled, but are the result of a numerical solution. The DNS method 
requires enormous computing power and for this reason is still not applicable 
in practical issues.

Large Eddy Simulation (LES), as introduced by Smagorinsky in 1963, 
is a method for simulating turbulent flows. It involves the separation of vortices 
into two scales through the use of specific filters. The large-scale fluid movement 
is calculated based on the Navier-Stokes equations, while the small-scale 
structures (smaller than the width of the filter used), in which kinetic energy 
is dissipated by the action of viscous forces, are modelled. The smaller the filter 
width, the closer the LES method becomes to DNS.

Detached Eddy Simulation (DES), developed by Spalart in 1997, is a method 
for simulating turbulent flows that combines elements of both Large Eddy 
Simulation and Reynolds-Averaged Navier-Stokes. The RANS approach is applied 
in the boundary layers (where large vortices are absent), while the LES approach 
is employed in the core of the flow. Achieving a seamless transition of fields 
between the LES and RANS regions in DES necessitates the use of high-quality 
numerical grids.

It is currently believed that the most versatile model suitable for engineering 
modelling of typical fluid flows is the k – ω SST (Menter 1993) model from 
the RANS group. This model accurately reflects phenomena both in the 
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boundary layer and far away from it. In some areas, other RANS models are 
recommended, such as the Spalart-Allmaras model, specifically designed for 
aerospace applications. LES or DES are used in cases where various turbulence 
scales occur, such as large coherent structures in vortex flows, which cannot be 
adequately modeled with the RANS approach.

The equations set (9-11) is valid for single-component fluids (Sobieski, Grygo 
2019). However, with appropriate modifications and extensions, it can also be used 
for a wide range of multiphase flows. In Figure 5, the one-fluid approach means 
that the occurrence of certain phenomena may be predicted from scalar or vector 
fields obtained for a single-phase flow. An example of this is the barotropic 
cavitation model, in which the cavitation phenomenon is predicted based on the 
pressure field. Another way to introduce a second phase is by incorporating 
some effects of its presence. Good examples of this approach are the Porous 
Media Model or the Porous Jump Model, in which flow resistance is modelled 
by a source term in the momentum balance equation within a chosen volume 
or on a surface, respectively.

In the homogeneous approach, the mixture is considered as a substance 
composed of any number of phases and is modelled using only one set of balance 
equations (Niedźwiedzka et al. 2016). Mass or volume fractions of each individual 
phase are calculated using additional balance equations, which increases the 
number of variables in the vectors seen in equation (12). Depending on further 
details, the phase interface may or may not be tracked. The first case, known 
in the literature as the Volume of Fluid model, is used in simulations of fluid 
flows with a free surface or in flows involving two non-mixing liquids. Each 
of the components can be a single fluid or a homogeneous mixture of any number 

Fig. 5. Main concepts in modelling multiphase flows
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Fig. 6. Examples of using the Finite Volume Method: a – determination of the hydrodynamic 
thrust force acting on a valve plug, b – determination of mixing power  

in a mixer with a Rushton turbine

of components. The homogeneous approach is typical for modelling selected 
mixing phenomena, flows involving evaporation and condensation, or flows with 
chemical reactions.

In the non-homogeneous approach, each component of the mixture has its 
own set of balance equations (Sobieski 2009). Phase coupling occurs through 
pressure and interfacial coefficients related to mass, momentum, and energy 
exchange. The description of this interaction primarily depends on the type of flow, 
whether it is liquid-liquid, liquid-gas, liquid-solid, or gas-solid. This approach 
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is primarily intended for flows with one background phase (liquid or gas) and 
one or more dispersed phases (bubbles, droplets, or solid particles). The fluid 
phase is described using the Eulerian approach, while the dispersed phase can 
be treated either in the Eulerian manner (as in the Eulerian Multiphase Model) 
or in the Lagrangian manner (as in the Discrete Phase Model). In the latter 
case, appropriate movement equations must be added to the model. In practice, 
this task is accomplished by coupling the FVM (or another method designed 
for fluids), responsible for managing the continuous phase, with the Discrete 
Element Method, utilized in this context for modelling the dispersed phase. 
The Discrete Element Method is likewise described in the article.

The FVM is highly popular, and examples of its application can be found 
in every field of modern science. Some examples from mechanical engineering 
are shown in Figure 6. The primary limitation of this method remains the 
insufficient computing power of currently available computers.

Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) (Bhatnagar et al. 1954, Sukop, 
Thorne 2006) is used to model the behaviour of a lattice gas in a state 
of thermodynamic imbalance, employing a Lagrangian approach. The foundational 
concept in the LBM is the phase space, where each dimension corresponds to a 
distinct physical quantity. In classical mechanics, the phase space typically 
encompasses position, velocity or momentum, and time (as shown in Fig. 7) 
(Krüger et al. 2017):

	 𝑓𝑓(𝑥⃗𝑥, 𝑣⃗𝑣, 𝑡𝑡) 	  (13)

where: 
f	 – distribution function of gas density in the phase space, 
𝑥⃗𝑥 	– position vector (here in Cartesian coordinates), 
t	 – time. 

The function f(𝑥⃗𝑥 , 𝑣⃗𝑣 , t) represents the probability of finding a given particle 
at a given location in the space 𝑥⃗𝑥  and time t with a given velocity 𝑣⃗𝑣 .

If there are no particle collisions, then during the movement in the phase 
space, all those particles that, at time t + dt, are in the phase space element 
described by the coordinates 𝑥⃗𝑥 + 𝑑𝑑𝑥⃗𝑥  and 𝑣⃗𝑣 + 𝑑𝑑𝑣⃗𝑣 , were at time t within the 
phase space element with the coordinates 𝑥⃗𝑥  and 𝑣⃗𝑣  (Succi 2001, Sukop, Thorne 
2006, Mohamad 2011):

	 𝑓𝑓(𝑥⃗𝑥 + 𝑑𝑑𝑥⃗𝑥, 𝑣⃗𝑣 + 𝑑𝑑𝑣⃗𝑣, 𝑡𝑡 + 𝑑𝑑𝑑𝑑) = 𝑓𝑓(𝑥⃗𝑥, 𝑣⃗𝑣, 𝑡𝑡) 	 (14)



Technical Sciences	 26, 2023

	 Numerical Methods in Fluid Mechanics – An Overview	 199

Fig. 7. Schematic representation of the phase space

Applying Newton’s laws of motion, this equation can be written as

	 𝑓𝑓 (𝑥⃗𝑥 + 𝑣⃗𝑣𝑑𝑑𝑑𝑑, 𝑣⃗𝑣 + 𝐹⃗𝐹
𝑚𝑚𝑑𝑑𝑑𝑑, 𝑡𝑡 + 𝑑𝑑𝑑𝑑) = 𝑓𝑓(𝑥⃗𝑥, 𝑣⃗𝑣, 𝑡𝑡) 	 (15)

or

	
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑣⃗𝑣 ∙ ∇𝑥𝑥𝑓𝑓 +

𝐹⃗𝐹
𝑚𝑚 ∙ ∇𝑣⃗⃗𝑣𝑓𝑓 = 0 	 (16)

where: 
𝐹⃗𝐹 	– external force acting on gas particles [N], 
m	– mass of gas particles [kg].

If particle collisions occur, meaning that particles move not only away from 
a given point in space but also towards it, the derivative does not equal zero:

	
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑣⃗𝑣 ∙ ∇𝑥𝑥𝑓𝑓 +

𝐹⃗𝐹
𝑚𝑚 ∙ ∇𝑣⃗⃗𝑣𝑓𝑓 = (𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕)coll

 	 (17)

The simplest model describing the collision term is the BGK linear model 
(Bhatnagar et al. 1954):

	 (𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕)coll
= 𝑓𝑓 − 𝑓𝑓eq

𝜏𝜏  	 (18)

where: 
τ – the so-called relaxation time. 
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This parameter determines how quickly the f function may obtain the 
equilibrium value, which depends on the assumed viscosity of the fluid. In turn, 
feq means the distribution function of gas density in the equilibrium state:

	 𝑓𝑓eq = [ 𝑚𝑚
2𝜋𝜋kB𝑇𝑇

]
3
2 𝑒𝑒

−12𝑚𝑚𝑚𝑚2
kB𝑇𝑇  	 (19)

where: 
T	 – absolute temperature [K], 
kB – Boltzmann constant [J/K]. 

If the values of the distribution function f(𝑥⃗𝑥 , 𝑣⃗𝑣 , t) in each ith direction are 
known, different macroscopic parameters may be calculated. For example the 
density and velocity of lattice gas may be determined with the following formulas 
(Sukop, Thorne 2006):

	 𝜌𝜌 =∑𝑓𝑓𝑖𝑖
𝑛𝑛𝑖𝑖

𝑖𝑖=0
 	 (20)

and

	 𝑣𝑣 = 1
𝜌𝜌∑𝑓𝑓𝑖𝑖𝑒𝑒𝑖𝑖

𝑛𝑛𝑖𝑖

𝑖𝑖=0
 	 (21)

where: 
ni	–	the number of spatial directions in the model (equal 8 in the D2Q9 model; 

0 is referred to the current lattice node), 
ei	 –	the unit vector of the ith velocity direction (depends on the chosen lattice 

model).

A notable characteristic of the LBM is that the computational domain must 
be represented using a binary geometry. This kind of geometry can be directly 
prepared, for example, using random techniques or indirectly converted from 
another type of geometry. A conversion scheme from a vector geometry to a binary 
geometry is depicted in Figure 8. In this process, the original vector geometry 
(a) is overlaid by a lattice of nodes (b), and each node is assigned a value of 1 
(solid node) or 0 (fluid node) based on its location. This method of defining the 
computational domain enables the relatively easy preparation of even highly 
complex geometries. Indeed, it is the primary advantage of this method and 
indicates its fundamental areas of application. However, the major drawback 
is that the quality of the resulting numerical model strongly depends on the 
assumed lattice resolution. Increasing the node density improves the model’s 
quality but also increases the computational power requirements and the time 
needed to obtain results with the same level of convergence.
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Fig. 8. Schematic representation of geometry conversion from a vector to a binary geometry; 
description in the text

Another feature of the method is that the movement of the lattice gas can only 
occur along strictly defined directions, and the probability of selecting a given 
direction is determined by appropriate weights. The weight value is highest for 
the current node, meaning that a significant number of molecules always stay 
in the same place. The most popular lattice models are D2Q9, D3Q15 (limited 
range of stability, low computational effort), D3Q19 (a compromise between 
stability and computational effort), and D3Q27 (good stability, high computational 
effort). D2 or D3 represents the number of space dimensions, and Q9, Q15, Q19, 
or Q27 represents the number of possible directions of gas movement. The lattice 
models described here, along with the weight values of individual directions, 
are presented in Figure 9 (Sukop, Thorne 2006, Wagner 2008).

In Figure 10, the main steps of the LBM algorithm are presented. In stages 
a and b, formulas (20-21) and (19) are used in a discrete form, respectively. 
In step c, collisions between particles and between particles and walls are 
included. The collision process involves swapping values of the appropriate 
components of the 𝑓𝑓(𝑥⃗𝑥, 𝑣⃗𝑣, 𝑡𝑡)  function. The specific details depend on the assumed 
collision model, whether it includes slippage or not. On this stage, periodic 
conditions may also be implemented. The symbol f* represents the f function after 
the collision stage but before the streaming procedure. In step d, the lattice gas 
is moved (streamed) along individual directions of the assumed lattice model, 
and this step includes the previously mentioned weights.

The model described in this chapter is applicable to single-phase laminar 
fluid flow. However, the LBM has now reached an advanced stage, enabling 
the modelling of a wide range of fluid flows, including the same fluid models, 
turbulence models, and multiphase flow concepts as in the FVM. The areas 
of application are also similar (e.g., Fig. 11a), but the LBM is particularly useful for 
modelling flows in highly complex geometries (e.g., Fig. 11b). Interesting examples 
of applications can be found in medicine (Krause 2010, Abas 2016), chemical 
engineering (Xie et al. 2018), agricultural engineering (Korn, Herlitzius 
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Fig. 9. The most popular lattice models in the LBM

Fig. 10. Main steps of the LBM algorithm; description in the text
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2017), energetics (Schubiger et al. 2020), and other fields. The LBM is applied 
independently, as exemplified by the cited works of Krause (2010) or Abas et al. 
(2016), or in combination with another numerical method, primarily the Discrete 
Element Method (Korn, Herlitzius 2017, Xie et al. 2018).

The main drawback of the LBM is its significant computational power 
requirement, which limits its practical application in many cases. To expand 
its applicability, much attention is devoted to parallelization techniques or the 
use of graphical processing units (GPUs) instead of CPUs in computations.

Fig. 11. Examples of using the LBM: a – modelling a flow around the NACA6412 airfoil,  
b – investigation of the hydraulic tortuosity in random generated pore structures
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Discrete Element Method

The Discrete Element Method (DEM) (Cundall, Strack 1979) is employed for 
analysing the dynamics of solid systems in a Lagrangian approach. This method 
is founded on the classical principles of Newtonian dynamics. Typically, two types 
of solids are considered: particles, often representing granular materials, and 
walls, typically representing various types of technical infrastructure. Originally, 
particles could only have a spherical shape, but nowadays other simple shapes 
(such as cylinders, cuboids, polyhedrons) or complex shapes consisting of either 
rigidly connected bodies with simple shapes or closed surfaces in the form 
of a mesh are utilized. In the context of CFD, the DEM is increasingly being 
employed in conjunction with the FVM or the LBM to model multiphase flow 
problems in an Euler-Lagrange approach (see Fig. 5).

The discrete element method employs dynamic equations of motion (Labra 
et al. 2012), which consider both translational:

	 𝑚𝑚𝑑𝑑𝑣⃗𝑣
𝑑𝑑𝑑𝑑 = 𝐹⃗𝐹 	 (22)

and rotational motion:

	 𝐼𝐼 𝑑𝑑𝜔⃗⃗𝜔 
𝑑𝑑𝑑𝑑 = 𝑀⃗⃗𝑀  	 (23)

where: 
m	– mass [kg], 
I	 – moment of inertia [kg·m2], 
υ	 – linear velocity [m/s], 
ω	 – angular velocity [1/s], 
F	 – resultant force [N], 
M	– resultant moment of force [N·m].

The resultant force can be expressed as the sum of two types of actions:

	 𝐹⃗𝐹 = 𝐹⃗𝐹𝑐𝑐 + 𝐹⃗𝐹𝑒𝑒  	 (24)

where: 
Fc	– forces resulting from contacts (close interactions) [N], 
Fe	– external forces (distant interactions) [N].

In turn, contact forces consist of two components:

	 𝐹⃗𝐹𝑐𝑐 = 𝐹⃗𝐹𝑛𝑛 + 𝐹⃗𝐹𝑡𝑡  	 (25)

where: 
Fn	– normal forces [N], 
Ft	– tangential forces [N].
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In the case of the ith circular or spherical body in contact with other similar 
bodies, equations (22) and (23) will take the form:

	 𝑚𝑚𝑖𝑖
𝑑𝑑𝑣⃗𝑣𝑖𝑖
𝑑𝑑𝑑𝑑 =∑(𝐹⃗𝐹𝑛𝑛,𝑗𝑗𝑗𝑗 + 𝐹⃗𝐹𝑡𝑡,𝑗𝑗𝑗𝑗) + 𝐹⃗𝐹𝑒𝑒

𝑛𝑛𝑐𝑐

𝑗𝑗=1
 	 (26)

and

	 𝐼𝐼𝑖𝑖
𝑑𝑑𝜔⃗⃗𝜔 𝑖𝑖
𝑑𝑑𝑑𝑑 = ∑(𝑟𝑟𝑖𝑖 × 𝐹𝐹 𝑡𝑡,𝑗𝑗𝑗𝑗 + 𝑓𝑓𝑖𝑖𝑖𝑖 × 𝐹𝐹 𝑛𝑛,𝑗𝑗𝑗𝑗)

𝑛𝑛𝑐𝑐

𝑗𝑗=1
 	 (27)

where: 
Fn,ji	 –	normal force acting on the ith body in contact with the jth body [F], 
Ft,ji	 –	tangential force acting on the ith body in contact with the jth body [F], 
ri	 –	radius of the ith body [m], 
fij = fji	–	distance between the direction of the resultant normal force acting 

between the bodies i and j, and the centre of rotation of the ith body [m].

If the contacting circular or spherical bodies are non-deformable, the contact 
zone is limited to a point, and the distance fij = fji is equal to zero (Fig. 12a). 
The distance between the centres of the particles  i and j is equal to ri + rj. This 
type of contact in the literature is called hard contact. If the bodies are deformable 
(Fig. 12b), then instead of a point contact, a line (in 2D) or a surface (in 3D) 
contact will be created. In this case, the resulting point of action of the normal 
force depends on the distribution of normal stresses on that line or surface. 
Consequently, fij = fji > 0, and the normal force will generate an additional moment 
of force. The particles are deformable, therefore the distance between their centres 
is smaller than the sum of the radii ri and rj. In this way, the degree of particle 
overlap becomes a measure of their deformation. The contact of deformable 
particles in the literature is called soft contact.

Fig. 12. Collision diagram of two circular or spherical bodies:  
a – non-deformable, b – deformable 
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In summary, in the DEM, two main tasks can be distinguished: 
–	searching for all contacts between objects; 
–	calculating forces and moments of forces at all points of contact based 

on adopted contact models. 
Contact models are based on different material models, and additional factors 

may also be introduced, such as forces resulting from the existence of a liquid 
layer on the particle surfaces. The most popular material models include:

–	elastic model – a model in which the strain is reversible and does not 
depend on the relative velocity between bodies. A distinction is made between 
a linear elastic model, according to Hooke’s law, and non-linear models, e.g. the 
Hertz model (Hertz 1881):

	 𝐹𝐹𝑛𝑛,𝑗𝑗𝑗𝑗(𝛿𝛿𝑛𝑛) = 𝑘𝑘𝑛𝑛𝛿𝛿𝑛𝑛𝛼𝛼 	 (28)

where: 
δn	– absolute deformation at the contact point in the normal direction [m], 
kn	– modulus of elasticity in the normal direction [N/mα], 
α	 – model exponent [-]. 

For mentioned Hooke and Hertz models is equal to 1 and 3/2, respectively;
–	viscoelastic model – a model in which the deformation of a body is assumed 

to be a partially irreversible process (due to internal damping). Linear and  
non-linear viscoelastic models are distinguished:

	 𝐹𝐹𝑛𝑛,𝑗𝑗𝑗𝑗(𝛿𝛿𝑛𝑛) = 𝑘𝑘𝑛𝑛𝛿𝛿𝑛𝑛𝛼𝛼 + 𝐶𝐶𝑛𝑛𝛿𝛿𝑛𝑛𝛽𝛽𝛿̇𝛿𝑛𝑛  	 (29)

where: 
Cn	 – damping coefficient in the normal direction [kg/s], 
𝛿̇𝛿𝑛𝑛 	– speed of absolute deformation at the contact point [m/s], 
β	 – model exponent [-];

–	elasto-plastic model – a model in which it is assumed that in the first phase 
of loading, a body behaves elastically, and after a certain limit (yield point) 
is exceeded, the behaviour of the body becomes typical for a plastic material. 
This model can be described by various combinations of linear and nonlinear 
elastic or plastic models.

When determining the tangential force, two scenarios are usually considered. 
If the tangential force is relatively small, the tangential deformation is calculated. 
In the simplest approach, similar formulas are used as when calculating the 
normal force. If the tangential force exceeds the static friction force, sliding 
occurs with a constant dynamic friction force. The displacement in the normal 
direction is only dependent on material properties, not time. In contrast, if the 
colliding bodies are in a state of sliding, the relative displacement in the tangential 
direction depends on time.
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In Figure 13, the main steps of the DEM algorithm are presented. To simplify 
the diagram, only forces are shown, but moments of forces are calculated 
in an analogous way.

A distinctive feature of the DEM is that the computational domain has no 
explicit boundaries. This means that the domain size depends on the current 
location of the objects involved in the simulation. Alternatively, the maximum 
range of coordinates for a simulation may be defined.

Fig. 13. Main steps of the DEM algorithm

A typical area of application for the DEM is the modelling of loose materials’ 
behaviour in various processes, including transportation, loading and unloading, 
tank filling and emptying, collection, spreading, separation, and many others. 
An example from this field is shown in Figure 14a. 

The DEM also bridges the gap between granular mechanics and classical 
solid mechanics. By utilizing carefully selected contact models, it can simulate 
phenomena such as cracking, delamination, crushing, grinding, pelleting, and 
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other processes in which the internal cohesion of materials is disrupted or formed. 
Additionally, the DEM has significant applications in modelling the mechanics 
of elastic and highly deformable bodies, such as ropes, membranes, foils, nets, 
fibres, rubber, silicone, and more.

In the context of CFD, the most interesting application of the DEM is its 
combination with FVM or LBM for modelling fluid-solid systems. Examples 
in this field include fluidized beds (Fulchini et al. 2019, Liu, Zhao 2021), 
cyclones (Chu 2010), soil erosion (Zou et al. 2020), and more. The method can 
also be utilized to generate the geometry of granular porous media, which is 
subsequently employed, for instance, in the analysis of fluid flows within the 
pore space (Sobieski et al. 2018). In the first of the areas mentioned here, 
the coupling of DEM with FVM or DEM with LBM is performed iteratively within 
a single computational loop. In the second case, the connection is sequential 
(Fig. 14b). The DEM can also be used independently, without combining it with 
other numerical methods, to model the behaviour of semi-liquid materials such 
as pastes (Platzer, Fimbinger 2021), concretes (Gao et al. 2023), 3D printer 
filaments (Khan, Koç 2022), and so on.

Fig. 14. Examples of using the DEM: a – mixing particles in a rotating tank (own calculation 
of an example available in the YADE DEM code (The YADE code 2023)), b – predicting the flow 

resistance by the use of the FVM in a granular porous bed created by the DEM
Source: own calculation of an example available in the YADE DEM code (2023).

Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) (Liu, Liu 2003, Li, Liu 2008, 
Lind et al. 2020) is a mesh-less Lagrangian method for analysing the behaviour 
of solids or fluids in which continuous matter is represented by a set of particles. 
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Each particle represents a small volume of the matter and contains individual 
parameters such as mass, density, pressure, velocity, etc. The starting point for 
SPH comes from the observation that a function operating on a domain may be 
expressed in integral form as follows:

	 𝑓𝑓(𝑥⃗𝑥) = ∫ 𝑓𝑓(𝑥⃗𝑥′)𝑑𝑑𝑥⃗𝑥′
Ω

 	 (30)

where: 
𝑥⃗𝑥 	 – position vector of the point for which the value of the function is sought, 
𝑥⃗𝑥′ 	– position vector of a point where the value of the function is known.

In equation (30), if the Ω space is reduced to a single point, then the value 
of the function f(𝑥⃗𝑥 ) will be equal to the value of f( 𝑥⃗𝑥′ ) at that point. Assuming 
that Ω space is continuous, a value will always be obtained for each 𝑥⃗𝑥  location 
(see Fig. 15a). However, if Ω is a discrete space, two scenarios are possible: 

–	if the 𝑥⃗𝑥  location coincides with one of the 𝑥⃗𝑥′  locations, then the correct 
value of the f(𝑥⃗𝑥 ) function can be obtained; 

–	in the other case, the f(𝑥⃗𝑥 ) function will be zero (see Fig. 15b). This can be 
expressed in the following form:

	 𝑓𝑓(𝑥⃗𝑥) = ∫ 𝑓𝑓(𝑥⃗𝑥′)δ(𝑥⃗𝑥 − 𝑥⃗𝑥′)𝑑𝑑𝑥⃗𝑥′Ω ,    where    δ(𝑥⃗𝑥 − 𝑥⃗𝑥′) = {1, for 𝑥⃗𝑥 = 𝑥⃗𝑥′
0, for 𝑥⃗𝑥 ≠ 𝑥⃗𝑥′ 	 (31)

Fig. 15. Determining a function value in: a – a continuous space, b – a discrete space based 
on Dirac function, c – a discrete space based on smoothing function
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The main question is how to obtain a value for any location in a discrete 
system. To address this issue, the following approximation can be applied (as 
shown in Fig. 15c)

	 𝑓𝑓(𝑥⃗𝑥) ≈ 〈𝑓𝑓(𝑥⃗𝑥)〉 = ∫ 𝑓𝑓(𝑥⃗𝑥′)𝑊𝑊(𝑥⃗𝑥 − 𝑥⃗𝑥′, ℎ)𝑑𝑑𝑥⃗𝑥′
Ω

 	 (32)

where: 
𝑊𝑊(𝑥⃗𝑥 − 𝑥⃗𝑥′, ℎ)  – a weighting function (also known as a smoothing function or 

kernel function) that determines the degree of influence of a given location 𝑥⃗𝑥′  
on the approximation result at point 𝑥⃗𝑥 . h is referred to as the smoothing length, 
which is typically constant for all particles and is responsible for defining the 
extent of the approximation area. The smoothing length is often multiplied 
by a factor κ, typically falling in the range between 1 and 3. In the literature, 
the space within the circle or sphere κh is referred to as the support domain.

The smoothing function must satisfy several important conditions, the most 
significant of which are as follows: 

–	normalization condition (eq. 33): This condition ensures that the influence 
of discretization points within the support domain sums up to 1. In other words, 
each discretization point contributes a percentage share to the calculation of the 
approximated value; 

–	Dirac function property (eq. 34): This property dictates that when the 
support domain is reduced to a single point, the smoothing function behaves 
like the Dirac delta function; 

–	compactness conditions (eq. 35): These conditions ensure that the value 
of the smoothing function is zero outside the support domain.

The smoothing function must meet a number of conditions, the most important 
of which are: 

–	 normalization condition (eq. 33), what means that the influence of the 
discretization points in the support domain sums up to 1 (each of the discretization 
points has its percentage share in the calculation of the approximated value); 

–	 Dirac function property (eq. 34), what means that in the case of reducing 
the size of the support domain to a point, the smoothing function becomes the 
Dirac delta; 

–	 compact conditions (eq. 35), what means that the value of the smoothing 
function outside the support domain is zero:

	 ∫ 𝑊𝑊(𝑥⃗𝑥 − 𝑥⃗𝑥′, ℎ)𝑑𝑑𝑥⃗𝑥′ = 1
Ω

 	 (33)

	 lim
ℎ→0

𝑊𝑊(𝑥⃗𝑥 − 𝑥⃗𝑥′, ℎ) = 𝛿𝛿(𝑥⃗𝑥 − 𝑥⃗𝑥′) 	 (34)

 	 𝑊𝑊(𝑥⃗𝑥 − 𝑥⃗𝑥′, ℎ) = 0,   for   |𝑥⃗𝑥 − 𝑥⃗𝑥′| ≥ 𝜅𝜅ℎ 	 (35)
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The aforementioned conditions are used to derive various forms of smoothing 
functions. It is often assumed that the initial form of such a function is a poly-
nomial. The most popular kernel functions include: 

–	Gaussian kernel (1977) for κ = ∞; 
–	Bell-shaped kernel (1977) for κ = 1; 
–	Quadratic kernel (1996) for κ = 2; 
–	Quintic kernel (1995) for κ = 2. 
A crucial aspect of this method is that when calculating the derivative 

of a smoothing function, the ∇ operator is transferred from the function f(𝑥⃗𝑥 ) 
to the smoothing function 𝑊𝑊(𝑥⃗𝑥 − 𝑥⃗𝑥′, ℎ) :

	 ∇ ∙ 𝑓𝑓(𝑥⃗𝑥) ≈ 〈∇ ∙ 𝑓𝑓(𝑥⃗𝑥)〉 = −∫ 𝑓𝑓(𝑥⃗𝑥′) ∙ ∇W(𝑥⃗𝑥 − 𝑥⃗𝑥′, h)𝑑𝑑𝑥⃗𝑥′
Ω

 	 (36)

Such a state significantly facilitates calculations. An example of a kernel 
function (Gaussian) and its derivative is provided in equations (37) and (38) 
(Goffin 2013). The term αd depends on the kernel function and the number 
of spatial dimensions assumed. In the Gaussian kernel, it is equal to 1/πh2 in 
2D and 1/π3/2h3 in 3D. The shapes of both curves are presented in Figure 16:

	 𝑊𝑊 = 𝛼𝛼𝑑𝑑𝑒𝑒−(
𝑟𝑟
ℎ)

2

 	 (37)

	
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝛼𝛼𝑑𝑑

ℎ (−2 𝑟𝑟ℎ 𝑒𝑒
−(𝑟𝑟ℎ)

2

) 	 (38)

Fig. 16. Gaussian kernel function and its derivative
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SPH is among others dedicated to the analysis of fluid flows. The fundamental 
equations of fluid dynamics can be expressed in the following form (Liu, Liu 
2003, Li, Liu 2008):

	
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −𝜌𝜌∇ ∙ 𝑣⃗𝑣 	 (39)

	
𝑑𝑑𝑣⃗𝑣
𝑑𝑑𝑑𝑑 = −1

𝜌𝜌∇𝑝𝑝 +
1
𝜌𝜌∇ ∙ 𝜏⃡𝜏 + 𝑓𝑓 	 (40)

After applying the previously described method, the mass balance equation (39) 
will be discretized as follows (Liu, Liu 2003, Gesteira et al. 2010):

	
𝑑𝑑𝜌𝜌𝑖𝑖
𝑑𝑑𝑑𝑑 =∑𝑚𝑚𝑗𝑗(𝑣⃗𝑣𝑖𝑖 − 𝑣⃗𝑣𝑗𝑗) ∙ ∇𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖

𝑁𝑁

𝑗𝑗=1
 	 (41)

where: 
i	 –	particle at location 𝑥⃗𝑥 , 
j	 –	particles at locations 𝑥⃗𝑥′ , 
N	 –	the number of particles belonging to the support domain of the i-th 

particle, 
Wij	–	a shorter notation for the smoothing function.

The discrete form of the momentum balance equation (40) can be expressed 
as follows (Liu and Liu 2003, Gesteira et al. 2010):

	
𝑑𝑑𝑣⃗𝑣𝑖𝑖
𝑑𝑑𝑑𝑑 = −∑𝑚𝑚𝑗𝑗𝑓𝑓(𝑝𝑝, 𝜌𝜌)∇𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖

𝑁𝑁

𝑗𝑗=1
+∑𝑚𝑚𝑗𝑗𝑓𝑓(𝜏⃡𝜏, 𝜌𝜌)∇𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 + 𝑓𝑓

𝑁𝑁

𝑗𝑗=1
 	 (42)

The function f(p, ρ) can take the form of either 
𝑝𝑝𝑖𝑖
𝜌𝜌𝑖𝑖2

+
𝑝𝑝𝑗𝑗
𝜌𝜌𝑗𝑗2

  or 
𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑗𝑗
𝜌𝜌𝑖𝑖𝜌𝜌𝑗𝑗

 , depending 

on the chosen symmetrization method. Symmetrization is necessary to satisfy 
Newton’s third law. Similarly, the function 𝑓𝑓(𝜏⃡𝜏, 𝜌𝜌)  can be expressed 

analogically as 
𝜏⃡𝜏𝑖𝑖
𝜌𝜌𝑖𝑖2

+
𝜏⃡𝜏𝑗𝑗
𝜌𝜌𝑗𝑗2

  or 
𝜏⃡𝜏𝑖𝑖 + 𝜏⃡𝜏𝑗𝑗
𝜌𝜌𝑖𝑖𝜌𝜌𝑗𝑗

 . In this case, the shear tensor is calculated 

based on physical viscosity. Another popular approach is to use artificial viscosity, 
where the 𝑓𝑓(𝜏⃡𝜏, 𝜌𝜌)  function is represented by the artificial viscosity, typically 
denoted as Πij. The advantages of using artificial viscosity are to ensure the 
stability of calculations when particles move apart, ensure the correct direction 
of momentum transfer, and facilitate implementation.

To calculate the term f(p, ρ), the equation of state must be applied. 
For gases, the ideal gas law may be used (Archambeau 2013, Liu, Liu 2003).  
In the literature, two forms of this equation may be found:
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	 𝑝𝑝 = [( 𝜌𝜌𝜌𝜌0
− 1) 𝜌𝜌𝑢𝑢]

𝑅𝑅𝑢𝑢𝑇𝑇
𝑀𝑀  	 (43)

and
	 𝑝𝑝 = (𝛾𝛾 − 1)𝜌𝜌𝜌𝜌 	 (44)

where: 
ρu = 1 –	 unitary density (needed to ensure that the units in the equation 

are consistent) [kg/m3], 
γ	 – adiabatic exponent [-], 
e	 – specific internal energy [J/kg].

For liquids, the artificial compressibility equation is typically used (Archam- 
beau 2013, Ulrich 2013):

	 𝑝𝑝 = 𝐵𝐵 [( 𝜌𝜌𝜌𝜌0
)
𝛾𝛾
− 1] 	 (45)

The symbols used here have the following meanings: 
ρ0	 – the reference density [kg/m³], 
Ru	– the universal gas constant [J/(K·mol)], 
M	 – molar weight [kg/mol], 

𝐵𝐵 = 𝑐𝑐𝑠𝑠2𝜌𝜌0
𝛾𝛾   – a constant dependent on the speed of sound [Pa], 

cs	 – the speed of sound [m/s], 
γ	 – model exponent (usually equal to 7) [-]. 

Due to the fact that a high value of the speed of sound requires a very small 
time step, in practice, a lower value is often assumed. A popular expression 
is cs = 10υmax, where υmax represents the maximum expected velocity in the 
flow. This adjustment keeps the error at an acceptable level while significantly 
reducing calculation time.

With the derivatives (41) and (42), the new values of the main variables can 
be calculated as follows (using the Euler scheme):

	 𝜌𝜌𝑖𝑖𝑛𝑛+1 = 𝜌𝜌𝑖𝑖𝑛𝑛 +
𝑑𝑑𝜌𝜌𝑖𝑖
𝑑𝑑𝑑𝑑 ∆𝑡𝑡 	 (46)

	 𝑣⃗𝑣𝑖𝑖𝑛𝑛+1 = 𝑣⃗𝑣𝑖𝑖𝑛𝑛 +
𝑑𝑑𝑣⃗𝑣𝑖𝑖
𝑑𝑑𝑑𝑑 ∆𝑡𝑡 	 (47)

	 𝑥⃗𝑥𝑖𝑖𝑛𝑛+1 = 𝑥⃗𝑥𝑖𝑖𝑛𝑛 + 𝑣⃗𝑣𝑖𝑖𝑛𝑛+1∆𝑡𝑡 	 (48)

where: 
n	 – the current iteration [-], 
n + 1 – the next iteration [-], 
Δt	– time step [s]. 
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The time step is limited by conditions that take into account the intensity 
of mass forces and the intensity of viscous dissipation.

In Figure 17, the main SPH algorithm is presented. It is worth noting that 
nested loops are executed during a single time step: one loop iterates over all 
fluid particles, and another loop iterates over all particles belonging to the 
support domain of every fluid particle.

Fig. 17. Main steps of the SPH algorithm

When there are walls within the calculation domain, appropriate boundary 
conditions must be introduced. The three most popular variants are as follows: 
1) Adding an artificial repulsive force to prevent liquid particles from penetrating 
the wall; 2) Introducing so-called ghost particles outside the wall with the 
same parameters as fluid particles but with the opposite direction of velocity. 
This results in velocity components on the wall being equal to zero; 3) Treating 
wall particles in the same way as fluid particles, requiring the definition of two 
layers of non-moving wall particles. Conditions 1 and 2 are commonly used. 
The third condition is sensitive to the initial distance between the fluid and 
the wall. When the initial distance is too great, the fluid may move towards the 
boundary, and when it is too small, the fluid molecule will experience suction 
as it moves away from the boundary.

The SPH method is primarily employed for modelling systems in which 
matter undergoes significant deformations. It finds applications in fracture 
mechanics (Douillet-Grellier et al. 2016), metal processing (Nguyen, Hojny 
2022), additive manufacturing (Trushnikov et al. 2019), materials engineering 
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(Koukouvinis et al. 2018), geomechanics (Bui, Nguyen 2021), and various other 
fields. Of course, SPH can also be used to model conventional fluid dynamics, 
such as analysing coastal problems (see Fig. 18).

Fig. 18. Example of using SPH to modelling movement of objects floating  
on the water surface near a coast 

Source: own calculation of an example available in the SPHYSICS_2D code  
(Gesteira et al. 2010).

Summary

Over the past few decades, numerous specialized numerical modelling methods 
have been developed. These techniques have been refined to the extent that 
they now constitute fundamental research tools in almost every field of science. 
Initially, there was a clear distinction between methods designed for modelling 
the behaviour of solids, fluids, or dispersed matter. Often, choosing one approach 
made it impossible to incorporate other options. However, the progress of science 
and current trends are expanding the possibilities of simultaneously using 
multiple methods and their variants. In particular, simulations that combine 
two or more numerical methods are becoming more prevalent. For example, the 
FVM or LBM can be combined with the DEM (e.g., for modelling fluidization, 
sedimentation, etc.), or the FVM can be coupled with the Finite Element Method 
(not described in this paper, e.g., for modelling fluid flow in flexible conduits). 
This development allows researchers to address complex problems that require 
a more comprehensive and integrated approach.

It is worth emphasizing that the range of possible variants in a given 
numerical model of physical phenomena is vast. The palette of techniques and 
variations is also highly diverse, particularly evident in the case of multiphase 
systems or domains with moving boundaries. This diversity often leads 
to communication difficulties between researchers involved in experimental 
studies and numerical modelling. Even a minor change in assumptions, 
concepts, or research objectives may necessitate the use of entirely different 
mathematical frameworks or computational techniques. Since researchers 
specializing in simulation studies typically focus on specific problem classes, 
such changes can significantly delay the entire task due to the need to familiarize 
themselves with new theories, relevant literature, and the practical application 
of newly acquired concepts in selected software. Moreover, the time required for 
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conducting a single simulation can extend to days or weeks. Considering that the 
development of new models often involves testing multiple variants (e.g., during 
the search for new closures), obtaining initial, qualitatively correct results may 
take months or even years. This situation often leads to misunderstandings, 
as experimenters or engineers usually expect rapid results. The necessity for 
laborious preparation when approaching modelling new problem classes is one 
of the factors limiting the widespread application of numerical modelling at the 
engineering level.

Another critical factor is the current inadequacy and insufficient computational 
power of today’s computers. It can be speculated that a new chapter in numerical 
research will begin with the advent of long-awaited quantum computers. 
Furthermore, some currently employed approaches are expected to become less 
attractive: Reynolds-Averaged Navier-Stokes may be replaced by Direct Numerical 
Simulation; diffusion-convection equations may be superseded by full mass, 
momentum, and energy balance equations; macro-scale Porous Media Models 
may be substituted by micro-scale modelling of fluid flow in porous channels, 
and so on. It is also important to note that greater computational power will 
enable modelling on a significantly larger scale, such as simulating the entire 
flow system in a hydroelectric power plant rather than focusing solely on a single 
interblade channel. This development will hold paramount practical significance.

***
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Ljubljana University in Slovenia, co-financed by the European Union under the 
European Social Fund (Operational Program Knowledge Education Development), 
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