ENHANCED DNA EXTRACTION FROM TRIGONA HONEY: A LOW-VOLUME OF SAMPLE, HIGH-PURITY APPROACH FOR MOLECULAR RESEARCH
Endang Sulistyarini Gultom
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, William Iskandar PS. V. Medan, North Sumatera, 20221, Indonesiahttps://orcid.org/0000-0003-0378-6558
Rini Hafzari
Department of Biology, Faculty of Mathematics and Natural Sciences, State University of Medan, William Iskandar PS. V. Medan, North Sumatra, 20221, IndonesiaMelva Silitonga
Department of Biology, Faculty of Mathematics and Natural Science, State University of Medan, North Sumatra, IndonesiaEva Sartika Dasopang
Program Study Pharmacist, Tjut Nyak Dhien University, Medan Helvetia, Medan, North Sumatra, IndonesiaAbstract
Bees synthesize honey from floral nectar, with pollen inadvertently incorporated during the foraging process. Pollen constitutes the primary source of plant DNA in honey; however, its extraction is impeded by the high concentrations of sugars, phenolic compounds, and carbohydrates, often resulting in low purity and necessitating substantial sample volumes. This study presents a modified DNA extraction technique specifically optimized for Trigona honey, aimed at enhancing both efficiency and practicality. The protocol involves a pretreatment step where honey is diluted in a 1:4 ratio with distilled water, incubated at 60 °C for 25 minutes, followed by extraction without sample destruction. The quality of the extracted DNA was assessed using a nano spectrophotometer and PCR, demonstrating a high concentration of 1,790 ng/μL with distinct, smear-free bands. This method is straightforward, time-efficient, and resource-conserving, rendering it highly applicable for molecular research and honey authentication.
Keywords:
honey, trigona, DNA extraction method, DNA amplification.References
Ávila S., Hornung P.S., Teixeira G.L., L.N., Apea-Bah F.B., Beux M.R., Beta T., Ribanani R.H. 2019. Bioactive compounds and biological properties of Brazilian stingless bee honey have a strong relationship with the pollen floral origin. Food Res. Int., 123, 1–10. https://doi.org/10.1016/j.foodres.2019.01.068
Crossref
Google Scholar
Aziz M.S.A., Giribabu N., Rao P.V., Salleh N. 2017. Pancreatoprotective effects of Geniotrigona thoracica stingless bee honey in streptozotocin-nicotinamide-induced male diabetic rats. J. Biomed. Pharmacother., 89: 135–145.
Crossref
Google Scholar
Babadi Z.K., Narmanani A., Ebrahimipour G.H., J. 2022. Combination and improvement of conventional DNA extraction methods in Actinobacteria to obtain high-quantity and high-quality DNA. Iran J Microbiol, 14(2): 186–193. https://doi.org/10.18502/ijm.v14i2.9187
Crossref
Google Scholar
Balkan R., StefANova K., Stoikova-Grigorova R., IGNAtova M. 2020. A preliminary assessment of trnH-psbA as DNA barcode for botanical identification of polyfloral honey samples and comparison with rbcL marker. Bulg. J. Agric. Sci., 26(1): 238–242. Google Scholar
Gultom E.S., Harahap U., Dwi S., Herbert S., Rini H. 2025. Molecular Identification using 16s rRNA gene to identify bacteria symbiont-Agelas Sp. Sponge with antibacterial activity. J. Microbiol. Biotechnol. Food Sci., 14(4). https://doi.org/10.55251/jmbfs.11840
Crossref
Google Scholar
Gultom E.S., Hasruddin H., Wasni N.Z. 2023. Exploration of endophytic bacteria in FIGS (Ficus carica L.) with Antibacterial Agent Potential. Trop. J. Nat. Prod. Res, 7(7): 3342–3350. https://tjnpr.org/index.php/home/article/view/2220
Crossref
Google Scholar
Irish J., Blair S., Carter D.A. 2011. The antibacterial activity of honey derived from Australian Flora. PLOS ONE, 6(3). https://doi.org/10.1371/journal.pone.0018229
Crossref
Google Scholar
Krishnanasree V., UKKUru M.P. 2016. In vitro antidiabetic activity and glycemic index of bee honeys. Indian J. Tradit. Knowl., 16: 134–140. Google Scholar
Lalhmangaangaihi R., S., Laha R., G., Kumar N.S. 2014. Protocol for optimal quality and quantity pollen DNA isolation from honey samples. J. Biomol. Tech., 25(4): 92–95. https://doi.org/10.7171/jbt.14-2504-001
Crossref
Google Scholar
Larsen P., Ahmed M. 2022. Evaluation of antioxidant potential of honey drops and honey lozenges. Food Chem. Adv., 1, 100013. https://doi.org/10.1016/j.focha.2022.100013
Crossref
Google Scholar
Lowe A., Jones L., Witter L., Creer S., de Vere N. 2022. Using DNA metabarcoding to identify floral visitation by pollinators. Diversity, 14(4): 236.
Crossref
Google Scholar
Lucena-Aguilar G., SÁNchez-López A.M., BarberÁN-AceitUNo C., Carrillo-Ávila J.A., López-Guerrero J.A., AguGUilar-Quesada R. 2016. DNA source selection for downstream applications based on DNA quality indicators analysis. Biopreserv Biobank, 14(4), 264–270. https://doi.org/10.1089/bio.2015.0064
Crossref
Google Scholar
Malewski T., Dzikowski A., Sołtyszewski I. 2021. Molecular methods of animal species identification. Pol. J. Natur. Sc., 36(1): 79–94. Google Scholar
Menchhoff S.I., Delacruz M.T., Hytinen M.E., Cox J.O., Miller M.T., Dawson Cruz T. 2020. DNA purification cell lysis and wash step modifications for low-template DNA sample processing. J. Forensic Sci., 65(2): 597–600. https://doi.org/10.1111/1556-4029.14203
Crossref
Google Scholar
Nordin A., Sainik N.Q.A.V., Chowdhury S.R., Saim A.B., Idrus R.B.H. 2018. Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. J. Food Compos. Anal., 73: 91–102. https://doi.org/https://doi.org/10.1016/j.jfca.2018.06.002
Crossref
Google Scholar
Ribani A., Taurisano V., Utzeri V.J., Fontanesi L. 2022. Honey environmental DNA can be used to detect and monitor honey bee pests: Development of methods useful to identify Aethina tumida and Galleria mellonella Infestations. Vet. Sci, 9(5). https://doi.org/10.3390/vetsci9050213
Crossref
Google Scholar
Hafzari R., Annisa, Kairani A., Nur Cholis M., Puspa L., Huda N., Situmorang N., D.R.A.K. 2024. Precision and reliability of nanoplate digital Pcr system for pork DNA identification and quantification. J. Microbiol. Biotechnol. Food Sci, 14(1). https://doi.org/10.55251/jmbfs.10691
Crossref
Google Scholar
Rodríguez-Riveiro R., Velasco A., Sotelo C.G. 2022. The Influence of DNA extraction methods on species identification results of seafood products. Foods, 11(12). https://doi.org/10.3390/foods11121739
Crossref
Google Scholar
Schievano E., Finotello C., Uddin J., Mammi S., L. 2016. Objective definition of monofloral and polyfloral honeys based on nmr metabolomic profiling. J. Agric.Food Chem., 64(18), 3645–3652. https://doi.org/10.1021/acs.jafc.6b00619
Crossref
Google Scholar
Soares S., Amaral J.S., Oliveira M.B.P.P., Mafra I. 2017. A Comprehensive review on the main honey authentication issues: Production and origin. Compr. Rev. Food Sci. Food Saf., 16(5): 1072–1100. https://doi.org/https://doi.org/10.1111/1541-4337.12278
Crossref
Google Scholar
Sutanta M., Wulan D.T., Nabila Y., Sophian A. 2022. Application of double wash technique for species DNA isolation in soft capsule shell samples: Application of double wash technique for species DNA isolation in soft capsule shell samples. Eruditio: Indonesia Journal of Food and Drug Safety, 2(1): 14–19. https://doi.org/10.54384/eruditio.v2i1.78
Crossref
Google Scholar
Urumarudappa S.K. J., Tung C., Prombutara P., S. 2020. DNA metabarcoding to unravel plant species composition in selected herbal medicines on the National List of Essential Medicines (NLEM) of Thailand. Scientific Reports, 10(1) : 18259. https://doi.org/10.1038/s41598-020-75305-0
Crossref
Google Scholar
Utzeri V.J., RibanANi A., FontANesi L. 2018. Authentication of honey based on a DNA method to differentiate Apis mellifera subspecies: Application to Sicilian honey bee (A.m. siciliana) and Iberian honey bee (A.m. iberiensis) honeys. Food Control., 91. 10.1016/j.foodcont.2018.04.010
Crossref
Google Scholar
Valdés-Silverio L.A., Iturralde G., García-Tenesaca M., Paredes-Moreta J., Narváez-Narváez D.A., Rojas-Carrillo M., Tejera E., Beltrán-Ayala P., Giampieri F., Alvarez-SuaUArez J. M. 2018. Physicochemical parameters, chemical composition, antioxidant capacity, microbial contamination and antimicrobial activity of eucalyptus honey from The Andean Region Of Ecuador. J. Apic. Res, 57(3): 382–394. https://doi.org/10.1080/00218839.2018.1426349
Crossref
Google Scholar
Wirta H., Abrego N., Miller K., Roslin T., Vesterinen E. 2021. DNA traces the origin of honey by identifying plants, bacteria and fungi. Sci. Reports, 11(1): 4798. https://doi.org/10.1038/s41598-021-84174-0
Crossref
Google Scholar
Zawawi N., Ismail N., Jusoh A.Z., Chong P.J., Mohd T.N.N., Saiful ANUAr N.S., Mohammad s.M. 2021. Establishing relationship between vitamins, total phenolic and total flavonoid content and antioxidant activities in various honey types. Molecules, 26(15): 4399. https://doi.org/10.3390/molecules26154399
Crossref
Google Scholar
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, William Iskandar PS. V. Medan, North Sumatera, 20221, Indonesia
https://orcid.org/0000-0003-0378-6558
Department of Biology, Faculty of Mathematics and Natural Sciences, State University of Medan, William Iskandar PS. V. Medan, North Sumatra, 20221, Indonesia
Department of Biology, Faculty of Mathematics and Natural Science, State University of Medan, North Sumatra, Indonesia
Program Study Pharmacist, Tjut Nyak Dhien University, Medan Helvetia, Medan, North Sumatra, Indonesia
