APOPTOSIS OF NEUTROPHILS, MONOCYTES, AND LYMPHOCYTES IN THE PERIPHERAL BLOOD OF COWS DURING LACTATION
Mykola Zhelavskyi
a:1:{s:5:"en_US";s:38:"Vinnytsia National Agrarian University";}Abstract
The immune system of animals plays an important role in the homeostasis system. This aimed at the apoptosis of immune cells of the peripheral bloodstream and milk secretions at different periods of lactation in cows. The investigation of the immune defense of cows was conducted during various lactation periods: early (3-5 days), mid (90-150 days), and late (drying off - 5-7 days; dry period - 12-20 days) periods of mammary gland function. The highest intensity of apoptosis neutrophils (P<0.01) and monocytes (P<0.01) in the mid-lactation period. The highest intensity of apoptosis is observed in phagocytic cells during the secretions colostrum period and mammary gland involution. The study of physiological constants of blood cell apoptosis will serve as a basis for developing informative methods of mastitis diagnosis in cows and implementing effective treatment measures. The findings obtained from this research are valuable for practical veterinarians and from a public health perspective.
Keywords:
Сattle (Bos taurus), lactation, apoptosis, immune systemReferences
BAE D., JUNG W.C, DONG H.K., HYUNSOOK K., KUN H.S. 2022. Effect of Folic Acid Supplementation on Proliferation and Apoptosis in Bovine Mammary Epithelial (MAC-T) Cells. Anim Biotechnol., 33 (1): 13–21, doi:10.1080/10495398.2020.1758123. Google Scholar
BURTON J.L, ERSKINE R.J. 2003. Immunity and mastitis: Some new ideas for an old disease. Vet Clin North Am Food Anim Pract., 19(1):1-45, v. doi: 10.1016/s0749-0720(02)00073-7. PMID: 12682934. doi:10.1016/S0749-0720(02)00073-7. Google Scholar
CVETNIC L., SAMARDZIJA M., DUVNJAK S., HABRUN B., CVETNIC M, JAKI TKALEC V., DURICIC D., BENIC M. 2021. Multi locus sequence typing and spa typing of Staphylococcus aureus isolated from the milk of cows with subclinical mastitis in Croatia. Microorganisms, 9 (4): 725, doi:10.3390/microorganisms9040725. Google Scholar
HEISER A., LEBLANC S.J., MCDOUGALL S. 2018. Pegbovigrastim treatment affects gene expression in neutrophils of pasture-fed, periparturient cows. J Dairy Sci., 101, 8194–8207, doi:10.3168/jds.2017-14129. Google Scholar
KIM Y.S., LEE H.Y., KIM CHO. 2021. Redox treatment ameliorates diabetes mellitus-induced skin flap necrosis via inhibiting apoptosis and promoting neoangiogenesis. Exp Biol Med (Maywood), 246: 718–728, doi:10.1177/1535370220974269. Google Scholar
LEVIN R., GRINSTEIN S., CANTON J. 2016. The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev., 273(1):156-79, doi:10.1111/imr.12439. Google Scholar
LI Y., ZHU Y., CHU B., LIU N., CHEN S., WANG J. 2022. Map, but not EspF, induces breast epithelial cell apoptosis through ERK/DRP-1 pathway. Vet Microbiol., 266: 109367, doi: 10.1016/j.vetmic.2022.109367. Google Scholar
LIM J.J., GRINSTEIN S., ROTH Z. 2017. Diversity and versatility of phagocytosis: Roles in innate immunity, tissue remodeling, and homeostasis. Front Cell Infect Microbiol., 23 (7) :191, doi:10.3389/fcimb.2017.0019. Google Scholar
LIU Y. 2018. PD-1 blockade inhibits lymphocyte apoptosis and restores proliferation and anti-viral immune functions of lymphocyte after CP and NCP BVDV infection in vitro. Vet Microbiol., 226: 74–80, doi:10.1016/j.vetmic.2018.10.014. Google Scholar
Liu Y. 2020. PD-1-Mediated PI3K/Akt/mTOR, Caspase 9/Caspase 3 and ERK Pathways Are Involved in Regulating the Apoptosis and Proliferation of CD4+ and CD8+ T Cells During BVDV Infection in vitro. Front Immunol., 17 (11): 467, doi:10.3389/fimmu.2020.00467. Google Scholar
KYDONAKI E.K., GKIATA P., KOUTEDAKIS Y.O., NTINA G., CARRILLO A.E., AMORIM T. 2021. A neuroprotective bovine colostrum attenuates apoptosis in dexamethasone‐treated mc3t3‐e1 osteoblastic cells. Cells. Int J Mol Sci., 22 (19):10195, doi:10.3390/ijms221910195. Google Scholar
PSAILA B., BARKAS N., ISKANDER D., ROY A., ANDERSON S., ASHLEY N. 2016. Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways. Genome Biol., 17: 83, doi:10.1186/s13059-016-0939-7. Google Scholar
SCHNABEL K., SCHMITZ R., FRAHM J., MEYER U., BREVES G., DÄNICKE S. 2020. Functionality and DNA-damage properties of blood cells in lactating cows exposed to glyphosate contaminated feed at different feed energy levels. Arch Anim Nutr., 74(2): 87–106, doi:10.1080/1745039X.2020.1718474. Google Scholar
SONG Y., WANG K., LOOR J.J. 2022. β-Hydroxybutyrate inhibits apoptosis in bovine neutrophils through activating ERK1/2 and AKT signaling pathways. J Dairy Sci., 105 (4): 3477–3489, doi:10.3168/jds.2021-21259. Google Scholar
SUN Y., LIU J., HUANG K. 2018. Protective effects of zymosan on heat stress-induced immunosuppression and apoptosis in dairy cows and peripheral blood mononuclear cells. Cell Stress and Chaperones, 23 (5): 1069–1078, doi:10.1007/s12192-018-0916-z. Google Scholar
THEURL I., HILGENDORF I., NAIRZ M., TYMOSZUK P., HASCHKA D., ASSHOFF M. 2016. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med., 22 (8): 945–951, doi:10.1038/nm.4146. Google Scholar
WANG F., ZHAO Y., ZHOU XU. 2019. Astragaloside IV alleviates ammonia-induced apoptosis and oxidative stress in bovine mammary epithelial cells. Int J Mol Sci., 20 (3): 600, doi:10.3390/ijms20030600. Google Scholar
WANG Y., WANG W., LI XR. 2020. Characterization of a phosphotyrosyl phosphatase activator homologue of the parasitic nematode Haemonchus contortus and its immunomodulatory effect on goat peripheral blood mononuclear cells in vitro. Int J Parasitol., 50 (14): 1157–1166, doi:10.1016/j.ijpara.2020.07.004. Google Scholar
WYNN T.A., VANNELLA K.M. 2016. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity, 44(3):450-462, doi: 10.1016/j.immuni.2016.02.015. Google Scholar
ZHELAVSKYI M.M. 2021. The role of neutrophil on subclinical mastitis in cows. Pol. J. Natur. Sc., 36 (1): 107–115, doi: 10.31648/pjns.7314. Google Scholar
ZHELAVSKYI M.М., KERNYCHNYI S.P., BETLINSKA T.V. 2023. Effects of hydroxychloroquine and tacrolimus on discoid facial lupus erythematosus in a dog. World Vet. J., 13(2): 360-364, doi: 10.54203/scil.2023.wvj39. Google Scholar
ZHELAVSKYI M.М., KERNYCHNYI S.P., BETLINSKA T.V. 2023. Hematological and biochemical parameters of macropod progressive periodontal disease in wild western gray kangaroos. World Vet. J., 13(4): 630-635, doi: 10.54203/scil.2023.wvj68 Google Scholar
ZHELAVSKYI M., SHUNIN I., MIDYK S. 2021. Extracellular antibacterial defense mechanisms of neutrophil granulocytes and their role in pathogenesis of pyometra (cases) in cats. Pol. J. Natur. Sc., 35 (3): 363–378. Google Scholar
ZHENG P., QIN X., HUANG HE. 2022. Alleviative effect of melatonin on the decrease of uterine receptivity caused by blood ammonia through ROS/NF-κB pathway in dairy cow. Ecotoxicol Environ Saf., 231:113166, doi:10.1016/j.ecoenv.2022.113166. Google Scholar
ZHOU J., FENG G., BEESON J., HOGARTH P.M., ROGERSON S.J., YAN Y. 2015. CD14hiCD16+ monocytes phagocytose antibody-opsonised Plasmodium falciparum infected erythrocytes more efficiently than other monocyte subsets, and require CD16 and complement to do so. BMC Med., 7 (13):154, doi:10.1186/s12916-015-0391-7. Google Scholar
a:1:{s:5:"en_US";s:38:"Vinnytsia National Agrarian University";}