Sustainable Acoustics: The Impact of AI on Acoustics Design and Noise Management
Adam Starowicz
a:1:{s:5:"en_US";s:42:"University of Warmia and Mazury in Olsztyn";}Marcin Zieliński
Abstract
The collaboration between artificial intelligence (AI) and acoustics marks a groundbreaking advancement in creating optimal soundscapes across various environments. This article explores the profound impact of AI on reshaping acoustics, transitioning from an art form to a precise science. Through AI-driven techniques, architects and designers can now analyze architectural parameters and materials to achieve ideal sound properties in room acoustics design. Additionally, AI plays a pivotal role in noise reduction and control, mitigating unwanted sounds and enhancing auditory clarity. Its application extends to improving speech intelligibility in noisy environments, particularly in modern workplaces, and facilitating environmental noise monitoring for urban planning and noise pollution mitigation. With numerous case studies highlighting AI’s transformative influence, this article provides valuable insights into future innovations and the potential for AI to revolutionize our sonic surroundings. In essence, AI harnesses computer systems to simulate human intelligence processes, optimizing sound environments and revolutionizing the field of acoustics.
Keywords:
artificial intelligence (AI), acoustics, sound-enhancing, machine learning, noise reductionReferences
ABDULJABBAR R., DIA H., LIYANAGE S., BAGLOEE S.A. 2019. Applications of artificial intelligence in transport: An overview. Sustainability, 11(1): 189. Google Scholar
ALDOSERI A., AL-KHALIFA K.N., MAGID HAMOUDA A. 2023. Re-thinking data strategy and integration for artificial intelligence: Concepts, opportunities, and challenges. Applied Sciences, 13(12): 7082. Google Scholar
ANTOSHCHUK S., KOVALENKO M., SIECK J. 2018. Creating an interactive musical experience for a concert hall. International Journal of Computing, 17(3): 143-152. Google Scholar
BLAGEC K., DORFFNER G., MORADI M., SAMWALD M. 2020. A critical analysis of metrics used for measuring progress in artificial intelligence. Computer Science. Artificial Intelligence. https://arxiv.org/abs/2008.02577. https://doi.org/10.48550/arXiv.2008.02577 Google Scholar
CIABURRO G., IANNACE G., ALI M., ALABDULKAREM A., NUHAIT A. 2021. An artificial neural network approach to modelling absorbent asphalts acoustic properties. Journal of King Saud University – Engineering Sciences, 33(4): 213-220. Google Scholar
COKER K., SHI C. 2019. A survey on virtual bass enhancement for active noise cancelling headphones. ICCAIS 2019 – 8th International Conference on Control, Automation and Information Sciences. Google Scholar
FALCÓN PÉREZ R. 2018. Machine-learning-based estimation of room acoustic parameters. Thesis supervisor: V. Pulkki, thesis advisor L. McCormack. School of Electrical Engineering, Aalto University. Google Scholar
GLIGOREA I., CIOCA M., OANCEA R., GORSKI A.T., GORSKI H., TUDORACHE P. 2023. Adaptive learning using artificial intelligence in e-learning: A literature review. Education Sciences, 13(12): 1216. Google Scholar
HARUVI A., KOPITO R., BRANDE-EILAT N., KALEV S., KAY E., FURMAN D. 2021. Modeling the effect of background sounds on human focus using brain decoding technology. bioRxiv. The Preprint Server for Biology. https://doi.org/10.1101/2021.04.02.438269 Google Scholar
High-performance modelling and simulation for Big Data Applications. Selected results of the COST Action IC1406 cHiPSet. 2019. Eds. J. Kołodziej, H. González-Vélez. Springer International Publishing, Cham. http://library.oapen.org/handle/20.500.12657/23334 Google Scholar
JOINER I.A. 2018. Artificial Intelligence. In: Emerging library technologies. It’s not just for geeks. Ed. I.A. Joiner. Elsevier, Amsterdam. Google Scholar
KANE R. 2023. Adaptive acoustic walls – Robert Kane. Retrieved from https://cargocollective.com/kane/Adaptive-Acoustic-Walls Google Scholar
KAZEEM K.O., OLAWUMI T.O., OSUNSANMI T. 2023. Roles of artificial intelligence and machine learning in enhancing construction processes and sustainable communities. Buildings, 13(8): 2061. Google Scholar
KUMAR S., VERMA A.K., MIRZA A. 2024. Artificial intelligence-driven governance systems: smart cities and smart governance. In: Digital transformation, artificial intelligence and society. Frontiers of artificial intelligence, ethics and multidisciplinary applications. Springer, Singapore. https://doi.org/10.1007/978-981-97-5656-8_5 Google Scholar
LAM B., GAN W.S., SHI D.Y., NISHIMURA M., ELLIOTT S. 2021. Ten questions concerning active noise control in the built environment. Building and Environment, 200: 107928. Google Scholar
LAURITSEN S.M., KRISTENSEN M., OLSEN M.V., LARSEN M.S., LAURITSEN M., JØRGENSEN M.J., LANGE J., THIESSON B. 2020. Explainable artificial intelligence model to predict acute critical illness from electronic health records. Nature Communications, 11(1): 1-11. Google Scholar
LIU Y., MA X., SHU L., YANG Q., ZHANG Y., HUO Z., ZHOU Z. 2020. Internet of things for noise mapping in smart cities: State of the art and future directions. IEEE Network, 34(4): 112-118. Google Scholar
LOPEZ-BALLESTER J., FELICI-CASTELL S., SEGURA-GARCIA J., COBOS M. 2023. AI-IoT Platform for blind estimation of room acoustic parameters based on deep neural networks. IEEE Internet of Things Journal, 10(1): 855-866. Google Scholar
NOURANI V., GÖKÇEKUŞ H., UMAR I.K. 2020. Artificial intelligence based ensemble model for prediction of vehicular traffic noise. Environmental Research, 180: 108852. Google Scholar
PAKNEJAD S.H., VADOOD M., SOLTANI P., GHANE M. 2021. Modeling the sound absorption behavior of carpets using artificial intelligence. The Journal of The Textile Institute, 112(11): 1763–1771. Google Scholar
PAULINE S.H., SAMIAPPAN D., KUMAR R., ANAND A., KAR A. 2020. Variable tap-length non-parametric variable step-size NLMS adaptive filtering algorithm for acoustic echo cancellation. Applied Acoustics, 159: 107074. Google Scholar
PEDRO C., LORDELO V. 2022. Deep learning methods for instrument separation and recognition. Queen Mary University of London Theses, London. Google Scholar
PICINALI L.G., KATZ B.F., GERONAZZO M., MAJDAK P., REYES-LECUONA A., VINCIARELLI A., KATZ B.F. 2022. Artificial intelligence-driven immersive audio, from personalization to modeling. IEEE Signal Processing Magazine, 6. Google Scholar
SEIBOLD M., MAURER S., HOCH A., ZINGG P., FARSHAD M., NAVAB N., FÜRNSTAHL P. 2021 Real-time acoustic sensing and artificial intelligence for error prevention in orthopedic surgery. Scientific Reports, 11(1): 1-11. Google Scholar
SUSSKIND D., SUSSKIND R. 2018. The future of the professions. Proceedings of the American Philosophical Society, 162(2): 125-138. Google Scholar
TAN J.K.A., LAU S.K. 2024. Experimental study of active noise control for a full-scale plenum window in a domestic apartment. Applied Acoustics, 224: 110120. Google Scholar
TARAWNEH M., ALZYOUD F., SHARRAB Y. 2023. Artificial intelligence traffic analysis framework for smart cities. Computing Conference, London. Google Scholar
TAYE M.M. 2023. Understanding of machine learning with deep learning: architectures, workflow, applications and future directions. Computers, 12(5): 91. Google Scholar
VANKA S.S., SAFI M., ROLLAND J.-B., FAZEKAS G. 2023. Adoption of AI technology in the music mixing workflow: An investigation. Computer Science. Human-Computer Interaction. https://doi.org/10.48550/arXiv.2304.03407 Google Scholar
XU Y., LIU X., CAO X., HUANG C., LIU E., QIAN S., LIU X., WU Y., DONG F., QIU C.W., QIU J., HUA K., SU W., WU J., XU H., HAN Y., FU C., YIN Z., LIU M., ROEPMAN R., DIETMANN S., VIRTA M., KENGARA F., ZHANG Z., ZHANG L., ZHAO T., DAI J., YANG J., LAN L., LUO M., LIU Z., AN T., ZHANG B., HE X., CONG S., LIU X., ZHANG W., LEWIS J.P., TIEDJE J.M., WANG Q., AN Z., WANG F., ZHANG L., HUANG T., LU C., CAI Z., WANG F., ZHANG J. 2021. Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4): 100179. https://doi.org/10.1016/j.xinn.2021.100179 Google Scholar
YANG X. 2017. Adaptive Acoustic Origami. Melbourne School of Design, The University of Melbourne. Google Scholar
ZHANG C., CHAONING C., ZHENG S., ZHANG M., QAMAR M., BAE S., KWEON I. 2023. A survey on audio diffusion models: Text to speech synthesis and enhancement in generative AI. https://doi.org/10.48550/arXiv.2303.13336 Google Scholar
a:1:{s:5:"en_US";s:42:"University of Warmia and Mazury in Olsztyn";}