The REQUIREMENTS FOR VEGETATIVE GROWTH OF HOHENBUEHELIA MYXOTRICHA AND ITS ANTIMYCOTIC ACTIVITY
GROWTH AND ANTIMYCOTIC ACTIVITY OF HOHENBUEHELIA MYXOTRICHA
Victor Barshteyn
a:1:{s:5:"en_US";s:106:"Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine";}Abstract
Biometric characteristics of the hyphae and micromorphological features of Hohenbuehelia myxotricha mycelia, such as clamps, hyphal loops, crystals were observed by light and electron microscopy. The basic requirements for H. myxotricha growth and acquisition of antimycotic activity have been investigated. The highest mycelial growth (18.2 mm/day) of H. myxotricha was observed on beer wort agar medium. Suitable conditions for maximal H. myxotricha mycelia production were found after 14 days of liquid static cultivation at 25 °C, pH 4.5, 30 g/L of glucose, and 2 g/L of yeast extract. The inhibitory effect of H. myxotricha was evaluated against Aspergillus niger, Issatchenkia orientalis, and Candida albicans strains. The optimal period for A. niger growth inhibition was 14 days while 21 days of H. myxotricha cultivation was more appropriated for Saccharomycetaceae fungi growth inhibitions. The most suitable for promotion of antimycotic metabolites against all tested pathogenic fungi were glucose and yeast extract. Compliance with established suitable cultivation conditions will allow for obtaining the maximum mycelia of H. myxotricha and its antimycotic metabolites that can be potential useful for medicinal purposes.
References
ANGELI P., SCANDURRA S. 2012. A rare member of the family Pleurotaceae collected at Palermo. Hohenbuehelia myxotricha. Micol. Veget. Medit., 27(1): 3-11. Google Scholar
BADALYAN S.M., SHNYREVA A.V., IOTTI M., ZAMBONELLI A. 2015. Genetic resources and mycelial characteristics of several medicinal polypore mushrooms (Polyporales, Basidiomycetes). Int. J. Med. Mushr., 17(4): 371-384. https://doi.org/10.1615/intjmedmushrooms.v17.i4.60. Google Scholar
BALA N., AITKEN E.A.B., CUSACK A., STEADMAN K.J. 2012. Antimicrobial potential of australian macrofungi extracts against foodborne and other pathogens. Phytother. Res., 26(3): 465-469. https://doi.org/10.1002/ptr.3563. Google Scholar
BARAKAT O.S., SADIK M.W. 2014. Mycelial growth and bioactive substance production of Pleurotus ostreatus in submerged culture. Int. J. Curr. Microbiol. App. Sci., 3(4): 1073-1085. Google Scholar
BIJEESH C., MANOJ K.A., PRADEEP C.K., VRINDA K.B. 2019. A new species of Hohenbuehelia (Pleurotaceae) from India. Phytotaxa, 420(1): 056-064. https://doi.org/10.11646/phytotaxa.420.1.3. Google Scholar
BISKO N.A., LOMBERG M.L., MYKCHAYLOVA O.B., MYTROPOLSKA N.YU. 2021. IBK Mushroom Culture Collection. Version 1.2. The IBK Mushroom Culture Collection of the M.G. Kholodny Institute of Botany. Occurrence dataset https://doi.org/10.15468/dzdsqu accessed via GBIF.orgon 2021-04-15. Google Scholar
BUCHALO A.S., WASSER S.P., MYKCHAYLOVA O.B., BILAY V.T., LOMBERG M. 2011. Taxonomical significance of microstructures in pure cultures of macromycetes. [In:] Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7). pp. 50-57. Google Scholar
DYAKOV M.Y., KAMZOLKINA O.V., SHTAER O.V., BIS’KO N.A., POEDINOK N.L., MIKHAILOVA O.B., TIKHONOVA O.V., TOLSTIKHINA T.E., VASIL’EVA B.F., EFREMENKOVA O.V. 2011. Morphological characteristics of natural strains of certain species of basidiomycetes and biological analysis of antimicrobial activity under submerged cultural conditions. Microbiology, 80: 274-285. https://doi.org/10.1134/S0026261711020044. Google Scholar
GUGGIARI M., BLOQUE R., ARAGNO M., VERRECCHIA E., JOB D., JUNIER P. 2011. Experimental calcium-oxalate crystal production and dissolution by selected wood-rot fungi. International Biodeterioration & Biodegradation, 65(6): 803-809. https://doi.org/10.1016/j.ibiod.2011.02.012. Google Scholar
KIRK P.M., CANNON P.F., MINTER D.W., STALPERS J.A. 2008. Dictionary of the fungi. 10th edition. CAB International, Wallingford, UK, 640 pp. Google Scholar
KOZIAK A.T.E., CHENG K.C., THORN R.G. 2007. Phylogenetic analyses of Nematoctonus and Hohenbuehelia (Pleurotaceae). Canadian Journal of Botany, 85(8): 762-773. https://doi.org/10.1139/B07-083. Google Scholar
KRUPODOROVA T.A., BARSHTEYN V.YU. 2015. Alternative substrates for higher mushrooms mycelia cultivation. J. BioSci. Biotechnol., 4(3): 339-347. Google Scholar
KRUPODOROVA T., BARSHTEYN V., SEVINDIK M. 2022. Antioxidant and antimicrobial potentials of mycelial extracts of Hohenbuehelia myxotricha grown in different liquid culture media. BioTechnology, 102(1). (in press). Google Scholar
KRUPODOROVA T.A., BARSHTEYN V.YU., ZABEIDA E.F., POKAS E.V. 2016. Antibacterial activity of macromycetes mycelia and culture liquid. Microbiology and Biotechnology Letters, 44(3): 246-253. http://dx.doi.org/10.4014/mbl.1603.03003. Google Scholar
KRUPODOROVA T.A., IVANOVA T.S., BARSHTEYN V.YU. 2014. Screening of extracellular enzymatic activity of macrofungi. J. Microbiol. Biotech. Food Sci., 3(4): 315-318. Google Scholar
LI X., WANG LU., WANG Z. 2015. Radioprotective activity of neutral polysaccharides isolated from the fruiting bodies of Hohenbuehelia serotina. Physica Medica, 31(4): 352-359. https://doi.org/10.1016/j.ejmp.2015.02.004. Google Scholar
LI X., WANG LU., WANG Z. 2017. Structural characterization and antioxidant activity of polysaccharide from Hohenbuehelia serotina. Int. J. Biol. Macromol., 98: 59-66. https://doi.org/10.1016/j.ijbiomac.2016.12.089. Google Scholar
LI X.Y., WANG Z.Y., WANG L., WALID E., ZHANG H. 2012. In vitro antioxidant and anti-proliferation activities of polysaccharides from various extracts of different mushrooms. Int. J. Mol. Sci., 13(5): 5801-5817. https://doi.org/10.3390/ijms13055801. Google Scholar
LIANG X., HUA D., WANG Z., ZHANG J., ZHAO Y., XU H., LI Y., GAO M., ZHANG X. 2013. Production of bioethanol using lignocellulosic hydrolysate by the white rot fungus Hohenbuehelia sp. ZW-16. Ann. Microbiol., 63: 719-723. https://doi.org/10.1007/s13213-012-0524-6. Google Scholar
LUBIAN C., KUHN O.J., PORTZ R.L., AGUSTINHA A.M., STANGARLIN J.R. 2021. Biological control of Meloidogyne javanica in bean plants by Hohenbuehelia spp. and Trichoderma koningiopsis. Arq. Inst. Biol., 88: 1-9. https://doi.org/10.1590/1808-1657000772019. Google Scholar
LUBIAN C.C., MARTINHA D.D., PORTZ R.L., SILVA F.A.G.S., CORTEZ V.G., MISSIO V. 2018. Daily indexes for predation and growth of nematophagous mushrooms species of Hohenbuehelia (Pleurotaceae) on Panagrellus redividus. J. Agric. Sci., 10(3): 276-289. https://doi.org/10.5539/jas.v10n3p276. Google Scholar
MENTRIDA C.S. 2016. Species delimitation and phylogenetic analyses of the genus Hohenbuehelia in central Europe. Master‘s Thesis, University of Wienn, Wienn. Google Scholar
MYKCHAYLOVA O., LOMBERG M., BISKO N. 2019. Verification and screening of biotechnologically valuable macromycetes species in vitro. [In:] Development of Modern Science: the Experience of European Countries and Prospects for Ukraine: monograph / edited by authors. 3rd ed. – Riga, Latvia: “Baltija Publishing”, pp. 354-375. Google Scholar
MYKCHAYLOVA O., LOMBERG M., TSAPKO S., KRASINKO V. 2021. Morphological characteristics of the culture Clathrus archeri (Phallaceae, Basidiomycota). Pol. J. Natur. Sc., 36(3): 283–298. Google Scholar
QUATTELBAUM D., CARNER G.R. 1980. A technique for preparing Beaveria spp. for scanning electron microscopy. Canadian Journal of Botany, 58: 1700-1703. https://doi.org/10.1139/b80-198. Google Scholar
PAPASPYRIDI L.M., ALIGIANNIS N., TOPAKAS E., CHRISTAKOPOULOS P., SKALTSOUNIS A.L., FOKIALAKIS N. 2012. Submerged fermentation of the edible mushroom Pleurotus ostreatus in a batch stirred tank bioreactor as a promising alternative for the effective production of bioactive metabolites. Molecules, 17(3): 2714-2724. https://doi.org/10.3390/molecules17032714. Google Scholar
POPOVA T.P. 2015. Investigations on antimicrobial activity in vitro of liquid cultures of Cantharellus cibarius. Int. J. Curr. Microbiol. App. Sci., 4(3): 674-683. Google Scholar
REALE J. 2018. The impact of a fungus-feeding nematode (Aphelenchoides sp.) on decomposition of trembling aspen wood by various wood-decay fungi. Bachelor Thesis, Lakehead University Thunder Bay, Ontario, Canada. Google Scholar
SANDARGO B., THONGBAI B., PRADITYA D., STEINMANN E., STADLER M., SURUP F. 2018. Antiviral 4-Hydroxypleurogrisein and antimicrobial pleurotin derivatives from cultures of the nematophagous basidiomycete Hohenbuehelia grisea. Molecules, 23(10): 2697. https://doi.org/10.3390/molecules23102697. Google Scholar
SAZANOVA K.V., USATOVA V.S., KICHEVA A.A., ANANIEVA E.P., PSURTSEVA N.V. 2013. Screening of Basidiomycetes from the LE-BIN culture collection for antifungal activity. [In:] Yan Maximov (ed.), Proceedings of the 2nd International Academic Conference "Applied and Fundamental Studies", 11-18, St. Louis, Missouri, USA. Google Scholar
SILVA B.P., ABRAHÃO J., PERALTA R.M. 2016. Effects of carbon sources and time of cultivation on the antimicrobial activities of intra and extracellular extracts of Pleurotus Pulmonarius cultured in submerged sonditions. Int. J. Curr. Microbiol. App. Sci., 5(11): 97-105. http://dx.doi.org/10.20546/ijcmas.2016.511.011. Google Scholar
STALPERS J.A. 1978. Identification of wood-inhabiting Aphyllophorales in pure culture. Studies in Mycology No. 16. 248 p. Google Scholar
THORN R., MONCALVO J., REDDY C., VILGALYS R. 2000. Phylogenetic analyses and the distribution of nematophagy support a monophyletic Pleurotaceae within the polyphyletic pleurotoid-lentinoid fungi. Mycologia, 92(2): 241-252. https://doi.org/10.2307/3761557. Google Scholar
VAMANU E. 2012. In vitro antimicrobial and antioxidant activities of ethanolic extract of lyophilized mycelium of Pleurotus ostreatus PQMZ91109. Molecules, 17(4): 3653-3671. https://doi.org/10.3390/molecules17043653. Google Scholar
VINCENT J.M. 1947. Distortion of fungal hyphae in the presence of certain inhibitors. Nature, 159, 850 p. https://doi.org/10.1038/159850b0. Google Scholar
WEIS A.L., SOLOMKO E.F., BUCHALO A.S., WASSER S.P., MITROPOLSKAYA N.YU., GRIGANSKYI A.P., GOROVITS E.L. 1999. Cultural study and Illudin S production of medicinal mushroom Omphalotus olearius (DC.: Fr.) Fay. (Agaricales s.l.) from Israel. Int. J. Med. Mushr., 1(1): 93-103. https://doi.org/10.1615/IntJMedMushrooms.v1.i1.80. Google Scholar
YOO K.H., KIM J.H., SEOK S. 2001. Studies on the cultural characteristics of Hohenbuehelia petaloides. The Korean Journal of Mycology. 29(1): 52-60. Google Scholar
ZHANG R., ZHAO L., WANG H., NG T.B. 2014. A novel ribonuclease with antiproliferative activity toward leukemia and lymphoma cells and HIV-1 reverse transcriptase inhibitory activity from the mushroom, Hohenbuehelia serotina. International Journal of Molecular Medicine, 33(1): 209-214. https://doi.org/10.3892/ijmm.2013.1553. Google Scholar
ZHU W., HE X., WANG M. 2007. Effect of Selected Culture Parameters on the Growth of Hohenbuehelia petaloides Mycelium. Acta Edulis Fungi, 1: 49-53. Google Scholar
a:1:{s:5:"en_US";s:106:"Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine";}