APPLICATION OF VIBRATIONAL SPECTROSCOPY FOR PLANT TISSUE ANALYSIS – CASE STUDY
Iwona Stawoska
Diana Saja-Garbarz
Andrzej Skoczowski
Agnieszka Kania
a:1:{s:5:"en_US";s:120:"Department of Plant Physiology, Institute of Biology and Earth Sciences, University of the National Education Commission";}Abstract
Raman spectroscopy is a particularly advantageous method in plant biology, allowing simultaneous examination of various compounds and evaluation of molecular changes in plant tissues subjected to different stress factors. The purpose of our research was to investigate to what extent the differences in the physical properties of leaves of Alnus viridis, Hieracium bifidum and Platycerium bifurcatum allow us to reliably determine qualitative and quantitative changes in their chemical composition. We proved that if we employed the FT-Raman spectroscopy method direct comparison of the obtained results might be difficult or even impossible. Normalization of the spectra in some situations may help in the results interpretation. However, to study the global impact of the stress factors on the tissue we suggest preparing a tablet obtained from lyophilized and powdered leaves, that avoids the inhomogeneity of the sample. Additionally, the decomposition procedure of the overlapped peaks is necessary to obtain reliable quantitative results.
Keywords:
FT-raman spectroscopy, specific leaf weight, spectra decomposition, phenolic compounds, carotenoidsReferences
ALTANGEREL, N., ARIUNBOLD, G. O., GORMAN, C., ALKAHTANI, M. H., BORREGO, E. J., BOHLMEYER, D., . . . SCULLY, M. O. 2017. In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A., 114(13), 3393-3396. doi:10.1073/pnas.1701328114 Google Scholar
ANDREEV, G., SCHRADER, B., SCHULZ, H., FUCHS, R., POPOV, S., & HANDJIEVA, N. 2001. Non-destructive NIR-FT-Raman analyses in practice. Part 1. Analyses of plants and historic textiles. Fresenius J Anal Chem, 371(7), 1009-1017. Google Scholar
BABARINDE, G. O., & ADEOLA, L. T. 2023. Functionaland Nutritional Characterization of Cupcakes Produced from Blends of Mushroom, Orange-Fleshed Sweet Potato and Wheat Flour. Pol. J. Natur. Sc., 37(3). doi:10.31648/pjns.8475 Google Scholar
BARANSKA, M., SCHULZ, H., BARANSKI, R., NOTHNAGEL, T., & CHRISTENSEN, L. P. 2005. In Situ Simultaneous Analysis of Polyacetylenes, Carotenoids and Polysaccharides in Carrot Roots. J Agric Food Chem, 53(17), 6565-6571. doi:10.1021/jf0510440 Google Scholar
BARANSKA, M., SCHUTZ, W., & SCHULZ, H. 2006. Determination of lycopene and beta-carotene content in tomato fruits and related products: Comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Analytical Chemistry, 78(24), 8456-8461. doi:10.1021/ac061220j Google Scholar
BARANSKI, R., BARANSKA, M., & SCHULZ, H. 2005. Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy. Planta, 222(3), 448-457. doi:10.1007/s00425-005-1566-9 Google Scholar
Bauer, A. J. R. (2018). Analysis of plant pigments with Raman spectroscopy. TSI Application note Raman 014 (A4). Retrieved from https://www.tsi.com/getmedia/41665131-0cce-4507-b3d7-a02d6eef3b37/Plant_Analysis_w_Raman_Spectroscopy_App_Note_RAMAN-014_A4?ext=.pdf] Google Scholar
BOUYAHIA, C., SLAOUI, M., GOUITI, M., OUASSOR, I., HARHAR, H., & EL HAJJAJI, S. 2022. Total phenolic, flavonoid contents and antioxidant activity of Cedrus Atlantica extracts. Pol. J. Natur. Sc., 37(1), 63-74. doi:10.31648/pjns.7395 Google Scholar
BOYACI, I. H., TEMIZ, H. T., GENIS, H. E., SOYKUT, E. A., YAZGAN, N. N., GUVEN, B., . . . SEKER, F. C. D. 2015. Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Adv., 5(70), 56606-56624. doi:10.1039/c4ra12463d Google Scholar
CEROVIC, Z. G., MASDOUMIER, G., BEN GHOZLEN, N., & LATOUCHE, G. 2012. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiologia Plantarum, 146(3), 251-260. doi:10.1111/j.1399-3054.2012.01639.x Google Scholar
CHYLINSKA, M., SZYMANSKA-CHARGOT, M., & ZDUNEK, A. 2014. Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy. Plant Methods, 10. doi:10.1186/1746-4811-10-14 Google Scholar
CZAMARA, K., MAJZNER, K., PACIA, M. Z., KOCHAN, K., KACZOR, A., & BARANSKA, M. 2015. Raman spectroscopy of lipids: a review. Journal of Raman Spectroscopy, 46(1), 4-20. doi:10.1002/jrs.4607 Google Scholar
DEMMIGADAMS, B., & ADAMS, W. W. 1992. Carotenoid composition in sun and shade leaves of plants with different life forms. Plant Cell and Environment, 15(4), 411-419. doi:10.1111/j.1365-3040.1992.tb00991.x Google Scholar
DONG, D. M., & ZHAO, C. J. 2017. Limitations and challenges of using Raman spectroscopy to detect the abiotic plant stress response. Proc. Natl. Acad. Sci. U. S. A., 114(28), E5486-E5487. doi:10.1073/pnas.1707408114 Google Scholar
ERAVUCHIRA, P. J., EL-ABASSY, R. M., DESHPANDE, S., MATEI, M. F., MISHRA, S., TANDON, P., . . . MATERNY, A. 2012. Raman spectroscopic characterization of different regioisomers of monoacyl and diacyl chlorogenic acid. Vibrational Spectroscopy, 61, 10-16. doi:10.1016/j.vibspec.2012.02.009 Google Scholar
FARBER, C., MAHNKE, M., SANCHEZ, L., & KUROUSKI, D. 2019. Advanced spectroscopic techniques for plant disease diagnostics. A review. Trac-Trends Anal. Chem., 118, 43-49. doi:10.1016/j.trac.2019.05.022 Google Scholar
FARBER, C., SHIRES, M., ONG, K., BYRNE, D., & KUROUSKI, D. 2019. Raman spectroscopy as an early detection tool for rose rosette infection. Planta, 250(4), 1247-1254. doi:10.1007/s00425-019-03216-0 Google Scholar
GIERLINGER, N., & SCHWANNINGER, M. 2007. The potential of Raman microscopy and Raman imaging in plant research. Spectr.-Int. J., 21(2), 69-89. doi:10.1155/2007/498206 Google Scholar
HEREDIA-GUERRERO, J. A., BENITEZ, J. J., DOMINGUEZ, E., BAYER, I. S., CINGOLANI, R., ATHANASSIOU, A., & HEREDIA, A. 2014. Infrared and Raman spectroscopic features of plant cuticles: a review. Frontiers in Plant Science, 5, 14. doi:10.3389/fpls.2014.00305 Google Scholar
KRIMMER, M., FARBER, C., & KUROUSKI, D. 2019. Rapid and Noninvasive Typing and Assessment of Nutrient Content of Maize Kernels Using a Handheld Raman Spectrometer. ACS Omega, 4(15), 16330-16335. doi:10.1021/acsomega.9b01661 Google Scholar
KULA, M., RYS, M., SAJA, D., TYS, J., & SKOCZOWSKI, A. 2016. Far-red dependent changes in the chemical composition of Spirulina platensis. Eng. Life Sci., 16(8), 777-785. doi:10.1002/elsc.201500173 Google Scholar
KULA, M., RYS, M., & SKOCZOWSKI, A. 2014. Far-red light (720 or 740 nm) improves growth and changes the chemical composition of Chlorella vulgaris. Eng. Life Sci., 14(6), 651-657. doi:10.1002/elsc.201400057 Google Scholar
LABANOWSKA, M., KURDZIEL, M., FILEK, M., & WESELUCHA-BIRCZYNSKA, A. 2016. The impact of biochemical composition and nature of paramagnetic species in grains on stress tolerance of oat cultivars. J Plant Physiol, 199, 52-66. doi:10.1016/j.jplph.2016.04.012 Google Scholar
LICHTENTHALER, H. K. 1987. Clorophylls and carotenoids - pigments of photosynthetic biomembranes. Method Enzymol., 148, 350-382. Google Scholar
LUKASZUK, E., RYS, M., MOZDZEN, K., STAWOSKA, I., SKOCZOWSKI, A., & CIERESZKO, I. 2017. Photosynthesis and sucrose metabolism in leaves of Arabidopsis thaliana aos, ein4 and rcd1 mutants as affected by wounding. Acta Physiologiae Plantarum, 39(1), 12. doi:10.1007/s11738-016-2309-1 Google Scholar
MUIK, B., LENDL, B., MOLINA-DIAZ, A., & AYORA-CANADA, M. J. 2005. Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy. Chem Phys Lipids, 134, 173-182. Google Scholar
NAUMANN, D. 2001. FT-infrared and FT-Raman spectroscopy in biomedical research. Applied Spectroscopy Reviews, 36(2-3), 239-298. doi:10.1081/ASR-100106157 Google Scholar
PASCAL, A., PETERMAN, E., GRADINARU, C., VAN AMERONGEN, H., VAN GRONDELLE, R., & ROBERT, B. 2000. Structure and interactions of the chlorophyll a molecules in the higher plant Lhcb4 antenna protein. J. Phys. Chem. B, 104(39), 9317-9321. doi:10.1021/jp001504m Google Scholar
PAYNE, W. Z., & KUROUSKI, D. 2021. Raman-Based Diagnostics of Biotic and Abiotic Stresses in Plants. A Review. Frontiers in Plant Science, 11(2223). doi:10.3389/fpls.2020.616672 Google Scholar
PRATS-MATEU, B., FELHOFER, M., DE JUAN, A., & GIERLINGER, N. 2018. Multivariate unmixing approaches on Raman images of plant cell walls: new insights or overinterpretation of results? Plant Methods, 14, 20. doi:10.1186/s13007-018-0320-9 Google Scholar
QUIDEAU, S., DEFFIEUX, D., DOUAT-CASASSUS, C., & POUYSEGU, L. 2011. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew. Chem.-Int. Edit., 50(3), 586-621. doi:10.1002/anie.201000044 Google Scholar
RYS, M., JUHASZ, C., SUROWKA, E., JANECZKO, A., SAJA, D., TOBIAS, I., . . . GULLNER, G. 2014. Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: Chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy. Plant Physiol. Biochem., 83, 267-278. doi:10.1016/j.plaphy.2014.08.013 Google Scholar
RYS, M., POCIECHA, E., OLIWA, J., OSTROWSKA, A., JURCZYK, B., SAJA, D., & JANECZKO, A. 2020. Deacclimation of Winter Oilseed Rape-Insight into Physiological Changes. Agronomy-Basel, 10(10), 25. doi:10.3390/agronomy10101565 Google Scholar
RYS, M., SZALENIEC, M., SKOCZOWSKI, A., STAWOSKA, I., & JANECZKO, A. 2015. FT-Raman spectroscopy as a tool in evaluation the response of plants to drought stress. Open Chem., 13(1), 1091-1100. doi:10.1515/chem-2015-0121 Google Scholar
SAJA, D., RYS, M., STAWOSKA, I., & SKOCZOWSKI, A. 2016. Metabolic response of cornflower (Centaurea cyanus L.) exposed to tribenuron-methyl: one of the active substances of sulfonylurea herbicides. Acta Physiologiae Plantarum, 38(7), 13. doi:10.1007/s11738-016-2183-x Google Scholar
SALETNIK, A., SALETNIK, B., & PUCHALSKI, C. 2021. Overview of Popular Techniques of Raman Spectroscopy and Their Potential in the Study of Plant Tissues. Molecules, 26(6), 16. doi:10.3390/molecules26061537 Google Scholar
SATO, H., OKADA, K., UEHARA, K., & OZAKI, Y. 1995. Near-Infrared Fourier Transform Raman-study of chlorophyll-alpha in solutions Photochem. Photobiol., 61(2), 175-182. doi:10.1111/j.1751-1097.1995.tb03957.x Google Scholar
SCHRADER, B., ERB, I., & LÖCHTE, T. 1998. Differentiation of conifers by NIR-FT-Raman spectroscopy. Asian J Phys, 7, 259-264. Google Scholar
SCHRADER, B., KLUMP, H. H., SCHENZEL, K., & SCHULZ, H. 1999. Non-destructive NIR FT Raman analysis of plants. J Mol Struct, 509(1-3), 201-212. doi:10.1016/s0022-2860(99)00221-5 Google Scholar
Schulz, H. 2014. Qualitative and quantitative FT-Raman analysis of plants. In M. Baranska (Ed.), Optical Spectroscopy and Computational Methods in Biology and Medicine (pp. 253-278). Dordrecht: Springer Netherlands. Google Scholar
SCHULZ, H., & BARANSKA, M. 2007. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc, 43, 13-25. Google Scholar
SCHULZ, H., BARANSKA, M., & BARANSKI, R. 2005. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers, 77(4), 212-221. doi:10.1002/bip.20215 Google Scholar
SKOCZOWSKI, A., TROC, M., BARAN, A., & BARANSKA, M. 2011. Impact of sunflower and mustard leave extracts on the growth and dark respiration of mustard seedlings. J Therm Anal Calorim, 104(1), 187-192. doi:10.1007/s10973-010-1225-7 Google Scholar
STAWOSKA, I., MYSZKOWSKA, D., OLIWA, J., SKOCZOWSKI, A., WESELUCHA-BIRCZYNSKA, A., SAJA-GARBARZ, D., & ZIEMIANIN, M. 2023. Air pollution in the places of Betula pendula growth and development changes the physicochemical properties and the main allergen content of its pollen. Plos One, 18(1). doi:10.1371/journal.pone.0279826 Google Scholar
STAWOSKA, I., STASZAK, A. M., CIERESZKO, I., OLIWA, J., & SKOCZOWSKI, A. 2020. Using isothermal calorimetry and FT-Raman spectroscopy for step-by-step monitoring of maize seed germination: case study. J Therm Anal Calorim, 142, 755-763. doi:10.1007/s10973-020-09525-x Google Scholar
STAWOSKA, I., WESELUCHA-BIRCZYNSKA, A., REGONESI, M. E., RIVA, M., TORTORA, P., & STOCHEL, G. 2009. Interaction of selected divalent metal ions with human ataxin-3 Q36. J. Biol. Inorg. Chem., 14(8), 1175-1185. doi:10.1007/s00775-009-0561-1 Google Scholar
STAWOSKA, I., WESEŁUCHA-BIRCZYŃSKA, A., SKOCZOWSKI, A., DZIURKA, M., & WAGA, J. 2021. FT-Raman Spectroscopy as a Tool to Study the Secondary Structures of Wheat Gliadin Proteins. Molecules, 26(17), 5388. Google Scholar
STRZALKA, K., KOSTECKA-GUGALA, A., & LATOWSKI, D. 2003. Carotenoids and environmental stress in plants: Significance of carotenoid-mediated modulation of membrane physical properties. Russ. J. Plant Physiol., 50(2), 168-172. doi:10.1023/a:1022960828050 Google Scholar
TALIK, P., MOSKAL, P., PRONIEWICZ, L. M., & WESELUCHA-BIRCZYNSKA, A. 2020. The Raman spectroscopy approach to the study of Water-Polymer interactions in hydrated hydroxypropyl cellulose (HPC). Journal of Molecular Structure, 1210, 6. doi:10.1016/j.molstruc.2020.128062 Google Scholar
Tanase, C., Bujor, O.-C., & Popa, V. I. 2019. Chapter 3 - Phenolic Natural Compounds and Their Influence on Physiological Processes in Plants. In R. R. Watson (Ed.), Polyphenols in Plants (Second Edition) (pp. 45-58): Academic Press. Google Scholar
THYGESEN, L. G., LOKKE, M. M., MICKLANDER, E., ENGELSEN, S. B. 2003. Vibrational microspectroscopy of food. Raman vs. FT-IR. Trends in Food Science and Technology, 14, 50-57. Google Scholar
TROC, M., SKOCZOWSKI, A., & BARANSKA, M. 2009. The influence of sunflower and mustard leaf extracts on the germination of mustard seeds. J Therm Anal Calorim, 95(3), 727-730. Google Scholar
TUNGMUNNITHUM, D., THONGBOONYOU, A., PHOLBOON, A., & YANGSABAI, A. 2018. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines (Basel), 5(3), 93. doi:10.3390/medicines5030093 Google Scholar
VITEK, P., NOVOTNA, K., HODANOVA, P., RAPANTOVA, B., & KLEM, K. 2017. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 170, 234-241. doi:10.1016/j.saa.2016.07.025 Google Scholar
Weber, F., & Passon Née Gleichenhagen, M. 2019. Characterization and quantification of polyphenols in fruits. In R. R. Watson (Ed.), Polyphenols in plants. isolation, purification and extract preparation. Second Edition (pp. 111-121): Academic Press, Elsevier. Google Scholar
ZEISE, I., HEINER, Z., HOLZ, S., JOESTER, M., BUTTNER, C., & KNEIPP, J. 2018. Raman Imaging of Plant Cell Walls in Sections of Cucumis sativus. Plants-Basel, 7(1), 16. doi:10.3390/plants7010007 Google Scholar
ZENG, J. J., PING, W., SANAEIFAR, A., XU, X., LUO, W., SHA, J. J., . . . LI, X. L. 2021. Quantitative visualization of photosynthetic pigments in tea leaves based on Raman spectroscopy and calibration model transfer. Plant Methods, 17(1), 13. doi:10.1186/s13007-020-00704-3 Google Scholar
ZHANG, T. J., ZHENG, J., YU, Z. C., GU, X. Q., TIAN, X. S., PENG, C. L., & CHOW, W. S. 2018. Variations in photoprotective potential along gradients of leaf development and plant succession in subtropical forests under contrasting irradiances. Environ. Exp. Bot., 154, 23-32. doi:10.1016/j.envexpbot.2017.07.016 Google Scholar
a:1:{s:5:"en_US";s:120:"Department of Plant Physiology, Institute of Biology and Earth Sciences, University of the National Education Commission";}