THE CONTENTS OF INORGANIC COMPONENTS IN SELECTED POLISH AND ROMANIAN HERBAL TEAS INFUSIONS
Joanna Kończyk
a:1:{s:5:"en_US";s:38:"Jan Dlugosz University in Częstochowa";}Rajmund Michalski
Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, PolandEdward Muntean
Wojciech Lasoń
Jerzy Gęga
Faculty of Production Engineering and Materials Technology, Częstochowa University of Technology, Częstochowa, PolandAbstract
Herbal teas are consumed due to their health properties that largely result from the contents of the organic and inorganic compounds in them. The aim of this study was to analyze the contents of the main inorganic ions (F -, Cl -, NO3-, PO43-, SO42-, Na+, K+, Mg2+, Ca2+) and trace metals (Cr, Mn, Fe, Ni, Cu, Zn, Cd, Al, Pb, Co) in infusions prepared from popular herbal teas available in the Polish and Romanian markets. Ion chromatography with conductivity detection and microwave plasma-atomic emission spectroscopy were applied for this purpose. It was established that in some instances, several herbal teas exhibit higher concentrations of hazardous analytes, such as nitrate, cadmium, lead, or chromium. The chemometric evaluation of the studied teas was carried out and the common traits and differences were found.
Keywords:
anions, cations, metals, herbal tea, chemical riskReferences
ABD EL-ATY, A.M., CHOI, J.-H., RAHMAN, MD.M., KIM, S.-W., TOSUN, A., SHIM, J.-H., 2014. Residues and contaminants in tea and tea infusions: a review. Food Addit. Contam. Part A 31: 1794–1804. Google Scholar
ANDISHE TADBIR, A., POURSHAHIDI, S., EBRAHIMI, H., HAJIPOUR, Z., MEMARZADE, M. R., SHIRAZIAN, S. 2015. The effect of Matricaria chamomilla (chamomile) extract in Orabase on minor aphthous stomatitis, a randomized clinical trial. J. Herb. Med. 5: 71–76. Google Scholar
ALTINTIG, E., ALTUNDAG, H., TUZEN, M., 2014. Determination of multi element levels in leaves and herbal teas from Turkey by ICP-OES. Bull. Chem. Soc. Ethiop. 28: 9–16. Google Scholar
BALCERZAK, M., JANISZEWSKA, J., 2013. Fluorides in tea products and analytical problems with their determination. Crit. Rev. Anal. Chem. 43: 138–147. Google Scholar
BAŞGEL, S., ERDEMOĞLU, S.B., 2005. Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci. Total Environ. 359: 82–89. Google Scholar
BUTIUK, A.P., MARTOS, M.A., ADACHIC, O., HOURSA, R.A., 2016. Study of the chlorogenic acid content in yerba mate (Ilexparaguariensis St. Hil.): Effect of plant fraction, processing step and harvesting season. J. App. Res. Med. Arom. Plant. 3: 27–33. Google Scholar
BOLAN, S., KUNHIKRISHNAN, A., SESHADRI, B., CHOPPALA, G., NAIDU, R., BOLAN, N.S., OK, Y.S., ZHANG, M., LI, C.G., LI, F., NOLLER, B., KIRKHAM, M.B., 2017. Sources, distribution, bioavailability, toxicity, and risk assessment of heavy metal(loid)s in complementary medicines. Environ. Int. 108: 103–118. Google Scholar
CHAJDUK, E., 2009. Elemental analysis of black and green tea leaves by instrumental neutron activation analysis. Chem. Anal.-Warsaw 54: 841–855. Google Scholar
CHEN, Z.M., LIN, Z., 2015. Tea and human health: biomedical functions of tea active components and current issues. J. Zhejiang Univ.-Sci. B 16: 87–102. Google Scholar
DALAR, A., KONCZAK, I., 2012. Botanicals from Eastern Anatolia Region of Turkey: antioxidant capacity and phenolic constituents of endemic herbal medicines. J. Herb. Med. 2: 126–135. Google Scholar
DE OLIVEIRA, L.M., DAS, S., DA SILVA, E.B., GAO, P., GRESS, J., LIU, Y.G., MA, L.Q., 2018. Metal concentrations in traditional and herbal teas and their potential risks to human health. Sci. Total Environ. 633: 649–657. Google Scholar
ERDEMIR, U.S., 2018. Contribution of tea (Camellia sinensis L.) to recommended daily intake of Mg, Mn, and Fe: An in vitro bioaccessibility assessment. J. Food Compos. Anal. 69: 71–77. Google Scholar
EU COMMISSION DECREE (WE) No 1881/2006 from 19 December 2006. Google Scholar
FRASER, K., HARRISON, S.J., LANE, G.A., OTTER, D.E., HEMAR, Y., QUEK, S.-Y., RASMUSSEN, S., 2014. Analysis of low molecular weight metabolites in tea using mass spectrometry-based analytical methods. Crit. Rev. Food Sci. Nutri. 54: 924–937. Google Scholar
GALLAHER, R.N., GALLAHER, K., MARSHALL, A.J., MARSHALL, A.C., 2006. Mineral analysis of ten types of commercially available tea. J. Food Compos. Anal. 19: Suppl., s53–s57. Google Scholar
HORIE, H., KOHATA, K., 2000. Analysis of tea components by high-performance liquid chromatography and high-performance capillary electrophoresis. J. Chromatogr. A 881: 425–438. Google Scholar
JURANOVIĆ CINDRIĆ, I., ZEIER, M., GLAMIZUNA, E., STINGEDER, G., 2013. Elemental characterisation of the medical herbs Salvia officinalis L. and Teucrium montanum L. grown in Croatia. Microchem. J. 107: 185–9. Google Scholar
KARAK, T., KUTU, F.R., NATH, J.R., SONAR, I., PAUL, R.K., BORUAH, R.K., SANYAL, S., SABHAPONDIT, S., DUTTA, A.K., 2017. Micronutrients (B, Co, Cu, Fe, Mn, Mo, and Zn) content in made tea (Camellia sinensis L.) and tea infusion with health prospect: A critical review. Crit. Rev. Food Sci. Nutri. 57: 2996–3034. Google Scholar
KOJTA, A. JARZYŃSKA, G., FALANDYSZ, J., 2012. Mineral composition and heavy metal accumulation capacity of Bay Bolete (Xerocomus badius) fruiting bodies collected near a former gold and copper mining area. J. Geochem. Explor. 121: 76–82. Google Scholar
KONCZYK, J., MUNTEAN, E., GEGA, J., FRYMUS, A., MICHALSKI, R., 2019. Major inorganic anions and cations in selected European bottled waters. J. Geochem. Explor. 197: 27–36. Google Scholar
MALIK, J., FRANKOVA, A., DRABEK, O., SZAKOVA, J., ASH, C., KOKOSKA, L., 2013. Aluminum and other elements in selected herbal tea plant species and their infusions. Food Chem. 139: 728–734. Google Scholar
MARTÍN-DOMINGO, M.C., PLA, A., HERNÁNDEZ, A.F., OLMEDO, P., GIL F., 2017. Determination of metalloid, metallic and mineral elements in herbal teas. Risk assessment for the consumers. J. Food Compos. Anal. 60: 81–89. Google Scholar
MICHALSKI, R., 2006a. Simultaneous determination of common inorganic anions in black and herbal tea by suppressed ion chromatography. J. Food Qual. 29, 607–616. Google Scholar
MICHALSKI, R., 2006b. Ion chromatography as a reference method for the determination of inorganic ions in water and wastewater. Crit. Rev. Anal. Chem. 36: 107–127. Google Scholar
MUNTEAN, N., MUNTEAN, E., CRETA, C., DUDA, M., 2013. Heavy metals in some commercial herbal teas. ProEnvironment/ ProMediu 6: 591–594. Google Scholar
MUNTEAN, E., MICHALSKI, R., MUNTEAN, N., DUDA, M., 2016. Chemical risk due to heavy metal contamination of medicinal plants. Hop Med. Plant. XXIII, 1–2, 71–78. Google Scholar
NGURE, V., KINUTHIA, G., 2020. Health risk implications of lead, cadmium, zinc, and nickel for consumers of food items in Migori Gold mines, Kenya. J. Geochem. Explor. 209: 106430. Google Scholar
ÖZCAN, M.M., ÜNVER, A., UÇAR, T., ARSLAN, D., 2008. Mineral content of some herbs and herbal teas by infusion and decoction. Food Chem. 106: 1120–1127. Google Scholar
PERRY, S., 1996. The book of herbal teas: a guide to gathering, brewing, and drinking. CA: Chronicle Books, San Francisco. Google Scholar
POHL, P., DZIMITROWICZ, A., JEDRYCZKO, D., SZYMCZYCHA-MADEJA, A., WELNA, M., JAMROZ, P., 2016. The determination of elements in herbal teas and medicinal plant formulations and their tisanes. J. Pharm. Biomed. Anal. 130 SI: 326–335. Google Scholar
POLISH NORM PN-ISO 8466-1:2004, Jakość wody. Kalibracja i ocena metod analitycznych oraz szacowanie ich charakterystyk. Część 1: Statystyczna ocena liniowej funkcji kalibracji (in Polish). Google Scholar
POIRIER, L., NELSON, J., GILLELAND, G., WALL, S., BERHANE, L., LOPEZ-LINARES, F., 2017. Comparison of preparation methods for the determination of metals in petroleum fractions (1000 degrees F+) by microwave plasma atomic emission spectroscopy. Energ. Fuel. 31: 7809–7815. Google Scholar
PYTLAKOWSKA, K., KITA, A., JANOSKA, P., POŁOWNIAK, M., KOZIK, V., 2012. Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chem. 135: 494–501. Google Scholar
RACZUK, J., WADAS, W., GŁOZAK, K., 2015. Nitrates and nitrites in selected vegetables purchased AT supermarkets in Siedlce, Poland. Rocz. Panst. Zakl. Hig. 65: 15–20. Google Scholar
RODRIGUEZ-FRAGOSO, L., REYES-ESPARZA, J., BURCHIEL, S.W., HERRERA-RUIZ, D., TORRES, E., 2008. Risks and benefits of commonly used herbal medicines in Mexico. Toxicol. Appl. Pharmacol. 227: 125-135. Google Scholar
SCHULZKI, G., NUESSLEIN, B., SIEVERS, H., 2017. Transition rates of selected metals determined in various types of teas (Camellia sinensis L. Kuntze) and herbal/fruit infusions. Food Chem. 215: 22–30. Google Scholar
SCHUNK, P.F.T., KALIL, I.C., PIMENTEL-SCHMITT, E.F., LENZ, D., DE ANDRADE, D.U., RIBEIRO, J.S., ENDRINGER, D.C., 2016. ICP-OES and micronucleus test to evaluate heavy metal contamination in commercially available Brazilian herbal teas. Biol. Trace Elem. Res. 172: 258–265. Google Scholar
SHALAYEL, M.H.F., ASAAD, A.M., QURESHI, M.A., ELHUSSEIN, A. 2017. Anti-bacterial activity of peppermint ( Mentha piperita ) extracts against some emerging multi-drug resistant human bacterial pathogens. J. Herb. Med. 7: 27–30. Google Scholar
SPYCHALSKI, G., 2013. Determinants of growing herbs in Polish agriculture. Herba Pol. 59: 5–18. Google Scholar
STREET, R.A., 2012. Heavy metals in medicinal plant products – an African perspective. S. Afr. J. Bot. 82: 67-74. Google Scholar
SZYMCZYCHA-MADEJA, A., WELNA, M., POHL, P., 2012. Elemental analysis of teas and their infusions by spectrometric methods. Trend Anal. Chem. 35: 165–181. Google Scholar
THEUMA M., ATTARD, E., 2020. From herbal substance to infusion: The fate of polyphenols and trace elements, J. Herb. Med. 21:100347. Google Scholar
TUPEC, M., HÝSKOVÁ, V., BĚLONOŽNÍKOVÁ, K., HRANÍČEK, J., ČERVENÝ, V., RYŠLAVÁ, H., 2017. Characterization of some potential medicinal plants from Central Europe by their antioxidant capacity and the presence of metal elements. Food Biosci. 20: 43–50. Google Scholar
VAN DRONKELAAR, C., VAN VELZEN, A., ABDELRAZEK, M., VAN DER STEEN, A., WEIJS, P.J.M., TIELAND, M., 2018. Minerals and sarcopenia; the role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review. J. Am. Med. Dir. Assoc. 19: 6–18. Google Scholar
VUONG, Q.V., 2014. Epidemiological evidence linking tea consumption to human health: a review. Crit. Rev. Food Sci. Nutr. 54: 523–536. Google Scholar
WANG, CH.-Z., MEHENDALE, S.R., YUAN, CH.-S., 2007. Commonly used antioxidant botanicals: active constituents and their potential role in cardiovascular illness. Am. J. Chin. Med. 35: 543–558. Google Scholar
WELNA, M., SZYMCZYCHA-MADEJA, A., POHL, P., 2013. A comparison of samples preparation strategies in the multi-elemental analysis of tea by spectrometric methods. Food Res. Int. 53: 922–930. Google Scholar
YALDIZ, G., CAMLICA, M., 2019. Variation in the fruit phytochemical and mineral composition, and phenolic content and antioxidant activity of the fruit extracts of different fennel (Foeniculum vulgare L.) genotypes. Ind. Crop Prod. 142: 111852. Google Scholar
ZHANG, Y., THEPSITHAR, P., JIANG, X., TAY, J.H., 2013. Direct determination of phosphate in raw Jatropha curcas oil by ion chromatography. Ind. Crop Prod. 44: 459-464. Google Scholar
a:1:{s:5:"en_US";s:38:"Jan Dlugosz University in Częstochowa";}
Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
Faculty of Production Engineering and Materials Technology, Częstochowa University of Technology, Częstochowa, Poland