QUALITY OF THE LONGISSIMUS LUMBORUM MUSCLE IN CROSSBRED FATTENERS FED DIETS SUPPLEMENTED WITH PROBIOTIC, PREBIOTIC, AND SYNBIOTIC

Anna Milczarek

Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce

Andrzej Zybert

Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce

Krystian Tarczyński

Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce

Alina Janocha

Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce

Halina Sieczkowska

Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce

Elżbieta Krzęcio-Nieczyporuk

Faculty of Medical and Health Sciences University of Siedlce, Siedlce, Poland

Katarzyna Antosik

Faculty of Medical and Health Sciences University of Siedlce, Siedlce, Poland


Abstract

This study aimed to evaluate the quality of the longissimus lumborum muscle in PLW × PL pigs fed diets supplemented with a probiotic, a prebiotic and a synbiotic. The study material comprised the longissimus lumborum (LL) muscle sampled from fattening pigs. The animals were fed complete feed rations according to the following scheme: control group (I) – no feed additives; group II – 0.3% EM Bokashi; group III – 3% inulin; and group IV – 0.3% EM Bokashi + 3% inulin. The pigs were fattened until they reached an average body weight of approximately 112 kg. The inclusion of feed additives in the diets did no affect carcass muscularity or fatness (p > 0.05). Supplementation with inulin and EM Bokashi (group IV) significantly reduced muscle pH at 45 min and 2 h post-mortem compared to group II. No significant effect of the feeding strategy was observed on the electrical conductivity, water holding capacity or the LL muscle tenderness. However, the highest drip loss and muscle tenderness were recorded in pigs fed diets supplemented with inulin. The muscles from pigs in groups I and II were darker in colour (L*), but less saturated in red and yellow hues than the LL muscle from pigs in groups III and IV (p ≤ 0.05). A significantly higher intramuscular fat (IMF) content (1.73% and 1.67%) was recorded in the muscles of pigs fed diets with EM Bokashi or inulin, respectively, compared to the control group (1.28%). Simultaneously, the LL muscle from pigs receiving the prebiotic-supplemented diet contained significantly less cholesterol than that from groups II and IV. The higher IMF levels in the LL muscle of pigs fed inulin or EM Bokashi contributed to a significantly (p ≤ 0.05) increased content of oleic, saturated, and monounsaturated fatty acids compared to that of control pigs. Based on these findings, the inclusion of 3% inulin in complete feed rations for fattening pigs is recommended, as it resulted in the lowest cholesterol level and most favourable fatty acid profile in the longissimus lumborum muscle.


Keywords:

feed additives, nutrition , fatteners, meat, physicochemical traits


Alloui M.N., Szczurek W., Swiatkiewicz S. 2013. The usefulness of prebiotics and probiotics in modern poultry nutrition: a review. Ann. Anim. Sci., 13(1): 17–32, doi:10.2478/v10220-012-0055-x.
Crossref   Google Scholar

Altmann B.A., Trinks A., Morlein D. 2023. Consumer preferences for the color of unprocessed animal foods. J. Food Sci., 88: 909–925, doi:10.1111/1750-3841.16485.
Crossref   Google Scholar

Aluwé M., Langendries K.C.M., Beakert K.M., Tuyttens F.A.M., De Brabander D.L., De Smet S., Millet S. 2013. Effect of surgical castration, immunocastration and chicory-diet on the meat quality and palatability of boars. Meat Sci., 94: 402–407, doi:10.1016/j.meatsci.2013.02.015.
Crossref   Google Scholar

AOAC Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.: Revision 2, Association of Official Analytical Chemists, INC.: Gaithersburg, USA, 2003.   Google Scholar

Grau R., Hamm R. 1952. Eine einfache Methode zur Bestimmung der Wasserbindung in Fleisch. Fleischwirtschaft, 4: 295–297.   Google Scholar

Balasubramanian B., Lee S.I., Kim I.H. 2018. Inclusion of dietary multi-species probiotic on growth performance, nutrient digestibility, meat quality traits, faecal microbiota and diarrhoea score in growing–finishing pigs. Ital. J. Anim. Sci., 17: 100–106, doi:10.1080/1828051X.2017.1340097.
Crossref   Google Scholar

Bertram H.C., Petersen, J.S., Andersen H.J. 2000. Relationship between RN− genotype and drip loss in meat from Danish pigs. Meat Sci., 56(1): 49–55, doi:10.1016/S0309-1740(00)00018-8.
Crossref   Google Scholar

Brewer M.S. 1998. Consumer attitudes towards color and marbling of fresh pork. American Meat Science Association. National Pork Board, pp. 1–8.   Google Scholar

Brewer M.S., Zhu L.G., McKeith F.K. 2001. Marbling effects on quality characteristics of pork loin chops: Consumer purchase intent, visual and sensory characteristics. Meat Sci., 59: 153–163, doi:10.1016/S0309-1740(01)00065-1.
Crossref   Google Scholar

Chang S.Y., Belal S.A., Kong D.R., Choi Y.I., Kim Y.H., Choe H.S., Heo J.Y., Shim K.S. 2018. Influence of probiotics-friendly pig production on meat quality and physicochemical characteristics. Korean J. Food Sci. An. Resour., 38(2): 403–416, doi:10.5851/kosfa.2018.38.2.403.   Google Scholar

Chen B., Li D., Leng D., Kui H., Bai X., Wang T. 2022. Gut microbiota and meat quality. Front. Microbiol., 13:951726, doi:10.3389/fmicb.2022.951726.
Crossref   Google Scholar

Chen Y.J., Son K.S., Min B.J., Cho J.H., Kwon O.S., Kim I.H. 2005. Effects of dietary probiotic on growth performance, nutrients digestibility, blood characteristics and fecal noxious gas content in growing pigs. Asian-Aust. J. Anim. Sci., 18: 1464–1468.
Crossref   Google Scholar

Chikkerur J., Samanta A.K., Kolte A.P., Dhali A., Roy S. 2020. Production of short chain fructo-oligosaccharides from inulin of chicory root using fungal endoinulinase. Appl. Biochem. Biotechnol., 191: 695–715, doi:10.1007/s12010-019-03215-7.
Crossref   Google Scholar

CIE. 2007, Draft Standard 014-4.3/E: Colorimetry—Part. 4: CIE 1976 L*a*b* Colour Space; CIE: Vienna, Austria: p. 8.   Google Scholar

de Araújo P.D., Araújo W.M.C., Patarata L., Fraqueza M.J. 2022. Understanding the main factors that influence consumer quality perception and attitude towards meat and processed meat products. Meat Sci., 193: 108952, doi:10.1016/j.meatsci.2022.108952.
Crossref   Google Scholar

Delzenne N.M., Kok N.N. 1999. Biochemical basis of oligofructose – induced hypolipidemia in animal models. J. Nutr., 129: 1467–1470.
Crossref   Google Scholar

Di Y., Ding L., Gao L., Huang H. 2023. Association of meat consumption with the risk of gastrointestinal cancers: A systematic review and meta-analysis. BMC Cancer, 23: 782, doi:10.1186/s12885-023-11218-1.
Crossref   Google Scholar

EU Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of European Union, v. 276, 2010: 33–79.   Google Scholar

FAO/WHO Expert Consultation, Amerian Córdoba Park Hotel, Córdoba, Argentina. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention 2001, 5: 1–10. https://www.iqb.es/digestivo/pdfs/probioticos.pdf, access: 29.05.2025.   Google Scholar

Flint H.J., Scott K.P., Louis P., Duncan S.H. 2012. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol., 9: 577–589, doi:10.1038/nrgastro.2012.156.
Crossref   Google Scholar

Folch J., Lees M., Sloane Stanley G.H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226: 497–509, doi:10.1016/s0021-9258(18)64849-5.
Crossref   Google Scholar

Franck A. 2002. Technological functionality of inulin and oligofructose. Br. J. Nutr., 87: 287–291, doi:10.1079/BJNBJN/2002550.
Crossref   Google Scholar

Font-I-Furnols M., Guerrero L. 2014. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci., 98: 361–371, doi:10.1016/j.meatsci.2014.06.025.
Crossref   Google Scholar

Font-i-Furnols M., Tous N., Esteve-Garcia E., GispSPert M. 2012. Do all the consumers accept the marbling in the same way? The relation between visual and sensory acceptability of pork. Meat Sci., 91: 448–453, doi:10.1016/j.meatsci.2012.02.030.
Crossref   Google Scholar

Grela E.R., Pietrzak K., SobolewskSKa S., WitkowSKi P. 2013. Effect of inulin and garlic supplementation in pig diets Ann. Anim. Sci., 13(1): 63–71, doi:10.2478/v10220-012-0059-6.
Crossref   Google Scholar

Grela E.R., Świątkiewicz M., Florek M., Bąkowski M., Skiba G. 2021. Effect of inulin source and a probiotic supplement in pig diets on carcass traits, meat quality and fatty acid composition in finishing pigs. Animals, 11: 2438, doi:10.3390/ani11082438.
Crossref   Google Scholar

Hansen L.L., Mejer H., ThamsMSborg S.M., Byrne D.V., RoePStorff A., KarlSSon A.H., Hansen-Møller J., Jensen M.T., Tuomola M. 2006. Influence of chicory roots (Cichorium intybus L.) on boar taint in entire male and female pigs. Anim. Sci., 82: 659–368, doi:10.1079/ASC200648.
Crossref   Google Scholar

Hansen L.L., Stolzenbach S., Jensen J.A., Henckel P., Hansen-Moller J., Syriopoulos K., Byrne D.V. 2008. Effect of feeding fermentable fibre-rich feedstuffs on meat quality with emphasis on chemical and sensory boar taint in entire male and female pigs. Meat Sci., 80: 1165–1173, doi:10.1016/j.meatsci.2008.05.010.
Crossref   Google Scholar

Herforth A., Arimond M., Álvarez-Sánchez C., Coates J., Christianson K., Muehlhoff E e. 2019. A global review of food-based dietary guidelines. Adv. Nutr., 10: 590–605, doi:10.1093/advances/nmy130.
Crossref   Google Scholar

Honikel K.O. 1998. Reference methods for the assessment of physical characteristics of meat. Meat Sci., 49: 447–457.
Crossref   Google Scholar

Jaworska D., Przybylski W., Kajak-Siemaszko K., Czarniecka-Skubina E. 2009. Sensory quality of culinary pork meat in relation to slaughter and technological value. Food Sci. Technol. Res., 15(1): 65–74, doi:10.3136/fstr.15.65.
Crossref   Google Scholar

Jensen M.T., Hansen L.L. 2006. Feeding with chicory roots reduces the amount of odorous compounds in colon and rectal contents of pigs. Anim. Sci., 82: 369–376, doi:10.1079/ASC200649.
Crossref   Google Scholar

Jiang J. 2011. Effect of ASTA on weight gain and meat quality on finishing pigs. Hunan Feed. 5: 40–43.   Google Scholar

Jukna C., Jukna V., Šimkus A. 2005. The effect of probiotics and phytobiotics on meat properties and quality in pigs. Vet. Zootech., 29: 80–84.   Google Scholar

Kiernan D.P., O’Doherty J.V., Sweeney T. 2023. The effect of prebiotic supplements on the gastrointestinal microbiota and associated health parameters in pigs. Animals, 13: 3012, doi:10.3390/ani13193012.
Crossref   Google Scholar

Kunachowicz H., Nadolna I., Przygoda B., Iwanow K. 2020. Food composition tables. PZWL Warszawa: Warszawa, Poland.   Google Scholar

Lee S.J., Shin N.H., Ok J.U., Jung H.S., Chu G.M., Kim J.D., Kim I.H., Lee S.S. 2009. Effects of dietary synbiotics from anaerobic microflora on growth performance, noxious gas emission and fecal pathogenic bacteria population in weaning pigs, Asian-Aust. J. Anim. Sci., 22(8): 1202–1208.
Crossref   Google Scholar

Liu T.Y., Su B.C., Wang J.L., Zhang C., Shan A.S. 2013. Effects of probiotics on growth, pork quality and serum metabolites in growing-finishing pigs. J. Northeast Agric. Univ., 53: 57–63, doi:10.1016/S1006-8104(14)60048-9.
Crossref   Google Scholar

Markowiak P., Śliżewska K. 2017. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 15(9): 1021, doi:10.3390/nu9091021.
Crossref   Google Scholar

Milczarek A. 2021. Carcass composition and quality of meat of Pulawska and Pulawska x PLW Crossbred Pigs fed rations with naked oats. Animals, 11: 3342, doi:10.3390/ani11123342.
Crossref   Google Scholar

Milczarek A., Osek M. 2019. Effectiveness evaluation of use of various protein feeds for broiler chicken feeding. Ann. Anim. Sci., 19: 1063–1081, doi:10.2478/aoas-2019-0056.
Crossref   Google Scholar

Milczarek A., Osek M. 2016. Meat quality of Pulawska breed pigs fed mixtures with low-tannin faba bean meal. Żywność Nauka. Technologia. Jakość, 1(104): 57–67, doi:10.15193/zntj/2016/104/101.
Crossref   Google Scholar

Milczarek A., Osek M., Banaszkiewicz T. 2019. Chemical composition of meat from the Pulawska breed pigs, depending on their slaughter weight. J. Elem., 24(2): 639–648, doi:10.5601/jelem.2018.23.4.1725.
Crossref   Google Scholar

Ngapo T.M. 2017. Consumer preferences for pork chops in five Canadian provinces. Meat Sci., 129: 102–110, doi:10.1016/j.meatsci.2017.02.022.
Crossref   Google Scholar

Ngapo T.M., Fortin J., Aalhus J.L., Martin J.F. 2010. Consumer choices of pork chops: Results from two Canadian sites. Food Res. Int., 43(6): 1559–1565, doi:10.1016/j.foodres.2010.01.018.
Crossref   Google Scholar

Ngapo T.M., Martin J.F., Dransfield E. 2007. International preferences for pork appearance: I. Consumer choices. Food Qual. Prefer., 18: 26–36, doi:10.1016/j.foodqual.2005.07.001.
Crossref   Google Scholar

Nowak A., Klimowicz A., Bielecka-Grzela S., Piechota M. 2012. Inulin: a valuable nutritional component. Ann. Acad. Med. Stetin., 58: 62–65.   Google Scholar

NRC. Nutrient Requirements of Swine. 11th ed. National Research Council of the National Academies, The National Academies Press; Washington, DC, USA: 2021.   Google Scholar

OECD/FAO, OECD-FAO Agricultural Outlook (Edition 2023), OECD Agriculture Statistics (database), 2024, doi:10.1787/agr-data-en.
Crossref   Google Scholar

Patterson J.K., Yasuda K., Welch R.M., Miller D.D., Lei X.G. 2010. Supplemental dietary inulin of variable chain lengths alters intestinal bacterial populations in young pigs. J. Nutr., 140: 2158–2161, doi:10.3945/jn.110.130302.
Crossref   Google Scholar

Pereira Pinto R., Reis N., Barbosa C., Pinheiro R., Vaz-Velho M. 2019. Physicochemical analysis of ham from entire male pigs raised with different feeding and housing conditions. J. Food Process. Preserv., 00:e14233, doi:10.1111/jfpp.14233.
Crossref   Google Scholar

PN-ISO Norm 11036:1999 Sensory analysis – Methodology – Texture profiling [in Polish].   Google Scholar

Pohja N.S., Ninivaara F.P. 1957. Die Bestimmung der Wasserbindung des Fleischesmittels der Konsandrück methods. Fleischwirtschaft, 9: 193–195.   Google Scholar

Polish Standard PN-EN ISO 12228:2002. Vegetable and animal oils and fats. Determination of particular sterols and their total content. Gas chromatography method. [in Polish].   Google Scholar

Prange H., Jugert L., Schamer E. 1997. Untersuchungen zur Muskelfleisch qualität beim Schwein. Arch. Exp. Vet. Med. Leipzig, 31: 235–248.   Google Scholar

Przybylski W., Jaworska D., Sałek P., Sobol M., Branicki M., Skiba G., Raj S., Jankiewicz U u. 2019. The effect of inulin supply to high-fat diet rich in saturated fatty acids on pork quality and profile of sarcoplasmic protein in meat exudate. J. Anim. Physiol. Anim. Nutr., 103: 593–602, doi:10.1111/jpn.13039.
Crossref   Google Scholar

Reszka P., Cygan-Szczegielniak D., Jankowiak H., Cebulska A., Mikołajczak B., Bogucka J. 2020. Effects of effective microorganisms on meat quality, microstructure of the longissimus lumborum muscle, and electrophoretic protein separation in pigs fed on different diets. Animals, 10(10): 1–16, doi:10.3390/ani10101755.
Crossref   Google Scholar

Ringseis R., Eder K. 2022. Heat stress in pigs and broilers: role of gut dysbiosis in the impairment of the gut‑liver axis and restoration of these effects by probiotics, prebiotics and synbiotics. J. Anim. Sci. Biotechnol., 13: 126, doi:10.1186/s40104-022-00783-3.
Crossref   Google Scholar

Roberfroid M.B. 2007. Inulin-type fructans: functional food ingredients. J. Nutr., 137: 2493–2502, doi:10.1093/jn/137.11.2493S.
Crossref   Google Scholar

Rosenvold K., Andersen H.J. 2003. The significance of pre-slaughter stress and diet on colour and colour stability of pork. Meat Sci., 63: 199–209, doi:10.1016/S0309-1740(02)00071-2.
Crossref   Google Scholar

Rybarczyk A. 2019. Effect of BioPlus YC probiotic on production performance and meat quality of pigs. Fleischwirtschaft, 1: 90–94.   Google Scholar

Rybarczyk A., Bogusławska-Wąs E., Łupkowska A. 2020. Effect of EM® probiotic on gut microbiota, growth performance, carcass and meat quality of pigs. Livest. Sci., 241: 104206, doi:10.1016/j.livsci.2020.104206.
Crossref   Google Scholar

Rybarczyk A., Bogusławska-Wąs E., Pilarczyk B. 2021. Carcass and pork quality and gut environment of pigs fed a diet supplemented with the bokashi probiotic. Animals, 11: 3590, doi: 10.3390/ani11123590.
Crossref   Google Scholar

Rybarczyk A., Romanowski M., Karamucki T., Ligocki M. 2016. The effect of Bokashi probiotic on pig carcass characteristics and meat quality. Fleischwirtschaft International, 1: 74–77.   Google Scholar

Scheffler T.L., Gerrard D.E. 2007. Mechanisms controlling pork quality development: The biochemistry controlling post mortem energy metabolism. Meat Sci., 77: 7–16, doi:10.1016/j.meatsci.2007.04.024.
Crossref   Google Scholar

Scott K., Stanton C., Swanson K.S., Cani P.D., Verbeke K., Reid G. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol., 14: 491–502, doi:10.1038/nrgastro.2017.75.
Crossref   Google Scholar

Shi W., Huang X., Schooling C.M., Zhao J.V. 2023. Red meat consumption, cardiovascular diseases, and diabetes: A systematic review and meta-analysis. Eur. Heart J., 44: 2626–2635, doi:10.1093/eurheartj/ehad336.
Crossref   Google Scholar

Shim S.B., Verstegen M.W.A., Kim I.H., Kwon O.S., Verdonk J.M.A.J. 2005. Effects of feeding antibiotic-free creep feed supplemented with oligofructose, probiotics or synbiotics to suckling piglets increases the preweaning weight gain and composition of intestinal microbiota. Arch. Anim. Nutr., 59(6): 419–427, doi:10.1080/17450390500353234.
Crossref   Google Scholar

Sobolewska S., Grela E. 2014. The effect of inulin extraction method or powder from inulin-producing plants in fattener diets on performance, carcass traits and meat quality. Ann. Anim. Sci., 14(4): 911–920.
Crossref   Google Scholar

StatSoft Inc. Statistica (Data Analysis Software System), version 13.1; StatSoft Inc.: Tulsa, OK, USA, 2019.   Google Scholar

Suo C., Yin Y., Wang X., Lou X., Song D., Wang X., Gu Q. 2012. Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality. BMC Vet. Res., 8: 89–101, doi:10.1186/1746-6148-8-89.
Crossref   Google Scholar

Tufarelli V., Crovace A.M., Rossi G., Laudadio V. 2017. Effect of a dietary probiotic blend on performance, blood characteristics, meat quality and faecal microbial shedding in growing-finishing pigs. S. Afr. Anim. Sci., 47: 875–882, doi:10.4314/sajas.v47i6.15.
Crossref   Google Scholar

Van Bekkum H., Röper H., Voragen A. 2008. Carbohydrates as organic raw materials III. John Wiley & Sons, New York, USA.   Google Scholar

Verbeke W., De Smet S., Vackier I., Van Oeckel M. J., Warnants N., Van Kenhove P. 2005. Role of intrinsic search cues in the formation of consumer preferences and choice for pork chops. Meat Sci., 69: 343–354, doi:10.1016/j.meatsci.2004.08.005.
Crossref   Google Scholar

Verbeke W., Pérez-Cueto F.J.A., de Barcellos M.D., Krystallis A., Grunert K.G. 2010. European citizen and consumer attitudes and preferences regarding beef and pork. Meat Sci., 84: 284–292, doi:10.1016/j.meatsci.2009.05.001.
Crossref   Google Scholar

Wang W., Chen D., Yu B., Huang Z., Luo Y., Zheng P., Mao X., Yu J., Luo J., He J. 2019. effect of dietary inulin supplementation on growth performance, carcass traits, and meat quality in growing–finishing pigs. Animals, 9: 840, doi:10.3390/ani9100840.
Crossref   Google Scholar

Wen C., Wang Q., Gu S., Jin J., Yang N. 2024. Emerging perspectives in the gut–muscle axis: The gut microbiota and its metabolites as important modulators of meat quality. Microb. Biotechnol., 17:e14361, doi:1111/1751-7915.14361.
Crossref   Google Scholar

Wheeler T.L., Koohmaraie M., Shackelford S.D. 1996. Effect of vitamin C concentration and co-injection with calcium chloride on beef retail display color. J. Anim. Sci., 74: 1846–1853, doi:10.2527/1996.7481846x.
Crossref   Google Scholar

Williams C. 1999. Effect of inulin on lipid parameters in humans. J. Nutr., 129: 1471–1473.
Crossref   Google Scholar

Wood J.D., Wseman J., Cole D.J.A. 1994. Control and manipulation of meat quality. In: Principles of Pig Science. Nottingham University Press, pp. 433–456.   Google Scholar

Yang J., Wang C., Huang K., Zhang M., Wang J., Pan X. 2020. Compound lactobacillus sp. administration ameliorates stress and body growth through gut microbiota optimization on weaning piglets. Appl. Microbiol. Biotechnol., 104: 6749–6765, doi:10.1007/s00253-020-10727-4.
Crossref   Google Scholar

Zduńczyk W., Tkacz K., Pietrzak-Fiećko R., Bottari B., Modzelewska-Kapituła M. 2024. Pork as a source of nutrients in a human diet - comparison of meat obtained from conventional and organic systems offered in the Polish market. NFS Journal, 37: 100199, doi:10.1016/j.nfs.2024.100199.
Crossref   Google Scholar

Zhou P., Wu Y., Shen J., Duan T., Che L., Zhang Y., Zhao Y., Yan H. 2025. Gestational inulin supplementation in low-/high-fat sow diets: Effects on growth performance, lipid metabolism, and meat quality of offspring pigs. Foods, 14: 1314, doi:10.3390/foods14081314.
Crossref   Google Scholar

Download


Published
2025-12-30

Cited by

Milczarek, A., Zybert, A., Tarczyński, K., Janocha, A., Sieczkowska, H., Krzęcio-Nieczyporuk, E., & Antosik, K. (2025). QUALITY OF THE LONGISSIMUS LUMBORUM MUSCLE IN CROSSBRED FATTENERS FED DIETS SUPPLEMENTED WITH PROBIOTIC, PREBIOTIC, AND SYNBIOTIC. Polish Journal of Natural Sciences, 40(3), 143–162. https://doi.org/10.31648/pjns.11928

Anna Milczarek 
Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce
Andrzej Zybert 
Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce
Krystian Tarczyński 
Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce
Alina Janocha 
Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce
Halina Sieczkowska 
Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce
Elżbieta Krzęcio-Nieczyporuk 
Faculty of Medical and Health Sciences University of Siedlce, Siedlce, Poland
Katarzyna Antosik 
Faculty of Medical and Health Sciences University of Siedlce, Siedlce, Poland







-->