ENHANCED DNA EXTRACTION FROM TRIGONA HONEY: A LOW-VOLUME OF SAMPLE, HIGH-PURITY APPROACH FOR MOLECULAR RESEARCH

Endang Sulistyarini Gultom

Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, William Iskandar PS. V. Medan, North Sumatera, 20221, Indonesia
https://orcid.org/0000-0003-0378-6558

Rini Hafzari

Department of Biology, Faculty of Mathematics and Natural Sciences, State University of Medan, William Iskandar PS. V. Medan, North Sumatra, 20221, Indonesia

Melva Silitonga

Department of Biology, Faculty of Mathematics and Natural Science, State University of Medan, North Sumatra, Indonesia

Eva Sartika Dasopang

Program Study Pharmacist, Tjut Nyak Dhien University, Medan Helvetia, Medan, North Sumatra, Indonesia


Abstract

Bees synthesize honey from floral nectar, with pollen inadvertently incorporated during the foraging process. Pollen constitutes the primary source of plant DNA in honey; however, its extraction is impeded by the high concentrations of sugars, phenolic compounds, and carbohydrates, often resulting in low purity and necessitating substantial sample volumes. This study presents a modified DNA extraction technique specifically optimized for Trigona honey, aimed at enhancing both efficiency and practicality. The protocol involves a pretreatment step where honey is diluted in a 1:4 ratio with distilled water, incubated at 60 °C for 25 minutes, followed by extraction without sample destruction. The quality of the extracted DNA was assessed using a nano spectrophotometer and PCR, demonstrating a high concentration of 1,790 ng/μL with distinct, smear-free bands. This method is straightforward, time-efficient, and resource-conserving, rendering it highly applicable for molecular research and honey authentication.


Keywords:

honey, trigona, DNA extraction method, DNA amplification.


Ávila S., Hornung P.S., Teixeira G.L., L.N., Apea-Bah F.B., Beux M.R., Beta T., Ribanani R.H. 2019. Bioactive compounds and biological properties of Brazilian stingless bee honey have a strong relationship with the pollen floral origin. Food Res. Int., 123, 1–10. https://doi.org/10.1016/j.foodres.2019.01.068
Crossref   Google Scholar

Aziz M.S.A., Giribabu N., Rao P.V., Salleh N. 2017. Pancreatoprotective effects of Geniotrigona thoracica stingless bee honey in streptozotocin-nicotinamide-induced male diabetic rats. J. Biomed. Pharmacother., 89: 135–145.
Crossref   Google Scholar

Babadi Z.K., Narmanani A., Ebrahimipour G.H., J. 2022. Combination and improvement of conventional DNA extraction methods in Actinobacteria to obtain high-quantity and high-quality DNA. Iran J Microbiol, 14(2): 186–193. https://doi.org/10.18502/ijm.v14i2.9187
Crossref   Google Scholar

Balkan R., StefANova K., Stoikova-Grigorova R., IGNAtova M. 2020. A preliminary assessment of trnH-psbA as DNA barcode for botanical identification of polyfloral honey samples and comparison with rbcL marker. Bulg. J. Agric. Sci., 26(1): 238–242.   Google Scholar

Gultom E.S., Harahap U., Dwi S., Herbert S., Rini H. 2025. Molecular Identification using 16s rRNA gene to identify bacteria symbiont-Agelas Sp. Sponge with antibacterial activity. J. Microbiol. Biotechnol. Food Sci., 14(4). https://doi.org/10.55251/jmbfs.11840
Crossref   Google Scholar

Gultom E.S., Hasruddin H., Wasni N.Z. 2023. Exploration of endophytic bacteria in FIGS (Ficus carica L.) with Antibacterial Agent Potential. Trop. J. Nat. Prod. Res, 7(7): 3342–3350. https://tjnpr.org/index.php/home/article/view/2220
Crossref   Google Scholar

Irish J., Blair S., Carter D.A. 2011. The antibacterial activity of honey derived from Australian Flora. PLOS ONE, 6(3). https://doi.org/10.1371/journal.pone.0018229
Crossref   Google Scholar

Krishnanasree V., UKKUru M.P. 2016. In vitro antidiabetic activity and glycemic index of bee honeys. Indian J. Tradit. Knowl., 16: 134–140.   Google Scholar

Lalhmangaangaihi R., S., Laha R., G., Kumar N.S. 2014. Protocol for optimal quality and quantity pollen DNA isolation from honey samples. J. Biomol. Tech., 25(4): 92–95. https://doi.org/10.7171/jbt.14-2504-001
Crossref   Google Scholar

Larsen P., Ahmed M. 2022. Evaluation of antioxidant potential of honey drops and honey lozenges. Food Chem. Adv., 1, 100013. https://doi.org/10.1016/j.focha.2022.100013
Crossref   Google Scholar

Lowe A., Jones L., Witter L., Creer S., de Vere N. 2022. Using DNA metabarcoding to identify floral visitation by pollinators. Diversity, 14(4): 236.
Crossref   Google Scholar

Lucena-Aguilar G., SÁNchez-López A.M., BarberÁN-AceitUNo C., Carrillo-Ávila J.A., López-Guerrero J.A., AguGUilar-Quesada R. 2016. DNA source selection for downstream applications based on DNA quality indicators analysis. Biopreserv Biobank, 14(4), 264–270. https://doi.org/10.1089/bio.2015.0064
Crossref   Google Scholar

Malewski T., Dzikowski A., Sołtyszewski I. 2021. Molecular methods of animal species identification. Pol. J. Natur. Sc., 36(1): 79–94.   Google Scholar

Menchhoff S.I., Delacruz M.T., Hytinen M.E., Cox J.O., Miller M.T., Dawson Cruz T. 2020. DNA purification cell lysis and wash step modifications for low-template DNA sample processing. J. Forensic Sci., 65(2): 597–600. https://doi.org/10.1111/1556-4029.14203
Crossref   Google Scholar

Nordin A., Sainik N.Q.A.V., Chowdhury S.R., Saim A.B., Idrus R.B.H. 2018. Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. J. Food Compos. Anal., 73: 91–102. https://doi.org/https://doi.org/10.1016/j.jfca.2018.06.002
Crossref   Google Scholar

Ribani A., Taurisano V., Utzeri V.J., Fontanesi L. 2022. Honey environmental DNA can be used to detect and monitor honey bee pests: Development of methods useful to identify Aethina tumida and Galleria mellonella Infestations. Vet. Sci, 9(5). https://doi.org/10.3390/vetsci9050213
Crossref   Google Scholar

Hafzari R., Annisa, Kairani A., Nur Cholis M., Puspa L., Huda N., Situmorang N., D.R.A.K. 2024. Precision and reliability of nanoplate digital Pcr system for pork DNA identification and quantification. J. Microbiol. Biotechnol. Food Sci, 14(1). https://doi.org/10.55251/jmbfs.10691
Crossref   Google Scholar

Rodríguez-Riveiro R., Velasco A., Sotelo C.G. 2022. The Influence of DNA extraction methods on species identification results of seafood products. Foods, 11(12). https://doi.org/10.3390/foods11121739
Crossref   Google Scholar

Schievano E., Finotello C., Uddin J., Mammi S., L. 2016. Objective definition of monofloral and polyfloral honeys based on nmr metabolomic profiling. J. Agric.Food Chem., 64(18), 3645–3652. https://doi.org/10.1021/acs.jafc.6b00619
Crossref   Google Scholar

Soares S., Amaral J.S., Oliveira M.B.P.P., Mafra I. 2017. A Comprehensive review on the main honey authentication issues: Production and origin. Compr. Rev. Food Sci. Food Saf., 16(5): 1072–1100. https://doi.org/https://doi.org/10.1111/1541-4337.12278
Crossref   Google Scholar

Sutanta M., Wulan D.T., Nabila Y., Sophian A. 2022. Application of double wash technique for species DNA isolation in soft capsule shell samples: Application of double wash technique for species DNA isolation in soft capsule shell samples. Eruditio: Indonesia Journal of Food and Drug Safety, 2(1): 14–19. https://doi.org/10.54384/eruditio.v2i1.78
Crossref   Google Scholar

Urumarudappa S.K. J., Tung C., Prombutara P., S. 2020. DNA metabarcoding to unravel plant species composition in selected herbal medicines on the National List of Essential Medicines (NLEM) of Thailand. Scientific Reports, 10(1) : 18259. https://doi.org/10.1038/s41598-020-75305-0
Crossref   Google Scholar

Utzeri V.J., RibanANi A., FontANesi L. 2018. Authentication of honey based on a DNA method to differentiate Apis mellifera subspecies: Application to Sicilian honey bee (A.m. siciliana) and Iberian honey bee (A.m. iberiensis) honeys. Food Control., 91. 10.1016/j.foodcont.2018.04.010
Crossref   Google Scholar

Valdés-Silverio L.A., Iturralde G., García-Tenesaca M., Paredes-Moreta J., Narváez-Narváez D.A., Rojas-Carrillo M., Tejera E., Beltrán-Ayala P., Giampieri F., Alvarez-SuaUArez J. M. 2018. Physicochemical parameters, chemical composition, antioxidant capacity, microbial contamination and antimicrobial activity of eucalyptus honey from The Andean Region Of Ecuador. J. Apic. Res, 57(3): 382–394. https://doi.org/10.1080/00218839.2018.1426349
Crossref   Google Scholar

Wirta H., Abrego N., Miller K., Roslin T., Vesterinen E. 2021. DNA traces the origin of honey by identifying plants, bacteria and fungi. Sci. Reports, 11(1): 4798. https://doi.org/10.1038/s41598-021-84174-0
Crossref   Google Scholar

Zawawi N., Ismail N., Jusoh A.Z., Chong P.J., Mohd T.N.N., Saiful ANUAr N.S., Mohammad s.M. 2021. Establishing relationship between vitamins, total phenolic and total flavonoid content and antioxidant activities in various honey types. Molecules, 26(15): 4399. https://doi.org/10.3390/molecules26154399
Crossref   Google Scholar

Download


Published
2025-12-30

Cited by

Gultom, E. S., Rini Hafzari, Melva Silitonga, & Eva Sartika Dasopang. (2025). ENHANCED DNA EXTRACTION FROM TRIGONA HONEY: A LOW-VOLUME OF SAMPLE, HIGH-PURITY APPROACH FOR MOLECULAR RESEARCH. Polish Journal of Natural Sciences, 40(3), 133–142. https://doi.org/10.31648/pjns.11421

Endang Sulistyarini Gultom 
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, William Iskandar PS. V. Medan, North Sumatera, 20221, Indonesia
https://orcid.org/0000-0003-0378-6558
Rini Hafzari 
Department of Biology, Faculty of Mathematics and Natural Sciences, State University of Medan, William Iskandar PS. V. Medan, North Sumatra, 20221, Indonesia
Melva Silitonga 
Department of Biology, Faculty of Mathematics and Natural Science, State University of Medan, North Sumatra, Indonesia
Eva Sartika Dasopang 
Program Study Pharmacist, Tjut Nyak Dhien University, Medan Helvetia, Medan, North Sumatra, Indonesia







-->