TRANSITION BIAS AND NEUTRAL SELECTION DRIVE THE EVOLUTION OF THE POLYKETIDE SYNTHASE GENE IN ASPERGILLUS SECTION NIGRI

Benjamin Thoha THOMAS

Department of Microbiology Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria

M.O. Coker

Department of Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria

Olumide Simon Taiwo

Department of Microbiology Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria

A.N. Thomas

Department of Animal Production Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria

O.D. Popoola

Department of Microbiology Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria


Abstract

The significance of the polyketide synthase (pks) gene in the biosynthesis of ochratoxin A in Aspergillus section Nigri has been well reported. However, factors driving the evolution of this gene in black aspergilli are seldom studied. This study, was therefore, aimed at investigating these factors as a means to understanding how to circumvent their wide epidemiological coverage in the nearest future. To achieve this, a total of one thousand cassava powders (Lafun) were collected from the four geopolitical zones of Ogun State, Nigeria and processed for black aspergilli using standard mycological procedures. The isolated organisms were subsequently characterised phenotypically, followed by screening for ochratoxin A production and sequencing of the pks gene associated with its biosynthesis. The sequenced pks genes were used for mutation discovery, estimation of selection, substitution pattern and phylogenetic analyses. The results revealed a total of 279 black aspergilli, distributed as follows: Aspergillus niger – 88 (8.8%), A. welwitschiae – 82 (8.2%), A. carbonarius – 56 (5.6%), and A. aculeatus – 47 (4.7%). Among these, 18 strains, comprising 6 A. niger, 3 A. aculeatus, 7 A. carbonarius, and 2 A. welwitschiae were identified as ochratoxigenic based on both phenotypic characterization and molecular amplification of the pks gene. The quantitative measurements of their ochratoxins ranged from 9.12–11.08 for Aspergillus aculeatus through 10.52–12.74 and 19.39–23.61 for Aspergillus carbonarius and Aspergillus niger to 23.88–27.02 for Aspergillus welwitschiae. All the ochratoxigenic Aspergillus welwitschiae, Aspergillus aculeatus and Aspergillus niger were clustered together on the phylogenetic tree. The maximum likelihood estimate of the transition-transversion bias of the pks genes of black aspergilli depicts that the number of proteins in the data set of the pks genes, the transition-transversion bias ratio and the maximum likelihood estimate were 2215 bp, 1.01 and –13279.996 respectively. The maximum composite likelihood estimates of the pattern of nucleotide substitution revealed frequent transitions than transversions in the polyketide synthase genes of Aspergillus section Nigri. The results showed that A/G and T/C transition were more frequent than C/T and G/A while the codon-based Fisher’s exact test analysis of selection, the Codon-based Z-test of neutral evolution and the results from Tajima’s Neutrality Test connotes significant bias for neutral evolution (p < 0.05). The above results suggest that transition and neutral selection drive the evolution of the pks gene of Aspergillus section Nigri.


Keywords:

transition, neutral selection, evolution, polyketide synthase gene, Aspergillus section Nigri


Altomare C., Logrieco A.F., Gallo A. 2021. Mycotoxins and mycotoxigenic fungi: risk and management. A challenge for future global food safety and security, pp. 64–93.
Crossref   Google Scholar

Atoui A., Phong Dao H., Mathieu F., Lebrihi A. 2006. Amplification and diversity analysis of ketosynthase domains of putative polyketide synthase genes in Aspergillus ochraceus and Aspergillus carbonarius producers of ochratoxin A. Mol. Nutr. Food Res., 50(6): 488–493.
Crossref   Google Scholar

Bao Y.Y., Wang Y., Wu W.J., Zhao D., Xue J., Zhang B.Q., Zhang C.X. 2012. De novo intestine-specific transcriptome of the brown planthopper Nilaparvata lugens revealed potential functions in digestion, detoxification and immune response. Genomics, 99(4): 256–264.
Crossref   Google Scholar

Battacone G., Nudda A., Pulina G. 2010. Effects of ochratoxin A on livestock production. Toxins, 2(7): 1796–1824.
Crossref   Google Scholar

Bellí N., Mitchell D., Marín S., Alegre I., Ramos A.J., Magan N., Sanchis V. 2005. Ochratoxin A-producing fungi in Spanish wine grapes and their relationship with meteorological conditions. Eur. J. Plant Pathol., 113: 233–239.
Crossref   Google Scholar

Cabañes F.J., Bragulat M.R. 2018. Black aspergilli and ochratoxin A-producing species in foods. Curr. Opin. Food Sci., 23: 1–10.
Crossref   Google Scholar

Cabañes F.J., Accensi F., Bragulat M.R., Abarca M.L., Castellá G., Minguez S., Pons A. 2002. What is the source of Ochratoxin A in wine? Int. J. Food Microbiol., 79(3): 213–215.
Crossref   Google Scholar

Fajola A.O. 1979. The post-harvest fruit rots of tomato (Lycopersicum esculentum) in Nigeria. Food/Nahrung, 23(2): 105–109.
Crossref   Google Scholar

Fox T., Fimeche C. 2013. Global food: waste not, want not. Inst. Mech. Eng., pp. 1–31.   Google Scholar

Gaddeyya G., Niharika P.S., Bharathi P., Kumar P.R. 2012. Isolation and identification of soil mycoflora in different crop fields at Salur Mandal. Adv. Appl. Sci. Res., 3(4): 2020–2026.   Google Scholar

Gallo A., Perrone G., Solfrizzo M., Epifani F., Abbas A., Dobson A.D., Mulè G. 2009. Characterisation of a pks gene which is expressed during ochratoxin A production by Aspergillus carbonarius. Int. J. Food Microbiol., 129(1): 8–15.
Crossref   Google Scholar

Gallo A., Knox B.P., Bruno K.S., Solfrizzo M., Baker S.E., Perrone G. 2014. Identification and characterization of the polyketide synthase involved in ochratoxin A biosynthesis in Aspergillus carbonarius. Int. J. Food Microbiol., 179: 10–17.
Crossref   Google Scholar

Geisen R. 2004. Molecular monitoring of environmental conditions influencing the induction of ochratoxin A biosynthesis genes in Penicillium nordicum. Mol. Nutr. Food Res., 48(7): 532–540.
Crossref   Google Scholar

Gil-Serna J., García-Díaz M., Vázquez C., González-Jaén M.T., Patiño B. 2019. Significance of Aspergillus niger aggregate species as contaminants of food products in Spain regarding their occurrence and their ability to produce mycotoxins. Food Microbiol., 82: 240–248.
Crossref   Google Scholar

Hasegawa M., Kishino H., Yano T.A. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol., 22: 160–174.
Crossref   Google Scholar

Heenan C.N., Shaw K.J., Pitt J.I. 1998. Ochratoxin A production by Aspergillus carbonarius and A. niger isolates and detection using coconut cream agar. J. Food Mycol., 1: 67–72.   Google Scholar

ICMSF. 2002. International Commission on Microbiological Specifications for Foods. Microorganisms in foods 7: Microbiological testing in food safety management (1st ed.). New York: Springer.   Google Scholar

Jarvis W.R., Traquair J.A. 1984. Bunch rot of grapes caused by Aspergillus aculeatus, pp. 718–719.
Crossref   Google Scholar

Jukes T.H., Cantor C.R., Munro H.N. 1969. Evolution of protein molecules. Mammalian protein metabolism. New York: Academic Press, 21–123.
Crossref   Google Scholar

Kapetanakou A.E., Panagou E.Z., Gialitaki M., Drosinos E.H., Skandamis P.N. 2009. Evaluating the combined effect of water activity, pH and temperature on ochratoxin A production by Aspergillus ochraceus and Aspergillus carbonarius on culture medium and Corinth raisins. Food Control, 20(8): 725–732.
Crossref   Google Scholar

Karolewiez A., Geisen R. 2005. Cloning a part of the ochratoxin A biosynthetic gene cluster of Penicillium nordicum and characterization of the ochratoxin polyketide synthase gene. Syst. Appl. Microbiol., 28(7): 588–595.
Crossref   Google Scholar

Keller I., Bensasson D., Nichols R.A. 2007. Transition-transversion bias is not universal: a counter example from grasshopper pseudogenes. PLoS Genet., 3(2): e22.
Crossref   Google Scholar

Khodaei D., Javanmardi F., Khaneghah A.M. 2021. The global overview of the occurrence of mycotoxins in cereals: A three-year survey. Curr. Opin. Food Sci., 39: 36–42.
Crossref   Google Scholar

Kimura M. 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proc. Natl. Acad. Sci., 78: 454–458.
Crossref   Google Scholar

Korneliussen T.S., Moltke I., Albrechtsen A., Nielsen R. 2013. Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinformatics, 14: 1–14.
Crossref   Google Scholar

Leong S.L., Hocking A.D., Pitt J.I. 2004. Occurrence of fruit rot fungi (Aspergillus section Nigri) on some drying varieties of irrigated grapes. Aust. J. Grape Wine Res., 10(1): 83–88.
Crossref   Google Scholar

Luo G.H., Li X.H., Han Z.J., Zhang Z.C., Yang Q., Guo H.F., Fang J.C. 2016. Transition and transversion mutations are biased towards GC in transposons of Chilo suppressalis (Lepidoptera: Pyralidae) Genes, 72(7): 1–12.
Crossref   Google Scholar

Lyons D.M., Lauring A.S. 2017. Evidence for the selective basis of transition-to-transversion substitution bias in two RNA viruses. Mol. Biol. Evol., 34(12): 3205–3215.
Crossref   Google Scholar

Mateus A.R.S., Barros S., Pena A., Sanches Silva A. 2021. Mycotoxins in pistachios (Pistacia vera L.): Methods for determination, occurrence, decontamination. Toxins, 13(10): 682.
Crossref   Google Scholar

Meyer S., Weiss G., von Haeseler A. 1999. Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA. Genetics, 152(3): 1103–1110.
Crossref   Google Scholar

O’callaghan J., Caddick M.X., Dobson A.D.W. 2003. A polyketide synthase gene required for ochratoxin A biosynthesis in Aspergillus ochraceus. Microbiol., 149(12): 3485–3491.
Crossref   Google Scholar

Ogiehor I.S., Ikenebomeh M.J. 2005. Extension of shelf life of garri by hygienic handling and sodium benzoate treatment. Afr. J. Biotechnol., 4(6): 618–621.
Crossref   Google Scholar

Perrone G., Gallo A. 2017. Aspergillus species and their associated mycotoxins. Mycotoxigenic fungi: Methods Protoc., pp. 33–49.
Crossref   Google Scholar

Plascencia-Jatomea M., Susana M., Gómez Y., Velez-Haro J. M. 2014. Aspergillus spp. (Black mold). In Postharvest decay. Academic Press, pp. 267–286.
Crossref   Google Scholar

Popoola O.D., Feyisola R.T., Adesetan T.O., Banjo O.A., Dele-Osibanjo T.A., Amusa O.D., Efuntoye M.O. 2024. Transition mutation bias is crucial to adaptive extended spectrum beta lactamase (ESBL) resistance evolution. Scientific African, 24: e02132.
Crossref   Google Scholar

Purvis A., Bromham L. 1997. Estimating the transition/transversion ratio from independent pairwise comparisons with an assumed phylogeny. J. Mol. Evol., 44: 112–119.
Crossref   Google Scholar

Samson R.A., Houbraken J.A.M.P., Kuijpers A.F., Frank J.M., Frisvad J.C. 2004. New ochratoxin A or sclerotium producing species in Aspergillus section Nigri. Stud Mycol., 50(1): 45–56.   Google Scholar

Samuel M.S., Jeyaram K., Datta S., Chandrasekar N., Balaji R., Selvarajan E. 2021. Detection, contamination, toxicity, and prevention methods of ochratoxins: An update review. J. Agric. Food Chem., 69(46): 13974–13989.
Crossref   Google Scholar

Shriner D., Shankarappa R., Jensen M.A., Nickle D.C., Mittler J.E., Margolick J.B., Mullins J.I. 2004. Influence of random genetic drift on human immunodeficiency virus type 1 env evolution during chronic infection. Genetics, 166(3): 1155–1164.
Crossref   Google Scholar

Smith D.B., Simmonds P. 1997. Characteristics of nucleotide substitution in the hepatitis C virus genome: constraints on sequence change in coding regions at both ends of the genome. J. Mol. Evol., 45: 238–246.
Crossref   Google Scholar

Stoltzfus A., Norris R.W. 2016. On the causes of evolutionary transition: transversion bias. Mol. Bio. Evol., 33(3): 595–602.
Crossref   Google Scholar

Szczepanowska K., Trifunovic A. 2020. Mitochondrial DNA mutations and aging. In The Human Mitochondrial Genome. Academic Press, pp. 221–242.
Crossref   Google Scholar

Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Bio. Evol., 24: 1596–1599.
Crossref   Google Scholar

Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Bio. Evol., 28(10): 2731–2739.
Crossref   Google Scholar

Tamura K., Stecher G., Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Bio. Evol., 38(7): 3022–3027.
Crossref   Google Scholar

Tanaka K., Sago Y., Zheng Y., Nakagawa H., Kushiro M. 2007. Mycotoxins in rice. Int. J. Food Microbiol., 119: 59–66.
Crossref   Google Scholar

Taniwaki M.H., Pitt J.I., Teixeira A.A., Iamanaka B.T. 2003. The source of ochratoxin A in Brazilian coffee and its formation in relation to processing methods. Int. J. Food Microbiol., 82(2): 173–179.
Crossref   Google Scholar

Thomas B.T., Ogunkanmi L.A. 2014. Ochratoxin A producing filamentous fungi in garri circulating in Ogun State, Nigeria. Elixir Biosciences, 75: 27788–27794.   Google Scholar

Thomas B.T., Agu G.C., Makanjuola S.O., Popoola O.D. 2014. Genome shuffling of Lactobacillus fermentum for improved production of lactic acid. Am. J. Res., 2: 245–250.   Google Scholar

Thomas B.T., Ogunkanmi L.A., Iwalokun B.A., Popoola O.D. 2019. Transition-transversion mutations in the polyketide synthase gene of Aspergillus section Nigri. Heliyon, 5(6).
Crossref   Google Scholar

Thomas B.T., Popoola O.D., Efuntoye M.O., Coker M.O., Tajudeen A.O. 2021. Pathological scanning of ochratoxigenic moulds impaired feed in vivo, towards conceptualizing their reverberations on different organs. Tanz. J. Sci., 47(2): 625–636.
Crossref   Google Scholar

Varga J., Rigó K., Kocsubé S., Farkas B., Pál K. 2003. Diversity of polyketide synthase gene sequences in Aspergillus species. Res. Microbiol., 154(8): 593–600.
Crossref   Google Scholar

Vicente V.A., Attili-Angelis D., Pie M.R., Queiroz-Telles F., Cruz L.M., Najafzadeh M.J., Pizzirani-Kleiner A. 2008. Environmental isolation of black yeast-like fungi involved in human infection. Stud. Mycol., 61(1): 137–144.
Crossref   Google Scholar

Wang L., Wang Y., Wang Q., Liu F., Selvaraj J.N., Liu L., Liu Y. 2015. Functional characterization of new polyketide synthase genes involved in ochratoxin A biosynthesis in Aspergillus ochraceus fc-1. Toxins, 7(8): 2723–2738.
Crossref   Google Scholar

Zhang Z., Gerstein M. 2003. Patterns of nucleotide substitution, insertion and deletion in the human genome inferred from pseudogenes. Nucleic Acids Res., 31: 5338–5348.
Crossref   Google Scholar

Zhang X., Li Y., Wang H., Gu X., Zheng X., Wang Y., Zhang H. 2016. Screening and identification of novel ochratoxin A-producing fungi from grapes. Toxins, 8(11): 333.
Crossref   Google Scholar

Download


Published
2025-12-30

Cited by

THOMAS, B. T., Coker, M. O. ., Taiwo, O. S. ., Thomas, A. N. ., & Popoola, O. D. . (2025). TRANSITION BIAS AND NEUTRAL SELECTION DRIVE THE EVOLUTION OF THE POLYKETIDE SYNTHASE GENE IN ASPERGILLUS SECTION NIGRI. Polish Journal of Natural Sciences, 40(3), 163–179. https://doi.org/10.31648/pjns.11190

Benjamin Thoha THOMAS 
Department of Microbiology Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
M.O. Coker 
Department of Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
Olumide Simon Taiwo 
Department of Microbiology Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
A.N. Thomas 
Department of Animal Production Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
O.D. Popoola 
Department of Microbiology Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria







-->