APPLICATION OF VIBRATIONAL SPECTROSCOPY FOR PLANT TISSUE ANALYSIS – CASE STUDY

Iwona Stawoska



Diana Saja-Garbarz



Andrzej Skoczowski



Agnieszka Kania

a:1:{s:5:"en_US";s:120:"Department of Plant Physiology, Institute of Biology and Earth Sciences, University of the National Education Commission";}


Abstract

Raman spectroscopy is a particularly advantageous method in plant biology, allowing simultaneous examination of various compounds and evaluation of molecular changes in plant tissues subjected to different stress factors. The purpose of our research was to investigate to what extent the differences in the physical properties of leaves of Alnus viridis, Hieracium bifidum and Platycerium bifurcatum allow us to reliably determine qualitative and quantitative changes in their chemical composition. We proved that if we employed the FT-Raman spectroscopy method direct comparison of the obtained results might be difficult or even impossible. Normalization of the spectra in some situations may help in the results interpretation. However, to study the global impact of the stress factors on the tissue we suggest preparing a tablet obtained from lyophilized and powdered leaves, that avoids the inhomogeneity of the sample. Additionally, the decomposition procedure of the overlapped peaks is necessary to obtain reliable quantitative results.


Keywords:

FT-raman spectroscopy, specific leaf weight, spectra decomposition, phenolic compounds, carotenoids


ALTANGEREL, N., ARIUNBOLD, G. O., GORMAN, C., ALKAHTANI, M. H., BORREGO, E. J., BOHLMEYER, D., . . . SCULLY, M. O. 2017. In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A., 114(13), 3393-3396. doi:10.1073/pnas.1701328114   Google Scholar

ANDREEV, G., SCHRADER, B., SCHULZ, H., FUCHS, R., POPOV, S., & HANDJIEVA, N. 2001. Non-destructive NIR-FT-Raman analyses in practice. Part 1. Analyses of plants and historic textiles. Fresenius J Anal Chem, 371(7), 1009-1017.   Google Scholar

BABARINDE, G. O., & ADEOLA, L. T. 2023. Functionaland Nutritional Characterization of Cupcakes Produced from Blends of Mushroom, Orange-Fleshed Sweet Potato and Wheat Flour. Pol. J. Natur. Sc., 37(3). doi:10.31648/pjns.8475   Google Scholar

BARANSKA, M., SCHULZ, H., BARANSKI, R., NOTHNAGEL, T., & CHRISTENSEN, L. P. 2005. In Situ Simultaneous Analysis of Polyacetylenes, Carotenoids and Polysaccharides in Carrot Roots. J Agric Food Chem, 53(17), 6565-6571. doi:10.1021/jf0510440   Google Scholar

BARANSKA, M., SCHUTZ, W., & SCHULZ, H. 2006. Determination of lycopene and beta-carotene content in tomato fruits and related products: Comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Analytical Chemistry, 78(24), 8456-8461. doi:10.1021/ac061220j   Google Scholar

BARANSKI, R., BARANSKA, M., & SCHULZ, H. 2005. Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy. Planta, 222(3), 448-457. doi:10.1007/s00425-005-1566-9   Google Scholar

Bauer, A. J. R. (2018). Analysis of plant pigments with Raman spectroscopy. TSI Application note Raman 014 (A4). Retrieved from https://www.tsi.com/getmedia/41665131-0cce-4507-b3d7-a02d6eef3b37/Plant_Analysis_w_Raman_Spectroscopy_App_Note_RAMAN-014_A4?ext=.pdf]   Google Scholar

BOUYAHIA, C., SLAOUI, M., GOUITI, M., OUASSOR, I., HARHAR, H., & EL HAJJAJI, S. 2022. Total phenolic, flavonoid contents and antioxidant activity of Cedrus Atlantica extracts. Pol. J. Natur. Sc., 37(1), 63-74. doi:10.31648/pjns.7395   Google Scholar

BOYACI, I. H., TEMIZ, H. T., GENIS, H. E., SOYKUT, E. A., YAZGAN, N. N., GUVEN, B., . . . SEKER, F. C. D. 2015. Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Adv., 5(70), 56606-56624. doi:10.1039/c4ra12463d   Google Scholar

CEROVIC, Z. G., MASDOUMIER, G., BEN GHOZLEN, N., & LATOUCHE, G. 2012. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiologia Plantarum, 146(3), 251-260. doi:10.1111/j.1399-3054.2012.01639.x   Google Scholar

CHYLINSKA, M., SZYMANSKA-CHARGOT, M., & ZDUNEK, A. 2014. Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy. Plant Methods, 10. doi:10.1186/1746-4811-10-14   Google Scholar

CZAMARA, K., MAJZNER, K., PACIA, M. Z., KOCHAN, K., KACZOR, A., & BARANSKA, M. 2015. Raman spectroscopy of lipids: a review. Journal of Raman Spectroscopy, 46(1), 4-20. doi:10.1002/jrs.4607   Google Scholar

DEMMIGADAMS, B., & ADAMS, W. W. 1992. Carotenoid composition in sun and shade leaves of plants with different life forms. Plant Cell and Environment, 15(4), 411-419. doi:10.1111/j.1365-3040.1992.tb00991.x   Google Scholar

DONG, D. M., & ZHAO, C. J. 2017. Limitations and challenges of using Raman spectroscopy to detect the abiotic plant stress response. Proc. Natl. Acad. Sci. U. S. A., 114(28), E5486-E5487. doi:10.1073/pnas.1707408114   Google Scholar

ERAVUCHIRA, P. J., EL-ABASSY, R. M., DESHPANDE, S., MATEI, M. F., MISHRA, S., TANDON, P., . . . MATERNY, A. 2012. Raman spectroscopic characterization of different regioisomers of monoacyl and diacyl chlorogenic acid. Vibrational Spectroscopy, 61, 10-16. doi:10.1016/j.vibspec.2012.02.009   Google Scholar

FARBER, C., MAHNKE, M., SANCHEZ, L., & KUROUSKI, D. 2019. Advanced spectroscopic techniques for plant disease diagnostics. A review. Trac-Trends Anal. Chem., 118, 43-49. doi:10.1016/j.trac.2019.05.022   Google Scholar

FARBER, C., SHIRES, M., ONG, K., BYRNE, D., & KUROUSKI, D. 2019. Raman spectroscopy as an early detection tool for rose rosette infection. Planta, 250(4), 1247-1254. doi:10.1007/s00425-019-03216-0   Google Scholar

GIERLINGER, N., & SCHWANNINGER, M. 2007. The potential of Raman microscopy and Raman imaging in plant research. Spectr.-Int. J., 21(2), 69-89. doi:10.1155/2007/498206   Google Scholar

HEREDIA-GUERRERO, J. A., BENITEZ, J. J., DOMINGUEZ, E., BAYER, I. S., CINGOLANI, R., ATHANASSIOU, A., & HEREDIA, A. 2014. Infrared and Raman spectroscopic features of plant cuticles: a review. Frontiers in Plant Science, 5, 14. doi:10.3389/fpls.2014.00305   Google Scholar

KRIMMER, M., FARBER, C., & KUROUSKI, D. 2019. Rapid and Noninvasive Typing and Assessment of Nutrient Content of Maize Kernels Using a Handheld Raman Spectrometer. ACS Omega, 4(15), 16330-16335. doi:10.1021/acsomega.9b01661   Google Scholar

KULA, M., RYS, M., SAJA, D., TYS, J., & SKOCZOWSKI, A. 2016. Far-red dependent changes in the chemical composition of Spirulina platensis. Eng. Life Sci., 16(8), 777-785. doi:10.1002/elsc.201500173   Google Scholar

KULA, M., RYS, M., & SKOCZOWSKI, A. 2014. Far-red light (720 or 740 nm) improves growth and changes the chemical composition of Chlorella vulgaris. Eng. Life Sci., 14(6), 651-657. doi:10.1002/elsc.201400057   Google Scholar

LABANOWSKA, M., KURDZIEL, M., FILEK, M., & WESELUCHA-BIRCZYNSKA, A. 2016. The impact of biochemical composition and nature of paramagnetic species in grains on stress tolerance of oat cultivars. J Plant Physiol, 199, 52-66. doi:10.1016/j.jplph.2016.04.012   Google Scholar

LICHTENTHALER, H. K. 1987. Clorophylls and carotenoids - pigments of photosynthetic biomembranes. Method Enzymol., 148, 350-382.   Google Scholar

LUKASZUK, E., RYS, M., MOZDZEN, K., STAWOSKA, I., SKOCZOWSKI, A., & CIERESZKO, I. 2017. Photosynthesis and sucrose metabolism in leaves of Arabidopsis thaliana aos, ein4 and rcd1 mutants as affected by wounding. Acta Physiologiae Plantarum, 39(1), 12. doi:10.1007/s11738-016-2309-1   Google Scholar

MUIK, B., LENDL, B., MOLINA-DIAZ, A., & AYORA-CANADA, M. J. 2005. Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy. Chem Phys Lipids, 134, 173-182.   Google Scholar

NAUMANN, D. 2001. FT-infrared and FT-Raman spectroscopy in biomedical research. Applied Spectroscopy Reviews, 36(2-3), 239-298. doi:10.1081/ASR-100106157   Google Scholar

PASCAL, A., PETERMAN, E., GRADINARU, C., VAN AMERONGEN, H., VAN GRONDELLE, R., & ROBERT, B. 2000. Structure and interactions of the chlorophyll a molecules in the higher plant Lhcb4 antenna protein. J. Phys. Chem. B, 104(39), 9317-9321. doi:10.1021/jp001504m   Google Scholar

PAYNE, W. Z., & KUROUSKI, D. 2021. Raman-Based Diagnostics of Biotic and Abiotic Stresses in Plants. A Review. Frontiers in Plant Science, 11(2223). doi:10.3389/fpls.2020.616672   Google Scholar

PRATS-MATEU, B., FELHOFER, M., DE JUAN, A., & GIERLINGER, N. 2018. Multivariate unmixing approaches on Raman images of plant cell walls: new insights or overinterpretation of results? Plant Methods, 14, 20. doi:10.1186/s13007-018-0320-9   Google Scholar

QUIDEAU, S., DEFFIEUX, D., DOUAT-CASASSUS, C., & POUYSEGU, L. 2011. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew. Chem.-Int. Edit., 50(3), 586-621. doi:10.1002/anie.201000044   Google Scholar

RYS, M., JUHASZ, C., SUROWKA, E., JANECZKO, A., SAJA, D., TOBIAS, I., . . . GULLNER, G. 2014. Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: Chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy. Plant Physiol. Biochem., 83, 267-278. doi:10.1016/j.plaphy.2014.08.013   Google Scholar

RYS, M., POCIECHA, E., OLIWA, J., OSTROWSKA, A., JURCZYK, B., SAJA, D., & JANECZKO, A. 2020. Deacclimation of Winter Oilseed Rape-Insight into Physiological Changes. Agronomy-Basel, 10(10), 25. doi:10.3390/agronomy10101565   Google Scholar

RYS, M., SZALENIEC, M., SKOCZOWSKI, A., STAWOSKA, I., & JANECZKO, A. 2015. FT-Raman spectroscopy as a tool in evaluation the response of plants to drought stress. Open Chem., 13(1), 1091-1100. doi:10.1515/chem-2015-0121   Google Scholar

SAJA, D., RYS, M., STAWOSKA, I., & SKOCZOWSKI, A. 2016. Metabolic response of cornflower (Centaurea cyanus L.) exposed to tribenuron-methyl: one of the active substances of sulfonylurea herbicides. Acta Physiologiae Plantarum, 38(7), 13. doi:10.1007/s11738-016-2183-x   Google Scholar

SALETNIK, A., SALETNIK, B., & PUCHALSKI, C. 2021. Overview of Popular Techniques of Raman Spectroscopy and Their Potential in the Study of Plant Tissues. Molecules, 26(6), 16. doi:10.3390/molecules26061537   Google Scholar

SATO, H., OKADA, K., UEHARA, K., & OZAKI, Y. 1995. Near-Infrared Fourier Transform Raman-study of chlorophyll-alpha in solutions Photochem. Photobiol., 61(2), 175-182. doi:10.1111/j.1751-1097.1995.tb03957.x   Google Scholar

SCHRADER, B., ERB, I., & LÖCHTE, T. 1998. Differentiation of conifers by NIR-FT-Raman spectroscopy. Asian J Phys, 7, 259-264.   Google Scholar

SCHRADER, B., KLUMP, H. H., SCHENZEL, K., & SCHULZ, H. 1999. Non-destructive NIR FT Raman analysis of plants. J Mol Struct, 509(1-3), 201-212. doi:10.1016/s0022-2860(99)00221-5   Google Scholar

Schulz, H. 2014. Qualitative and quantitative FT-Raman analysis of plants. In M. Baranska (Ed.), Optical Spectroscopy and Computational Methods in Biology and Medicine (pp. 253-278). Dordrecht: Springer Netherlands.   Google Scholar

SCHULZ, H., & BARANSKA, M. 2007. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc, 43, 13-25.   Google Scholar

SCHULZ, H., BARANSKA, M., & BARANSKI, R. 2005. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers, 77(4), 212-221. doi:10.1002/bip.20215   Google Scholar

SKOCZOWSKI, A., TROC, M., BARAN, A., & BARANSKA, M. 2011. Impact of sunflower and mustard leave extracts on the growth and dark respiration of mustard seedlings. J Therm Anal Calorim, 104(1), 187-192. doi:10.1007/s10973-010-1225-7   Google Scholar

STAWOSKA, I., MYSZKOWSKA, D., OLIWA, J., SKOCZOWSKI, A., WESELUCHA-BIRCZYNSKA, A., SAJA-GARBARZ, D., & ZIEMIANIN, M. 2023. Air pollution in the places of Betula pendula growth and development changes the physicochemical properties and the main allergen content of its pollen. Plos One, 18(1). doi:10.1371/journal.pone.0279826   Google Scholar

STAWOSKA, I., STASZAK, A. M., CIERESZKO, I., OLIWA, J., & SKOCZOWSKI, A. 2020. Using isothermal calorimetry and FT-Raman spectroscopy for step-by-step monitoring of maize seed germination: case study. J Therm Anal Calorim, 142, 755-763. doi:10.1007/s10973-020-09525-x   Google Scholar

STAWOSKA, I., WESELUCHA-BIRCZYNSKA, A., REGONESI, M. E., RIVA, M., TORTORA, P., & STOCHEL, G. 2009. Interaction of selected divalent metal ions with human ataxin-3 Q36. J. Biol. Inorg. Chem., 14(8), 1175-1185. doi:10.1007/s00775-009-0561-1   Google Scholar

STAWOSKA, I., WESEŁUCHA-BIRCZYŃSKA, A., SKOCZOWSKI, A., DZIURKA, M., & WAGA, J. 2021. FT-Raman Spectroscopy as a Tool to Study the Secondary Structures of Wheat Gliadin Proteins. Molecules, 26(17), 5388.   Google Scholar

STRZALKA, K., KOSTECKA-GUGALA, A., & LATOWSKI, D. 2003. Carotenoids and environmental stress in plants: Significance of carotenoid-mediated modulation of membrane physical properties. Russ. J. Plant Physiol., 50(2), 168-172. doi:10.1023/a:1022960828050   Google Scholar

TALIK, P., MOSKAL, P., PRONIEWICZ, L. M., & WESELUCHA-BIRCZYNSKA, A. 2020. The Raman spectroscopy approach to the study of Water-Polymer interactions in hydrated hydroxypropyl cellulose (HPC). Journal of Molecular Structure, 1210, 6. doi:10.1016/j.molstruc.2020.128062   Google Scholar

Tanase, C., Bujor, O.-C., & Popa, V. I. 2019. Chapter 3 - Phenolic Natural Compounds and Their Influence on Physiological Processes in Plants. In R. R. Watson (Ed.), Polyphenols in Plants (Second Edition) (pp. 45-58): Academic Press.   Google Scholar

THYGESEN, L. G., LOKKE, M. M., MICKLANDER, E., ENGELSEN, S. B. 2003. Vibrational microspectroscopy of food. Raman vs. FT-IR. Trends in Food Science and Technology, 14, 50-57.   Google Scholar

TROC, M., SKOCZOWSKI, A., & BARANSKA, M. 2009. The influence of sunflower and mustard leaf extracts on the germination of mustard seeds. J Therm Anal Calorim, 95(3), 727-730.   Google Scholar

TUNGMUNNITHUM, D., THONGBOONYOU, A., PHOLBOON, A., & YANGSABAI, A. 2018. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines (Basel), 5(3), 93. doi:10.3390/medicines5030093   Google Scholar

VITEK, P., NOVOTNA, K., HODANOVA, P., RAPANTOVA, B., & KLEM, K. 2017. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 170, 234-241. doi:10.1016/j.saa.2016.07.025   Google Scholar

Weber, F., & Passon Née Gleichenhagen, M. 2019. Characterization and quantification of polyphenols in fruits. In R. R. Watson (Ed.), Polyphenols in plants. isolation, purification and extract preparation. Second Edition (pp. 111-121): Academic Press, Elsevier.   Google Scholar

ZEISE, I., HEINER, Z., HOLZ, S., JOESTER, M., BUTTNER, C., & KNEIPP, J. 2018. Raman Imaging of Plant Cell Walls in Sections of Cucumis sativus. Plants-Basel, 7(1), 16. doi:10.3390/plants7010007   Google Scholar

ZENG, J. J., PING, W., SANAEIFAR, A., XU, X., LUO, W., SHA, J. J., . . . LI, X. L. 2021. Quantitative visualization of photosynthetic pigments in tea leaves based on Raman spectroscopy and calibration model transfer. Plant Methods, 17(1), 13. doi:10.1186/s13007-020-00704-3   Google Scholar

ZHANG, T. J., ZHENG, J., YU, Z. C., GU, X. Q., TIAN, X. S., PENG, C. L., & CHOW, W. S. 2018. Variations in photoprotective potential along gradients of leaf development and plant succession in subtropical forests under contrasting irradiances. Environ. Exp. Bot., 154, 23-32. doi:10.1016/j.envexpbot.2017.07.016   Google Scholar

Download


Published
2024-09-27

Cited by

Stawoska, I., Saja-Garbarz, D., Skoczowski, A., & Kania, A. (2024). APPLICATION OF VIBRATIONAL SPECTROSCOPY FOR PLANT TISSUE ANALYSIS – CASE STUDY. Polish Journal of Natural Sciences, 39(1). https://doi.org/10.31648/pjns.9964

Iwona Stawoska 

Diana Saja-Garbarz 

Andrzej Skoczowski 

Agnieszka Kania 
a:1:{s:5:"en_US";s:120:"Department of Plant Physiology, Institute of Biology and Earth Sciences, University of the National Education Commission";}







-->