The applicability of infrared thermography in deer farming
Jagoda
a:1:{s:5:"en_US";s:42:"University of Warmia and Mazury in Olsztyn";}Abstract
The popularity of deer farming has increased in recent years. However, research into dedicated methods for diagnosing deer in view of their specific behavior, including low levels of domestication and high susceptibility to stress, is still scant. Infrared thermography could be a useful tool for assessing the behavior of farmed animals, including deer. This non-invasive diagnostic method has numerous applications, and it could facilitate farming operations without compromising the animals’ welfare. Therefore, the aim of this study was to assess the applicability of infrared thermography in deer farming and to identify breeding practices where thermal imaging can be effectively applied.
Keywords:
thermogram, deer farming, fallow deer, veterinary diagnostics, animal welfareReferences
Barros D.V., Silva L.K.X., Kahwage P.R., Lourenço Júnior J.B., Sousa J.S., Silva A.G.M., Franco I.M., Martorano L.G., Garcia A.R. 2016. Assessment of surface temperatures of buffalo bulls (Bubalus bubalis) raised under tropical conditions using infrared thermography. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia. 68: 422–430. https://doi.org/10.1590/1678-4162-8327 Google Scholar
Bartolomé E., Perdomo-González D.I., Sánchez-Guerrero M.J., Valera M. 2021. Genetic Parameters of Effort and Recovery in Sport Horses Assessed with Infrared Thermography. Animals., 11(3): 832. https://doi.org/10.3390/ani11030832 Google Scholar
Bowers S., Gandy S., Dickerson T., Brown C., Strauch T., Neuendorff D., Randel R., Willard S. 2010. Evaluating velvet antler growth in red deer stags (Cervus elaphus) using hand-held and digital infrared thermography. Canadian Journal of Animal Science. 90: 13-21. https://doi.org/10.4141/CJAS09043 Google Scholar
Chapman D., Chapman N. 1975. Fallow deer. Lavenham Suffolk, UK: Terence Dalton Limited. 271. Google Scholar
Cilulko J., Janiszewski P., Bogdaszewski M. 2018. The Applicability of Thermography During the Breeding Season and Early Nursing in Farmed Fallow Deer. The International Journal of Applied Research in Veterinary Medicine. 16(3): 186-196. Google Scholar
Cukor J., Bartoška J., Rohla J., Sova J., Machálek A. 2019. Use of aerial thermography to reduce mortality of roe deer fawns before harvest. PeerJ. 7: e6923 http://doi.org/10.7717/peerj.6923 Google Scholar
D’Alterio G., Casella S., Gatto M., Gianesella M., Piccione G., Morgante M. 2011. Circadian rhythm of foot temperature assessed using infrared thermography in sheep. Czech Journal Animal Science. 56(7): 293- 300. https://doi.org/10.17221/1294-CJAS Google Scholar
Deak F., Chacur M., Souza C.D., Andrade I.B., Cornacini G.F., Garcia A.R., Gabriel L.R.A. 2019. Effects of physiological stage and season on infrared thermograms of different body areas of dairy cows raised under tropical conditions. Animal Reproduction. 16(2): 311–316. https://doi.org/10.21451/1984-3143-AR2017-0023 Google Scholar
Dhanasekaran R., Naveen M., Sreenatha Reddy S., 2017. Studies on Reproduction of Animals and Birds Using Thermal Imaging. International Journal of Advanced Trends in Engineering and Technology. 2(2): 224-228. Google Scholar
Domino M., Borowska M., Kozłowska N., Zdrojkowski Ł., Jasiński T., Smyth G., Maśko M. 2022. Advances in Thermal Image Analysis for the Detection of Pregnancy in Horses Using Infrared Thermography. Sensors. 22(1): 191. https://doi.org/10.3390/s22010191 Google Scholar
Dunbar M.R., Johnson S.R., Rhyan J.C., McCollum M. 2009. Use of infrared thermography to detect thermographic changes in mule deer (Odocoileus hemionus) experimentally infected with foot-and-mouth disease. Journal of Zoo and Wildlife Medicine. 40(2): 296–301. https://doi.org/10.1638/2008-0087.1 Google Scholar
Journal of Laws, 2004, No. 215, item 2188. Regulation of the Minister of Agriculture and Rural Development of 13 September 2004 on detailed veterinary requirements for captive rearing and breeding of wild animals as livestock. Google Scholar
Faye E., Dangles O., Pincebourde S. 2016. Distance makes the difference in thermography for ecological studies. Journal of Thermal Biology. 56: 1–9. https://doi.org/10.1016/j.jtherbio.2015.11.011 Google Scholar
Gelasakis A.I., Kalogianni A.I., Moschovas M., Tsimpouri E., Pnevmatikos T., Bossis I., Arsenos G., Simitzis P. 2021. Evaluation of Infrared Thermography for the Detection of Footrot and White Line Disease Lesions in Dairy Sheep. Veterinary Sciences. 8: 219. https://doi.org/10.3390/vetsci8100219 Google Scholar
George M., Chacur M. 2017. Infrared thermography in buffalo reproduction. Revista Brasileira de Reprodução Animal. 41: 180–187. Google Scholar
Godyń D. 2013. Zastosowanie termografii w ocenie stanu zdrowotnego kończyn u zwierząt gospodarskich. Roczniki Naukowe Zootechniki. 40(1): 77-84. Google Scholar
Graciano D., Naás I., Garcia R., Caldara F., Santana R., Nascimento G. 2014. Identificação de artrite em suínos utilizando imagem termográfica. Boletim De Indústria Animal. 71(1): 79-83. https://doi.org/10.17523/bia.v71n1p79 Google Scholar
Ijichi C., Evans L., Woods H., Yarnell K. 2019. The right angle: validating a standardised protocol for the use of infrared thermography of eye temperature as a welfare indicator. Animal Welfare. 29: 123-131. https://doi.org/10.7120/09627286.29.2.123 Google Scholar
Janiszewski P., Bogdaszewski M., Murawska D., Tajchman K. 2016. Welfare of farmed deer - practical aspects. Polish Journal of Natural Sciences. 31 (3): 345-361. Google Scholar
Kastberger G., Stachl R. 2003. Infrared imaging technology and biological applications. Behavior Research Methods, Instruments, & Computers 35: 429–439. https://doi.org/10.3758/BF03195520 Google Scholar
Kim S-M., Cho G-J. 2021a. Evaluation of Heat Distribution for the Diagnosis of the Hoof with Abscess by Infrared Thermography in Horses. The Open Agriculture Journal, 15: 48-53. https://doi.org/10.2174/1874331502115010048 Google Scholar
Kim S-M., Cho G-J. 2021b. Validation of Eye Temperature Assessed Using Infrared Thermography as an Indicator of Welfare in Horses. Applied Sciences. 11(16): 7186. https://doi.org/10.3390/app11167186 Google Scholar
Lowe G., McCane B., Sutherland M., Waas J., Schaefer A., Cox N., Stewart M. 2020 Automated Collection and Analysis of Infrared Thermograms for Measuring Eye and Cheek Temperatures in Calves. Animals. 10: 292. https://doi.org/10.3390/ani10020292 Google Scholar
Matsuura Y., Takashi I., Munemitsu A., Hiroshi T., Hiromasa I., Tsuyoshi U. 2017. A Case Study: Application of Infrared Thermography to Cull Deer. Honyūrui Kagaku (Mammalian Science). 57(1): 77-83. https://doi.org/10.11238/mammalianscience.57.77 Google Scholar
McCafferty D.J. 2007. The value of infrared thermography for research on mammals: previous applications and future directions. Mammal Review. 37: 207-223. https://doi.org/10.1111/j.1365-2907.2007.00111.x Google Scholar
Oishi Y., Oguma H., Tamura A., Nakamura R., Matsunaga T. 2018. Animal Detection Using Thermal Images and Its Required Observation Conditions. Remote Sensing. 10(7): 1050. https://doi.org/10.3390/rs10071050 Google Scholar
Okada K., Takemura K., Sato S. 2013. Investigation of various essential factors for optimum infrared thermography. Journal of Veterinary Medical Science. 75(10): 1349–1353, https://doi.org/10.1292/jvms.13-0133 Google Scholar
Potrapeluk A., Janiszewski P., Bogdaszewski M. 2021. Thermovision as a tool monitoring velvet temperature and ossification process of farmed Fallow deer antler under the influence of a modified photoperiod. Veterinarni Medicina. 66(6): 233-241. https://doi.org/10.17221/214/2020-VETMED Google Scholar
Racewicz P., Sobek J., Majewski M., Różańska-Zawieja J. 2018. Przydatność pomiarów termowizyjnych w stadach krów mlecznych. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego. 14(1): 55-69. Google Scholar
Roy R.C., Cockram M., Riley C.B. 2020. Factors Affecting the Measurement of Skin Temperature of Horses Using Digital Infrared Thermography. Acta Scientific Veterinary Sciences. 2(8): 09-16. https://doi.org/10.31080/ASVS.2020.02.0085 Google Scholar
Ruediger F.R., Chacur M.G.M., Alves F.C.P.E., Oba E., Ramos A.A. 2016. Digital infrared thermography of the scrotum, semen quality, serum testosterone levels in Nellore bulls (Bos taurus indicus) and their correlation with climatic factors. Semina Agrárias. 37: 221–232 https://doi.org/10.5433/1679-0359.2016v37n1p221 Google Scholar
Salles M.S.V., Silva S.C., Roma L.C., El Faro L., Bittar C.M.M., Oliveira C.E.L., Salles F.A. 2017. Detection of heat produced during roughage digestion in ruminants by using infrared thermography. Animal Production Science. 58: 2032-2041. https://doi.org/10.1071/AN16011 Google Scholar
Samara E.M., Ayadi M., Aljumaah R.S. 2014. Feasibility of utilising an infrared-thermographic technique for early detection of subclinical mastitis in dairy camels (Camelus dromedarius). Journal of Dairy Research. 81(1): 38–45. https://doi.org/10.1017/S0022029913000605 Google Scholar
Schaefer A.L., Cook N.J., Bench C., Chabot J.B., Colyn J., Liu T., Okine E.K., Stewart M., Webster J.R. 2012. The non-invasive and automated detection of bovine respiratory disease onset in receiver calves using infrared thermography. Research in Veterinary Science. 93(2): 928–935. https://doi.org/10.1016/j.rvsc.2011.09.021 Google Scholar
Silva L., Sousa J.S., Silva A., Lourenço Junior J.B., Faturi C., Martorano L.G., Franco I.M., Pantoja M., Barros D.V., Garcia A.R. 2018. Testicular thermoregulation, scrotal surface temperature patterns and semen quality of water buffalo bulls reared in a tropical climate. Andrologia. 50(2). https://doi.org/10.1111/and.12836 Google Scholar
Speakman J.R., Ward S. 1998. Infrared thermography: principles and applications. Zoology. 101: 224-232. Google Scholar
Stewart M., Webster J.R., Schaefer A.L., Cook N.J., Scott S.L. 2005. Infrared thermography as a non-invasive tool to study animal welfare. Animal Welfare. 14: 319–325. Google Scholar
Rekant S.I., Lyons M.A., Pacheco J.M., Arzt J., Rodriguez L.L. 2016. Veterinary applications of infrared thermography. American Journal of Veterinary Research. 77(1): 98–107. https://doi.org/10.2460/ajvr.77.1.98 Google Scholar
Sutherland M.A., Worth G.M., Dowling S.K., Lowe G.L., Cave V.M., Stewart M. 2020. Evaluation of infrared thermography as a non-invasive method of measuring the autonomic nervous response in sheep. PLoS ONE 15(5): e0233558. https://doi.org/10.1371/journal.pone.0233558 Google Scholar
Redaelli V., Luzi F., Mazzola S., Bariffi G.D., Zappaterra M., Nanni Costa L., Padalino B. 2019. The Use of Infrared Thermography (IRT) as Stress Indicator in Horses Trained for Endurance: A Pilot Study. Animals. 9(3): 84. https://doi.org/10.3390/ani9030084 Google Scholar
Welligton C.S., Éder B.R.S., Raimundo N.C.C.J., Luane R.M.C. 2019. Use of Infrared Thermorgraphy in Animal Production. Journal of Dairy and Veterinary Sciences. 12(3): 555844. https://doi.org/10.19080/JDVS.2019.12.555844 Google Scholar
a:1:{s:5:"en_US";s:42:"University of Warmia and Mazury in Olsztyn";}