QUALITY OF THE LONGISSIMUS LUMBORUM MUSCLE IN CROSSBRED FATTENERS FED DIETS SUPPLEMENTED WITH PROBIOTIC, PREBIOTIC, AND SYNBIOTIC
Anna Milczarek
Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of SiedlceAndrzej Zybert
Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of SiedlceKrystian Tarczyński
Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of SiedlceAlina Janocha
Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of SiedlceHalina Sieczkowska
Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of SiedlceElżbieta Krzęcio-Nieczyporuk
Faculty of Medical and Health Sciences University of Siedlce, Siedlce, PolandKatarzyna Antosik
Faculty of Medical and Health Sciences University of Siedlce, Siedlce, PolandAbstract
This study aimed to evaluate the quality of the longissimus lumborum muscle in PLW × PL pigs fed diets supplemented with a probiotic, a prebiotic and a synbiotic. The study material comprised the longissimus lumborum (LL) muscle sampled from fattening pigs. The animals were fed complete feed rations according to the following scheme: control group (I) – no feed additives; group II – 0.3% EM Bokashi; group III – 3% inulin; and group IV – 0.3% EM Bokashi + 3% inulin. The pigs were fattened until they reached an average body weight of approximately 112 kg. The inclusion of feed additives in the diets did no affect carcass muscularity or fatness (p > 0.05). Supplementation with inulin and EM Bokashi (group IV) significantly reduced muscle pH at 45 min and 2 h post-mortem compared to group II. No significant effect of the feeding strategy was observed on the electrical conductivity, water holding capacity or the LL muscle tenderness. However, the highest drip loss and muscle tenderness were recorded in pigs fed diets supplemented with inulin. The muscles from pigs in groups I and II were darker in colour (L*), but less saturated in red and yellow hues than the LL muscle from pigs in groups III and IV (p ≤ 0.05). A significantly higher intramuscular fat (IMF) content (1.73% and 1.67%) was recorded in the muscles of pigs fed diets with EM Bokashi or inulin, respectively, compared to the control group (1.28%). Simultaneously, the LL muscle from pigs receiving the prebiotic-supplemented diet contained significantly less cholesterol than that from groups II and IV. The higher IMF levels in the LL muscle of pigs fed inulin or EM Bokashi contributed to a significantly (p ≤ 0.05) increased content of oleic, saturated, and monounsaturated fatty acids compared to that of control pigs. Based on these findings, the inclusion of 3% inulin in complete feed rations for fattening pigs is recommended, as it resulted in the lowest cholesterol level and most favourable fatty acid profile in the longissimus lumborum muscle.
Keywords:
feed additives, nutrition , fatteners, meat, physicochemical traitsReferences
Alloui M.N., Szczurek W., Swiatkiewicz S. 2013. The usefulness of prebiotics and probiotics in modern poultry nutrition: a review. Ann. Anim. Sci., 13(1): 17–32, doi:10.2478/v10220-012-0055-x.
Crossref
Google Scholar
Altmann B.A., Trinks A., Morlein D. 2023. Consumer preferences for the color of unprocessed animal foods. J. Food Sci., 88: 909–925, doi:10.1111/1750-3841.16485.
Crossref
Google Scholar
Aluwé M., Langendries K.C.M., Beakert K.M., Tuyttens F.A.M., De Brabander D.L., De Smet S., Millet S. 2013. Effect of surgical castration, immunocastration and chicory-diet on the meat quality and palatability of boars. Meat Sci., 94: 402–407, doi:10.1016/j.meatsci.2013.02.015.
Crossref
Google Scholar
AOAC Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.: Revision 2, Association of Official Analytical Chemists, INC.: Gaithersburg, USA, 2003. Google Scholar
Grau R., Hamm R. 1952. Eine einfache Methode zur Bestimmung der Wasserbindung in Fleisch. Fleischwirtschaft, 4: 295–297. Google Scholar
Balasubramanian B., Lee S.I., Kim I.H. 2018. Inclusion of dietary multi-species probiotic on growth performance, nutrient digestibility, meat quality traits, faecal microbiota and diarrhoea score in growing–finishing pigs. Ital. J. Anim. Sci., 17: 100–106, doi:10.1080/1828051X.2017.1340097.
Crossref
Google Scholar
Bertram H.C., Petersen, J.S., Andersen H.J. 2000. Relationship between RN− genotype and drip loss in meat from Danish pigs. Meat Sci., 56(1): 49–55, doi:10.1016/S0309-1740(00)00018-8.
Crossref
Google Scholar
Brewer M.S. 1998. Consumer attitudes towards color and marbling of fresh pork. American Meat Science Association. National Pork Board, pp. 1–8. Google Scholar
Brewer M.S., Zhu L.G., McKeith F.K. 2001. Marbling effects on quality characteristics of pork loin chops: Consumer purchase intent, visual and sensory characteristics. Meat Sci., 59: 153–163, doi:10.1016/S0309-1740(01)00065-1.
Crossref
Google Scholar
Chang S.Y., Belal S.A., Kong D.R., Choi Y.I., Kim Y.H., Choe H.S., Heo J.Y., Shim K.S. 2018. Influence of probiotics-friendly pig production on meat quality and physicochemical characteristics. Korean J. Food Sci. An. Resour., 38(2): 403–416, doi:10.5851/kosfa.2018.38.2.403. Google Scholar
Chen B., Li D., Leng D., Kui H., Bai X., Wang T. 2022. Gut microbiota and meat quality. Front. Microbiol., 13:951726, doi:10.3389/fmicb.2022.951726.
Crossref
Google Scholar
Chen Y.J., Son K.S., Min B.J., Cho J.H., Kwon O.S., Kim I.H. 2005. Effects of dietary probiotic on growth performance, nutrients digestibility, blood characteristics and fecal noxious gas content in growing pigs. Asian-Aust. J. Anim. Sci., 18: 1464–1468.
Crossref
Google Scholar
Chikkerur J., Samanta A.K., Kolte A.P., Dhali A., Roy S. 2020. Production of short chain fructo-oligosaccharides from inulin of chicory root using fungal endoinulinase. Appl. Biochem. Biotechnol., 191: 695–715, doi:10.1007/s12010-019-03215-7.
Crossref
Google Scholar
CIE. 2007, Draft Standard 014-4.3/E: Colorimetry—Part. 4: CIE 1976 L*a*b* Colour Space; CIE: Vienna, Austria: p. 8. Google Scholar
de Araújo P.D., Araújo W.M.C., Patarata L., Fraqueza M.J. 2022. Understanding the main factors that influence consumer quality perception and attitude towards meat and processed meat products. Meat Sci., 193: 108952, doi:10.1016/j.meatsci.2022.108952.
Crossref
Google Scholar
Delzenne N.M., Kok N.N. 1999. Biochemical basis of oligofructose – induced hypolipidemia in animal models. J. Nutr., 129: 1467–1470.
Crossref
Google Scholar
Di Y., Ding L., Gao L., Huang H. 2023. Association of meat consumption with the risk of gastrointestinal cancers: A systematic review and meta-analysis. BMC Cancer, 23: 782, doi:10.1186/s12885-023-11218-1.
Crossref
Google Scholar
EU Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of European Union, v. 276, 2010: 33–79. Google Scholar
FAO/WHO Expert Consultation, Amerian Córdoba Park Hotel, Córdoba, Argentina. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention 2001, 5: 1–10. https://www.iqb.es/digestivo/pdfs/probioticos.pdf, access: 29.05.2025. Google Scholar
Flint H.J., Scott K.P., Louis P., Duncan S.H. 2012. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol., 9: 577–589, doi:10.1038/nrgastro.2012.156.
Crossref
Google Scholar
Folch J., Lees M., Sloane Stanley G.H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226: 497–509, doi:10.1016/s0021-9258(18)64849-5.
Crossref
Google Scholar
Franck A. 2002. Technological functionality of inulin and oligofructose. Br. J. Nutr., 87: 287–291, doi:10.1079/BJNBJN/2002550.
Crossref
Google Scholar
Font-I-Furnols M., Guerrero L. 2014. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci., 98: 361–371, doi:10.1016/j.meatsci.2014.06.025.
Crossref
Google Scholar
Font-i-Furnols M., Tous N., Esteve-Garcia E., GispSPert M. 2012. Do all the consumers accept the marbling in the same way? The relation between visual and sensory acceptability of pork. Meat Sci., 91: 448–453, doi:10.1016/j.meatsci.2012.02.030.
Crossref
Google Scholar
Grela E.R., Pietrzak K., SobolewskSKa S., WitkowSKi P. 2013. Effect of inulin and garlic supplementation in pig diets Ann. Anim. Sci., 13(1): 63–71, doi:10.2478/v10220-012-0059-6.
Crossref
Google Scholar
Grela E.R., Świątkiewicz M., Florek M., Bąkowski M., Skiba G. 2021. Effect of inulin source and a probiotic supplement in pig diets on carcass traits, meat quality and fatty acid composition in finishing pigs. Animals, 11: 2438, doi:10.3390/ani11082438.
Crossref
Google Scholar
Hansen L.L., Mejer H., ThamsMSborg S.M., Byrne D.V., RoePStorff A., KarlSSon A.H., Hansen-Møller J., Jensen M.T., Tuomola M. 2006. Influence of chicory roots (Cichorium intybus L.) on boar taint in entire male and female pigs. Anim. Sci., 82: 659–368, doi:10.1079/ASC200648.
Crossref
Google Scholar
Hansen L.L., Stolzenbach S., Jensen J.A., Henckel P., Hansen-Moller J., Syriopoulos K., Byrne D.V. 2008. Effect of feeding fermentable fibre-rich feedstuffs on meat quality with emphasis on chemical and sensory boar taint in entire male and female pigs. Meat Sci., 80: 1165–1173, doi:10.1016/j.meatsci.2008.05.010.
Crossref
Google Scholar
Herforth A., Arimond M., Álvarez-Sánchez C., Coates J., Christianson K., Muehlhoff E e. 2019. A global review of food-based dietary guidelines. Adv. Nutr., 10: 590–605, doi:10.1093/advances/nmy130.
Crossref
Google Scholar
Honikel K.O. 1998. Reference methods for the assessment of physical characteristics of meat. Meat Sci., 49: 447–457.
Crossref
Google Scholar
Jaworska D., Przybylski W., Kajak-Siemaszko K., Czarniecka-Skubina E. 2009. Sensory quality of culinary pork meat in relation to slaughter and technological value. Food Sci. Technol. Res., 15(1): 65–74, doi:10.3136/fstr.15.65.
Crossref
Google Scholar
Jensen M.T., Hansen L.L. 2006. Feeding with chicory roots reduces the amount of odorous compounds in colon and rectal contents of pigs. Anim. Sci., 82: 369–376, doi:10.1079/ASC200649.
Crossref
Google Scholar
Jiang J. 2011. Effect of ASTA on weight gain and meat quality on finishing pigs. Hunan Feed. 5: 40–43. Google Scholar
Jukna C., Jukna V., Šimkus A. 2005. The effect of probiotics and phytobiotics on meat properties and quality in pigs. Vet. Zootech., 29: 80–84. Google Scholar
Kiernan D.P., O’Doherty J.V., Sweeney T. 2023. The effect of prebiotic supplements on the gastrointestinal microbiota and associated health parameters in pigs. Animals, 13: 3012, doi:10.3390/ani13193012.
Crossref
Google Scholar
Kunachowicz H., Nadolna I., Przygoda B., Iwanow K. 2020. Food composition tables. PZWL Warszawa: Warszawa, Poland. Google Scholar
Lee S.J., Shin N.H., Ok J.U., Jung H.S., Chu G.M., Kim J.D., Kim I.H., Lee S.S. 2009. Effects of dietary synbiotics from anaerobic microflora on growth performance, noxious gas emission and fecal pathogenic bacteria population in weaning pigs, Asian-Aust. J. Anim. Sci., 22(8): 1202–1208.
Crossref
Google Scholar
Liu T.Y., Su B.C., Wang J.L., Zhang C., Shan A.S. 2013. Effects of probiotics on growth, pork quality and serum metabolites in growing-finishing pigs. J. Northeast Agric. Univ., 53: 57–63, doi:10.1016/S1006-8104(14)60048-9.
Crossref
Google Scholar
Markowiak P., Śliżewska K. 2017. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 15(9): 1021, doi:10.3390/nu9091021.
Crossref
Google Scholar
Milczarek A. 2021. Carcass composition and quality of meat of Pulawska and Pulawska x PLW Crossbred Pigs fed rations with naked oats. Animals, 11: 3342, doi:10.3390/ani11123342.
Crossref
Google Scholar
Milczarek A., Osek M. 2019. Effectiveness evaluation of use of various protein feeds for broiler chicken feeding. Ann. Anim. Sci., 19: 1063–1081, doi:10.2478/aoas-2019-0056.
Crossref
Google Scholar
Milczarek A., Osek M. 2016. Meat quality of Pulawska breed pigs fed mixtures with low-tannin faba bean meal. Żywność Nauka. Technologia. Jakość, 1(104): 57–67, doi:10.15193/zntj/2016/104/101.
Crossref
Google Scholar
Milczarek A., Osek M., Banaszkiewicz T. 2019. Chemical composition of meat from the Pulawska breed pigs, depending on their slaughter weight. J. Elem., 24(2): 639–648, doi:10.5601/jelem.2018.23.4.1725.
Crossref
Google Scholar
Ngapo T.M. 2017. Consumer preferences for pork chops in five Canadian provinces. Meat Sci., 129: 102–110, doi:10.1016/j.meatsci.2017.02.022.
Crossref
Google Scholar
Ngapo T.M., Fortin J., Aalhus J.L., Martin J.F. 2010. Consumer choices of pork chops: Results from two Canadian sites. Food Res. Int., 43(6): 1559–1565, doi:10.1016/j.foodres.2010.01.018.
Crossref
Google Scholar
Ngapo T.M., Martin J.F., Dransfield E. 2007. International preferences for pork appearance: I. Consumer choices. Food Qual. Prefer., 18: 26–36, doi:10.1016/j.foodqual.2005.07.001.
Crossref
Google Scholar
Nowak A., Klimowicz A., Bielecka-Grzela S., Piechota M. 2012. Inulin: a valuable nutritional component. Ann. Acad. Med. Stetin., 58: 62–65. Google Scholar
NRC. Nutrient Requirements of Swine. 11th ed. National Research Council of the National Academies, The National Academies Press; Washington, DC, USA: 2021. Google Scholar
OECD/FAO, OECD-FAO Agricultural Outlook (Edition 2023), OECD Agriculture Statistics (database), 2024, doi:10.1787/agr-data-en.
Crossref
Google Scholar
Patterson J.K., Yasuda K., Welch R.M., Miller D.D., Lei X.G. 2010. Supplemental dietary inulin of variable chain lengths alters intestinal bacterial populations in young pigs. J. Nutr., 140: 2158–2161, doi:10.3945/jn.110.130302.
Crossref
Google Scholar
Pereira Pinto R., Reis N., Barbosa C., Pinheiro R., Vaz-Velho M. 2019. Physicochemical analysis of ham from entire male pigs raised with different feeding and housing conditions. J. Food Process. Preserv., 00:e14233, doi:10.1111/jfpp.14233.
Crossref
Google Scholar
PN-ISO Norm 11036:1999 Sensory analysis – Methodology – Texture profiling [in Polish]. Google Scholar
Pohja N.S., Ninivaara F.P. 1957. Die Bestimmung der Wasserbindung des Fleischesmittels der Konsandrück methods. Fleischwirtschaft, 9: 193–195. Google Scholar
Polish Standard PN-EN ISO 12228:2002. Vegetable and animal oils and fats. Determination of particular sterols and their total content. Gas chromatography method. [in Polish]. Google Scholar
Prange H., Jugert L., Schamer E. 1997. Untersuchungen zur Muskelfleisch qualität beim Schwein. Arch. Exp. Vet. Med. Leipzig, 31: 235–248. Google Scholar
Przybylski W., Jaworska D., Sałek P., Sobol M., Branicki M., Skiba G., Raj S., Jankiewicz U u. 2019. The effect of inulin supply to high-fat diet rich in saturated fatty acids on pork quality and profile of sarcoplasmic protein in meat exudate. J. Anim. Physiol. Anim. Nutr., 103: 593–602, doi:10.1111/jpn.13039.
Crossref
Google Scholar
Reszka P., Cygan-Szczegielniak D., Jankowiak H., Cebulska A., Mikołajczak B., Bogucka J. 2020. Effects of effective microorganisms on meat quality, microstructure of the longissimus lumborum muscle, and electrophoretic protein separation in pigs fed on different diets. Animals, 10(10): 1–16, doi:10.3390/ani10101755.
Crossref
Google Scholar
Ringseis R., Eder K. 2022. Heat stress in pigs and broilers: role of gut dysbiosis in the impairment of the gut‑liver axis and restoration of these effects by probiotics, prebiotics and synbiotics. J. Anim. Sci. Biotechnol., 13: 126, doi:10.1186/s40104-022-00783-3.
Crossref
Google Scholar
Roberfroid M.B. 2007. Inulin-type fructans: functional food ingredients. J. Nutr., 137: 2493–2502, doi:10.1093/jn/137.11.2493S.
Crossref
Google Scholar
Rosenvold K., Andersen H.J. 2003. The significance of pre-slaughter stress and diet on colour and colour stability of pork. Meat Sci., 63: 199–209, doi:10.1016/S0309-1740(02)00071-2.
Crossref
Google Scholar
Rybarczyk A. 2019. Effect of BioPlus YC probiotic on production performance and meat quality of pigs. Fleischwirtschaft, 1: 90–94. Google Scholar
Rybarczyk A., Bogusławska-Wąs E., Łupkowska A. 2020. Effect of EM® probiotic on gut microbiota, growth performance, carcass and meat quality of pigs. Livest. Sci., 241: 104206, doi:10.1016/j.livsci.2020.104206.
Crossref
Google Scholar
Rybarczyk A., Bogusławska-Wąs E., Pilarczyk B. 2021. Carcass and pork quality and gut environment of pigs fed a diet supplemented with the bokashi probiotic. Animals, 11: 3590, doi: 10.3390/ani11123590.
Crossref
Google Scholar
Rybarczyk A., Romanowski M., Karamucki T., Ligocki M. 2016. The effect of Bokashi probiotic on pig carcass characteristics and meat quality. Fleischwirtschaft International, 1: 74–77. Google Scholar
Scheffler T.L., Gerrard D.E. 2007. Mechanisms controlling pork quality development: The biochemistry controlling post mortem energy metabolism. Meat Sci., 77: 7–16, doi:10.1016/j.meatsci.2007.04.024.
Crossref
Google Scholar
Scott K., Stanton C., Swanson K.S., Cani P.D., Verbeke K., Reid G. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol., 14: 491–502, doi:10.1038/nrgastro.2017.75.
Crossref
Google Scholar
Shi W., Huang X., Schooling C.M., Zhao J.V. 2023. Red meat consumption, cardiovascular diseases, and diabetes: A systematic review and meta-analysis. Eur. Heart J., 44: 2626–2635, doi:10.1093/eurheartj/ehad336.
Crossref
Google Scholar
Shim S.B., Verstegen M.W.A., Kim I.H., Kwon O.S., Verdonk J.M.A.J. 2005. Effects of feeding antibiotic-free creep feed supplemented with oligofructose, probiotics or synbiotics to suckling piglets increases the preweaning weight gain and composition of intestinal microbiota. Arch. Anim. Nutr., 59(6): 419–427, doi:10.1080/17450390500353234.
Crossref
Google Scholar
Sobolewska S., Grela E. 2014. The effect of inulin extraction method or powder from inulin-producing plants in fattener diets on performance, carcass traits and meat quality. Ann. Anim. Sci., 14(4): 911–920.
Crossref
Google Scholar
StatSoft Inc. Statistica (Data Analysis Software System), version 13.1; StatSoft Inc.: Tulsa, OK, USA, 2019. Google Scholar
Suo C., Yin Y., Wang X., Lou X., Song D., Wang X., Gu Q. 2012. Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality. BMC Vet. Res., 8: 89–101, doi:10.1186/1746-6148-8-89.
Crossref
Google Scholar
Tufarelli V., Crovace A.M., Rossi G., Laudadio V. 2017. Effect of a dietary probiotic blend on performance, blood characteristics, meat quality and faecal microbial shedding in growing-finishing pigs. S. Afr. Anim. Sci., 47: 875–882, doi:10.4314/sajas.v47i6.15.
Crossref
Google Scholar
Van Bekkum H., Röper H., Voragen A. 2008. Carbohydrates as organic raw materials III. John Wiley & Sons, New York, USA. Google Scholar
Verbeke W., De Smet S., Vackier I., Van Oeckel M. J., Warnants N., Van Kenhove P. 2005. Role of intrinsic search cues in the formation of consumer preferences and choice for pork chops. Meat Sci., 69: 343–354, doi:10.1016/j.meatsci.2004.08.005.
Crossref
Google Scholar
Verbeke W., Pérez-Cueto F.J.A., de Barcellos M.D., Krystallis A., Grunert K.G. 2010. European citizen and consumer attitudes and preferences regarding beef and pork. Meat Sci., 84: 284–292, doi:10.1016/j.meatsci.2009.05.001.
Crossref
Google Scholar
Wang W., Chen D., Yu B., Huang Z., Luo Y., Zheng P., Mao X., Yu J., Luo J., He J. 2019. effect of dietary inulin supplementation on growth performance, carcass traits, and meat quality in growing–finishing pigs. Animals, 9: 840, doi:10.3390/ani9100840.
Crossref
Google Scholar
Wen C., Wang Q., Gu S., Jin J., Yang N. 2024. Emerging perspectives in the gut–muscle axis: The gut microbiota and its metabolites as important modulators of meat quality. Microb. Biotechnol., 17:e14361, doi:1111/1751-7915.14361.
Crossref
Google Scholar
Wheeler T.L., Koohmaraie M., Shackelford S.D. 1996. Effect of vitamin C concentration and co-injection with calcium chloride on beef retail display color. J. Anim. Sci., 74: 1846–1853, doi:10.2527/1996.7481846x.
Crossref
Google Scholar
Williams C. 1999. Effect of inulin on lipid parameters in humans. J. Nutr., 129: 1471–1473.
Crossref
Google Scholar
Wood J.D., Wseman J., Cole D.J.A. 1994. Control and manipulation of meat quality. In: Principles of Pig Science. Nottingham University Press, pp. 433–456. Google Scholar
Yang J., Wang C., Huang K., Zhang M., Wang J., Pan X. 2020. Compound lactobacillus sp. administration ameliorates stress and body growth through gut microbiota optimization on weaning piglets. Appl. Microbiol. Biotechnol., 104: 6749–6765, doi:10.1007/s00253-020-10727-4.
Crossref
Google Scholar
Zduńczyk W., Tkacz K., Pietrzak-Fiećko R., Bottari B., Modzelewska-Kapituła M. 2024. Pork as a source of nutrients in a human diet - comparison of meat obtained from conventional and organic systems offered in the Polish market. NFS Journal, 37: 100199, doi:10.1016/j.nfs.2024.100199.
Crossref
Google Scholar
Zhou P., Wu Y., Shen J., Duan T., Che L., Zhang Y., Zhao Y., Yan H. 2025. Gestational inulin supplementation in low-/high-fat sow diets: Effects on growth performance, lipid metabolism, and meat quality of offspring pigs. Foods, 14: 1314, doi:10.3390/foods14081314.
Crossref
Google Scholar
Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce
Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce
Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce
Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce
Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce
Faculty of Medical and Health Sciences University of Siedlce, Siedlce, Poland
Faculty of Medical and Health Sciences University of Siedlce, Siedlce, Poland
