From the Cosserats mechanics backgrounds to modern field theory
Waldemar Dudda
Faculty of Technical Sciences, University of Warmia and Mazury in OlsztynJanusz Badur
Abstract
In the paper, yet weekly known, Cosserats’ original four concepts as follow: the four-time unification of rigid body dynamics, statics of flexible rods, statics of elastic surfaces and 3D deformable body dynamics; the intrinsic formulation based on the local, von Helmholtz symmetry group of monodromy; the invariance under the Euclidean group. The concept of a set of low-dimensional branes immersed into Euclidean space are revalorized and explained in terms of the modern gauge field theory and the extended strings theory. Additionally, some useful mathematical tools that connect the continuum mechanics and the classical field theory (for instance, the convective coordinates, von Mises’ “Motorrechnung”, the Grassmann extensions, Euclidean invariance, etc.) are involved in the historical explanation that how the ideas were developing themself.
Keywords:
Cosserats continuum, Darboux curvature vector, moving frame, Frenet trihedron, intrinsic coordinates, four-time operators, gauge symmetry flux conservation, gauge potentials, Mauer-Cartan structure equations, von Helmholtz symmetry group, Euclidean group of transformations, weak principle of momentum and angular momentum conservation, Euler laws of dynamics, Cauchy first and second lawsReferences
ALBLAS J.B. 1969. Continuum mechanics of media with internal structure. In: Teoria dei continui polari. Istituto Nazionale di Alta Matematica (INDAM), Rome, Italy, April 2-5, 1968. Symposia Mathematica, 1: 229-251. Academic Press Inc., London. Google Scholar
ANDRADE J. 1898. Leçons de mécanique physiquek. Société d’éditions scientifiques, Paris. Google Scholar
ARIANO R. 1924. Deformacioni finite di sistemi continui. Annali di Matématica Pura ed Applicata (ser 4o), 2: 216-261. Google Scholar
ARMERO F., ROMERO I. 2003. Energy-dissipative momentum-conserving time-stepping algorithms for the dynamics of nonlinear Cosserat rods. Computational Mechanics, 31: 3-26. Google Scholar
ARON H. 1874. Das Geleichgewicht und die Bewegung einer unendlich dünnen beliebig gekrümmten elestischen Schale. Journal fur die Reine und Angewandte Mathematik, 78: 136-174. Google Scholar
ATLURI S.N., CAZZANI A. 1995. Rotations in computational solid mechanics. Archives of Computational Methods in Engineering, 2: 49-138. https://doi.org/10.1007/BF02736189 Google Scholar
BADUR J. 1989. A Yang-Mills type of equation for the compatibility conditions. International Journal of Engineering Science, 27: 1439-1442. Google Scholar
BADUR J. 1990. Quasi-Abelian gauge theory of axisymmetric deformation of shells of revolution. International Journal of Engineering Science, 28: 563-572. Google Scholar
BADUR J. 1991. Extension of many-time Hamiltonian formalism to the theory of deformable Cosserat bodies. International Journal of Engineering Science, 29: 69-77. Google Scholar
BADUR J. 1993. Pure gauge theory of the Cosserat surface. International Journal of Engineering, Science, 31: 41-59. Google Scholar
BADUR J. 1993. Space-time compatibility conditions for strains and velocities. Rendiconti di Matematica, 13: 1-29. Google Scholar
BADUR J. 2009. Principles of Cosserat p-brane extended mechanics. In: COSSERAT+100, International Conference on legacy of Théorie des corps déformables by E.F. Cosserat. Ed. C. Capriz. M. Brocato. Paris. Google Scholar
BADUR J. 2021. Eternal symmetries of Noether. IMP Press, Gdańsk. Google Scholar
BADUR J. 2022. Eternal relativity of Whitehead. IMP Press, Gdańsk. Google Scholar
BADUR J., CHRÓŚCIELEWSKI J. 1983. Powłokowy element skończony oparty o kinematykę Cosseratów. Konferencja „Metody numeryczne w mechanice”. Białystok. Google Scholar
BADUR J., CHRÓŚCIELEWSKI J. 2015. On a four-time unification of the Cosserats continua by the intrinsic approach. 3rd Polish Congress of Mechanics, Gdańsk. Google Scholar
BADUR J., OCHRYMIUK T., KOWALCZYK T., DUDDA W., ZIÓŁKOWSKI P. 2022. From fluid mechanics backgrounds to modern field theory. Acta Mechanica, 223: 3453-3465. Google Scholar
BADUR J., PIETRASZKIEWICZ W. 1986. On geometrically non-linear theory of elastic shells derived from pseudo-Cosserat continuum with constrained microrotations. In: Finite Rotations in Structural Mechanics. Ed. W. Pietraszkiewicz. Springer-Verlag, Wien, p. 19-32. Google Scholar
BADUR J., POVSTIENKO Y. 1998. Cosserat boundle versus the motor calculus. Archives of Mechanics, 50: 367-376. Google Scholar
BADUR J., STUMPF H. 1989. On the influence of E. and F. Cosserat on modern continuum mechanics and the field theory. Mitteilungen aus dem Institut für Mechanik, no 72, Ruhr-Universität, Bochum. Google Scholar
BADUR J., ZIÓŁKOWSKI P., ZIÓŁKOWSKI P.J. 2015. On angular velocity slip in nonoflows. Microfluidics and Nanofluidics, 19: 191-199. Google Scholar
BASAR Y. 1987. A consistent theory of geometrically non-linear shells with an independent rotation vector. International Journal of Solids and Structures, 23(10): 1401-1415. Google Scholar
BASAR Y., WEICHERT D. 2000. Nonlinear continuum mechanics of solids. Springer Verlag, Berlin. Google Scholar
BASSET A.B. 1894. On the deformation of thin elastic plates and shellsk. American Journal of Mathematics, 16: 255-290. Google Scholar
BASSET A.B. 1895. On the deformation of thin elastic wiresk. American Journal of Mathematics, 17: 281-317. Google Scholar
BELTRAMI E. 1871. Sur principi fondamentali della idrodinamica. Memorie Reale Accademia Scienze Istituto Bologna, series 3, t. 1, p. 431-476. Google Scholar
BELTRAMI E. 1872. Sur principi fondamentali della idrodinamica. Memorie Reale Accademia Scienze Istituto Bologna, series 3, t. 2, p. 381-437. Google Scholar
BELTRAMI E. 1873. Sur principi fondamentali della idrodinamica. Memorie Reale Accademia Scienze Istituto Bologna, series 3, t. 3, p. 349-407. Google Scholar
BELTRAMI E. 1874. Sur principi fondamentali della idrodinamica. Memorie Reale Accademia Scienze Istituto Bologna, series 3, t. 5, p. 443-484. Google Scholar
BELTRAMI E. 1911. Sulle equazioni generali dell’elasticità. Opere Matematiche, III: 383. Google Scholar
BESDO D. 1974. Ein Beitrag zur nichtlinearen theorie des Cosserat-Kontinuums. Acta Mechanica, 20: 105-131. Google Scholar
BESSAN E. 1963. Sui sistemi continui nel case asimetrico. Annali di Matematica Pura ed Applicata, 62: 169-222. Google Scholar
BORST R. DE. 1991. Simulation of strain localization: a reappraisal of the Cosserat continuum. Engineering with Computers, 8: 317-332. Google Scholar
BROCATO M., CAPRIZ G. 2001. Gyrocontinua. International Journal of Solids and Structures, 38: 1089-1103. Google Scholar
CAPRIZ G. 2008. On ephemeral continua. Physical Mesomechanics, 11: 285-298. Google Scholar
CAPRIZ G. 2010. Hypocontinua. In: Continuous Media with Microstructure. Ed. B. Albers. Springer, Berlin. Google Scholar
CAPRIZ G., PODIO-GUIDUGLI P. 1977. Formal structure and classification of theories of oriented media. Annali di Matematica Pura ed Applicata, Ser. IV, 115: 17-39. Google Scholar
CAPRIZ G., VIRGA E. 1994. On singular surfaces in the dynamics of continua with microstructure. Quarterly of Applied Mathematics, 52: 509-517. Google Scholar
CARNOT L. 1793. Les Principes fondamentaux de l’équilibre et du movement. De l’imprimerie de Crapelet chez Deterville, Paris. Google Scholar
CARTAN E. 1923. Sur les variétés à connexion affine et la theorie de la relativité généralisée (premièrepartie). Annales Scientifiques de l’École Normale Supérieure, Serie 3, 40: 325-412. Google Scholar
CARTAN E. 1924. Sur les variétés à connexion affine et la theorie de la relativité généralisée (première partie) (Suite). Annales Scientifiques de l’École Normale Supérieure, Serie 3, 41: 1-25. Google Scholar
CARTAN E. 1925. Sur les variétés à connexion affine et la theorie de la relativité généralisée (deuxième partie). Annales Scientifiques de l’École Normale Supérieure, 42: 17-88. Google Scholar
CARTAN E. 1935. La méthóde du repére mobile, la théorie des groupes continus et les espaces generalisés. Hermann, Paris. Google Scholar
CAUCHY A.-L. 1823. Recherchessur l’équilibre et le mouvement des corpes solides ou fluides, élastiques ou non élastiques. Bulletin de la Societe Philomatique de Paris, p. 9-13. Google Scholar
CESARO E. 1926. Vorlesugen über Natüraliche Geometre. 2nd ed. Trans. G. Kowalewski. Verlag und Druck von B.G. Teubner, Leipzig. Google Scholar
CHAICHIAN M., NELIPA N.F. 1984. Introduction to the Gauge Field Theories. Springer, Berlin. Google Scholar
CHEN W.Z. 1944. The intrinsic theory of thin shells and plates. I. General theory. Quarterly of Applied Mathematics, 1: 297-327. Google Scholar
CHRÓŚCIELEWSKI J., MAKOWSKI J., PIETRASZKIEWICZ W. 2004. Statyka i dynamika powłok wielopłatowych. Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk, Warszawa. Google Scholar
CHRÓŚCIELEWSKI J., MAKOWSKI J., STUMPF H. 1992. Genuinely resultant shell finite elements accounting for geometric and material nonlinearity. International Journal for Numerical Methods in Engineering, 35: 63-94. Google Scholar
CHRÓŚCIELEWSKI J., PIETRASZKIEWICZ W., WITKOWSKI W. 2010. On shear correction factors in the nonlinear theory of elastic shells. International Journal of Solids and Structures, 47: 3537-3445. Google Scholar
CLAYTON J.D. 2022. Finsler differential geometry in continuum mechanics: Fundamental concepts, history, and renewed application to ferromagnetic solids. Mathematics and Mechanics of Solids, 27(5). https://doi.org/10.1177/10812865211049468 Google Scholar
COSSERAT E., COSSERAT F. 1909. Note sur la théorie de l’action euclidienne. In: Traité de mécanique rationelle. Ed. P. Appell. T. III, p. 557-629. Gauthier-Villars, Paris. Google Scholar
COSSERAT E., COSSERAT F. 1909. Théorie des corps déformables. Hermann, Paris. Google Scholar
COSSERAT E., COSSERAT F. 1896. Sur la theorie de l’elasticite. Premier mémoire. Annales de la Faculté des sciences de Toulouse, Mathématiques, 10(3-4): 1-116. Google Scholar
COSSERAT E., COSSERAT F. 1907. Sur la mécanique générale. Comptes Rendus, 145: 1139-1142. Google Scholar
CRAIG T. 1898. Displacement depending on one, two and three parameters in a space of four dimensions. American Journal of Mathematics, 20: 135-156. Google Scholar
CRISFIELD M.A., JELENIĆ G. 1998, Objectivity of strain measures in geometrically exact 3D beam theory and its finite element implementation. Proceedings of the Royal Society of London, 455: 1125-1147. Google Scholar
DANIELSON D.A., HODGES D.H. 1984. Nonlinear beam kinematics by decomposition of the rotation tensor. ASME Journal of Applied Mechanics, 54: 258-262. Google Scholar
DARBOUX G. 1890. Leçons sur la théorie générale des surfaces. Gauthier Villars Et Fils, Paris. Google Scholar
DARBOUX G. 1900. Sur les déformations finites et sur les systèmes triples de surfaces orthogonales. Proceedings of the London Mathematical Society, 32: 377-383. Google Scholar
DE LEÓN M., EPSTEIN V., JIMÉNEZ V. 2021. Material geometry: groupoids in continuum mechanics. Pergamon, New York. Google Scholar
DELENS P.-C. 1927. Méthods et problèmes des géométries différentielles, Euclidienne et conforme. Gauther-Villars, Paris. Google Scholar
DELL’ISOLA F., DELLA CROTE A., GIROGIO I. 2015. Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Tupin and some future research perspectives. Mathematics and Mechanics of Solids, 20(8): 887-928. Google Scholar
DILL E.H. 1992. Kirchhoff’s theory of rods. Archive for History of Exact Sciences, 44(1): 1-23. Google Scholar
DUHEM P. 1893. Le potentel thermodynamique et la pression hydrostatique. Annales Scientifiques de l’École Normale Supérieure, Ser. 3, 10: 187-230. Google Scholar
DUHEM P. 1901a. Reserches sur l’hydrodynamique. Annales de la Faculté des sciences de Toulouse. Mathématiques, 3(3): 315-377. Google Scholar
DUHEM P. 1901b. Reserches sur l’hydrodynamique. Annales de la Faculté des sciences de Toulouse, 2e série, 3(4): 379-431. Google Scholar
DUHEM P. 1902. Reserches sur l’hydrodynamique. Annales de la Faculté des sciences de Toulouse, 2e série, 4: 101-169. Google Scholar
DUHEM P. 1903. Reserches sur l’hydrodynamique. Annales de la Faculté des sciences de Toulouse, 2e série, 5(2): 5-61, 197-255, 353-404. Google Scholar
DUHEM P. 1904. Recherches sur l’elasticite. Annales scientifiques de l’École Normale Supérieure, (3)2: 99-139, 375-414. Google Scholar
DUHEM P. 1905. Recherches sur l’elasticite. Annales scientifiques de l’École Normale Supérieure, 2: 143-217. Google Scholar
DUHEM P. 1906. Recherches sur l’elasticite. Annales scientifiques de l’École Normale Supérieure, 23: 169-223. Google Scholar
EDELEN D.G.E., LAGOUDAS D.C. 1988. Gauge Theory of Defects in Solids. North-Holland, Amsterdam. Google Scholar
EHLERS W., RAMM E., DIEBELS S., D’ADDETTA G.A. 2003. From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. International Journal of Solids and Structures, 40: 6681-6702. Google Scholar
EL NASCHIE M.S. 2016. Cosserat-Cartan and de Sitter-Witten spacetime setting for dark energy. Quantum Matter, 5: 1-4. https://doi.org/10.1166/qm.2016.1247 Google Scholar
EPSTEIN M., DE LEON M. 1998. Geometrical theory of uniform Cosserat media. Journal of Geometry and Physics, 26(1-2): 127-170. Google Scholar
ERICKSEN J.L., TRUESDELL C. 1958. Exact theory of stress and strain in rods and shells. Archive for Rational Mechanics and Analysis, 1: 295-323. Google Scholar
ERINGEN A.C., SUHUBI E.S. 1964. Nonlinear theory of simple microelastic solids. Part I. International Journal of Engineering Science, 2: 189-203. Google Scholar
ERINGEN A.C., SUHUBI E.S. 1964. Nonlinear theory of simple microelastic solids. Part II. International Journal of Engineering Science, 2: 389-404. Google Scholar
EULER L. 1752. Découverte d’un nouveau principle de mécanique. Mémoires de l’académie des sciences de Berlin, 6: 185-217. Google Scholar
FERRARESE G. 1959. Sulla velocita angolare nei moti rigidi e la rotazione locale nelle deformazioni finite. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, 36(5): 629-638, Google Scholar
FERRARESE G. 1971. Sulla compatibilita dei continui alla Cosserat. Annali di Matematica Pura ed Applicata, 108: 109-124. Google Scholar
FERRARESE G. 1972. Intrinsic formulation of Cosserat continua dynamics. In: Trends in Applications of Pure Mathematics to Mechanics, t. II. Ed. H. Zorski. Pitman, London. Google Scholar
FERRARESE G. 1976. Sulla formulazione intrinseca della dinamica dei continui alla Cosserat. Annali di Matematica Pura ed Applicata, 108: 109-124. Google Scholar
FINZI B. 1932. Equazioni intrinseche della meccanica dei sistemi continui perfettamente od imperfettamente flessibili. Annali di Matematica Pura ed Applicata, 11: 215-245. Google Scholar
FOREST S., CAILLETAUD G., SIEVERT R. 1997. A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Archives of Mechanics, 49(4): 705-736. Google Scholar
FOREST S., SIEVERT R. 2003. Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mechanica, 160: 71-111. Google Scholar
FOREST S., SIEVERT R. 2006. Nonlinear microstrain theories. International Journal of Solids and Structures, 43: 7224-7245. Google Scholar
FORTUNE D., VALLEE C. 2001. Bianchi identities in case of large deformations. International Journal of Engineering Science, 39: 113-123. Google Scholar
FRANKE J.N. 1889. Mechanika teoretyczna. T. X. Biblioteka Matematyczno-Fizyczna, Kasa J. Mianowskiego, Warszawa. Google Scholar
FRENET F. 1847. Sur les courbes a double courbure. Thése, Toulouse. Google Scholar
GOSIEWSKI W. 1877. O zasadach teorii bezwzględnej zjawisk materialnych. Pamiętnik Towarzystwa Nauk Ścisłych w Paryżu, 10: 1-6. Google Scholar
GREEN A.E., LAWS N. 1966. A general theory of rods. Proceedings of the Royal Society of London, 293: 145-155. Google Scholar
GREEN A.E., NAGHDI P.M., WAINWRIGHT W.L. 1965. A general theory of Cosserat surfaces. Archive for Rational Mechanics and Analysis, 20: 287-308. Google Scholar
GRIOLI G. 1960. Elasticità asimmetrica. Annali di Matematica Pura ed Applicata, 50: 389-417. Google Scholar
GRIOLI G. 1968. Questioni di compatibilità per continui di Cossarat. Sumposia Mathemetica, I: 271-287. Google Scholar
GRUTTMAN F., SAUER R., WAGNER W. 1998. A geometrically nonlinear eccentric 3D-beam element with arbitrary cross sections. Computer Methods in Applied Mechanics and Engineering, 160: 383-400. Google Scholar
GRUTTMANN F., STEIN E., WRIGGERS P. 1989. Theory and numerics of thin elastic shells with finite rotations. Ingenieur-Archiv, 59: 54-67. Google Scholar
GÜNTHER W. 1958. Zur Statik und Kinematik des Cosseratschen Kontinuum. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 10: 195-213. Google Scholar
GÜNTHER W. 1961. Analoge Systeme von Schalengeleichungen. Ingenieur-Archiv, 30: 160-186. Google Scholar
HAY G.E. 1942. The finite displacement of thin rods. Transactions of the American Mathematical Society, 51: 65-102. Google Scholar
HEHL F., KRÖNER E. 1965. Über den Spin in der allgemeinen Relativitätstheorie Eine notwendige Erweiterung der Einsteinschen Feldgleichungen. Zeitschrift für Physik, 187: 478-489. Google Scholar
HEHL F., KRÖNER E. 1965. Zum materialgesetz eines elastischen Medius mit Momentenspannungen. Zeitschrift für Naturforschung, 20: 336-350. Google Scholar
HEHL F.W. 1973. Spin and torsion in general relativity. I. Foundations. General Relativity and Gravitation, 4: 333-349. Google Scholar
HEHL F.W. 2017. Gauge theory of gravity and spacetime. In: Towards a theory of spacetime theories. Eds. D. Lehmkuhl, G. Schiemann, E. Scholz. Springer, Berlin. Google Scholar
HEHL F.W., OBUKHOV Y.N. 2007. Élie Cartan’s torsion in geometry and in field theory, an essay. General Relativity and Quantum Cosmology. arXiv preprint arXiv:0711.1535. https://doi.org/10.48550/arXiv.0711.1535 Google Scholar
HELLINGER E. 1914. Die allgemein ansätze der mechanik der kontinua. Enzyklopädie der Mathematischen Wissenschaften, virter Tailband – Mechanik, part 4, Artikel 30, p. 601-694. Eds. F. Klein, C.H. Müller. B.G. Teubner Verlag, Leipzig. Google Scholar
HELMHOLTZ H. 1868. Über die Tataschen die Geometrie zugrunde liegen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 9: 193-221. Google Scholar
HENCKY H. 1915. Űber den Spannungszustand kreisrundem platten. Zeitschrift für Angewandte Mathematik und Physik, 63: 311-317. Google Scholar
HESS W. 1884. Ueber die Biegung und Drillung eines unendlich dünnen elastischen Stabes, dessen eines Ende von einem Kräftepaar angegriffen wied. Mathematische Annalen, 23: 181-212. Google Scholar
HODGES D.H. 1990. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. International Journal of Solids and Structures, 26: 1253-1273. Google Scholar
HODGES D.H., ATILGAN A.R., DANIELSON D.A. 1993. A geometrically nonlinear theory of elastic plates. Journal of Applied Mechanics, 60: 109-116. Google Scholar
IBRAHIMBEGOVIC A. 1994. Stress resultant geometrically nonlinear shell theory with drilling rotations. Part 1. A consistent formulation. Computer Methods in Applied Mechanics and Engineering, 118: 265-284. Google Scholar
JAUMANN R.G. 1918. Physik der kontinuierlichen Medien. Denkschriften by Akademie der Wissenschaften in Wien, 95: 461-562. Google Scholar
KADIĆ A., EDELEN D.G. 1983. A gauge theory of dislocations and disclinations. Lecture Notes in Physics, 174. Google Scholar
KAFADAR C., ERINGEN A.C. 1971. Micropolar media. Part I. The classical theory. International Journal of Engineering Science, 9: 271-329. Google Scholar
KESSEL S. 1970. Spannungsfelder einer Schraubenversetzung und einer Stufenversetzung im Cosseratschen Kontinuum. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 50: 547-553. Google Scholar
KIRCHHOFF G. 1850. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik, 40: 51-88. Google Scholar
KIRCHHOFF G. 1852. Über die Gleichungen des Gleichgewichts eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Teile. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, 9: 762-773. Google Scholar
KIRCHHOFF G. 1859. Űber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. Journal für die reine und angewandte Mathematik, 56: 285-313. Google Scholar
KIRCHHOFF G. 1876. Vorlesungen über mathematische Physik: Mechanik. B.G. Teubner, Leipzig. Google Scholar
KIRCHHOFF G. 1883. Vorlesungen über mathematische Physik: Mechanik. B.G. Teubner, Leipzig. Google Scholar
KLINGER F. 1942. Die Statik und Kinematik des räumlich gekrümmten elastischen Stabes. Sitzungsberichte, Akademie der Wissenschaften in Wien, IIa, 151: 13-79. Google Scholar
KLUGE G. 1969. Zur Dynamik der allgemeinen versetzungstheorie bei berücksichtigung von momentenspannungen. International Journal of Engineering Science, 7: 169-182. Google Scholar
KOITER W.T. 1964. Couple-stresses in the theory of elasticity. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, 64: 17-44. Google Scholar
KRAUSS F. 1929. Űber die Grundleichungen der Elastizitätstheorie scheach deformirter Schalen. Mathematische Annalen, 101: 61-92. Google Scholar
KRÖNER E. 1960. Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Archive for Rational Mechanics and Analysis, 4: 273-334. Google Scholar
LACHNER D., LIPPMANN H., TOTH L.S. 1994. On Cosserat plasticity and plastic spin for isotropic materials. Archives of Mechanics, 46: 531-539. Google Scholar
LAGRANGE J.L. 1762. Application de la méthode exposée précédente a la solution de différmes problémes de dynamique. Mélanges de Philosophie et de Mathématiques de la Société Royale de Turin, 2: 196-298. Google Scholar
LAKES R. 1995. Experimental methods for study of Cosserat elastic solids and other generalized continua. In: Continuum models for materials with micro-structure. Ed. H. Mühlhaus. Ch. 1, p. 1-22. J. Wiley, New York.. Google Scholar
LAMÉ G. 1852. Leçons sur la Théorie Mathématique de l’Élasticité. Bachelier, Paris. Google Scholar
LAME G., CLAPEYRON E. 1833. Mémoire sur l’équilibre intérieur des corps solides homogènes. Mémoires l’Acad. Royale des Sciences de l’Institut de France, 4: 465-562. Google Scholar
LANGE L. 1885. Über die wissenschaftliche Fassung des Galileischen Beharrungsgesetzes. Philosophische Studien, 2: 266-297. Google Scholar
LAZAR M., HEHL F.W. 2010. Cartan’s spiral staircase in physics and, in particular, in the gauge theory of dislocations. Foundations of Physics, 40: 1298-1325. Google Scholar
LE CORRE Y. 1965. La dissymétrie du tenseur des efforts et ses conséquences. Journal de Physique et Le Radium, 17: 934-939. Google Scholar
LE K.C., STUMPF H. 1998. Strain measures, integrability condition and frame indifference in the theory of oriented media. International Journal of Solids and Structures, 35(9-10): 783-798. Google Scholar
LECORNU M.L. 1880. Sur l’équilibre des surfaces flexibiles at inextensibiles. Journal de l’École polytechnique, 29: 1-100. Google Scholar
LEHMANN TH. 1964. Formäderungen eines klassischen Kontinuum in vierdimensionaler Darstellung. International Congress for Applied Mechanics, Ed. H. Görtler, p. 376-382. Google Scholar
LIPPMANN H. 1969. Eine Cosserat-Theorie des plastischen Fließens. Acta Mechanica, 8: 255-284. Google Scholar
LOVE A.E.H. 1888. The small free vibrations and deformations of a thin elastic shell. Philosophical Transactions of the Royal Society, A, 179: 491-546. Google Scholar
LUO A.C.J. 2010. On a nonlinear theory of thin rods. Communications in Nonlinear Science and Numerical Simulation, 15: 4181-4197. Google Scholar
MAC CULLAGH J. 1839. An essay towards a dynamical theory of crystalline reflexion and refraction. Transactions of the Royal Irish Academy, 21: 17-50. Google Scholar
MAKOWSKI J., STUMPF H. 1990. Buckling equations for elastic shells with rotational degrees of freedom undergoing finite strain deformation. International Journal of Solids and Structures, 26(3): 353-368. Google Scholar
MALCOLM D.J., GLOCKNER P.G. 1972. Nonlinear sandwich shell and Cosserat surface theory. Journal of the Engineering Mechanics Division, 98(EM5): 1183-1203. Google Scholar
MAUGIN G.A. 1998. On the structure of the theory of polar elasticity. Philosophical Transactions of the Royal Society A, 356: 1367-1395. Google Scholar
MAUGIN G.A. 2014. Continuum Mechanics Through the Eighteenth and Nineteenth Centuries 2014 Historical Perspectives from John Bernoulli (1727) to Ernst Hellinger (1914). Springer, Cham. Google Scholar
MEISSNER K. 2013. Classical Field Theory. Wydawnictwo Naukowe PWN, Warszawa. Google Scholar
MINDLIN R.D. 1964. Microstructure in linear elasticity. Archive for Rational Mechanics and Analysis, 16: 51-78. Google Scholar
MINDLIN R.D., TRIESTEN H. 1962. Effects of complex-stress in linear elasticity. Archive for Rational Mechanics and Analysis, 11: 415-448. Google Scholar
MISES R. VON. 1924. Motorrechnung, ein neues Hilfsmittel der mechanic. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 4: 155-181. Google Scholar
NADLER B., RUBIN M.B. 2003. A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point. International Journal of Solids and Structures, 40: 4585-4614. Google Scholar
NEFF P. 2006. A finite-strain elastic–plastic Cosserat theory for polycrystals with grain rotations. International Journal of Engineering Science, 44: 574-594. Google Scholar
NEFF P. 2019. Cosserat Theory by Prof. Dr. Patrizio Neff. Lehrstuhl für Nichtlineare Analysis, Universität Duisburg-Essen. Retrieved from http://www.uni-due.de/mathematik/ag_neff/cosserat Google Scholar
NOWACKI W. 1966. Couple-stresses in the theory of thermoelasticity. Bulletin de L’Academie Polonaise des Sciences, 14: 97-106, 203-212. Google Scholar
NOWACKI W. 1986. Theory of Asymmetric Elasticity. Pergamon-Press, Oxford. Google Scholar
O’REILLY O.M., TURCOTTE J.S. 1997. Elastic rods with moderate rotation. Journal of Elasticity, 48: 193-216. Google Scholar
OPOKA S., PIETRASZKIEWICZ W. 2004. Intrinsic equation of nonlinear deformation and stability of thin elastic shells. International Journal of Solids and Structures, 41: 3275-3292. Google Scholar
PAPENFUSS C., FOREST S. 2006. Thermodynamical frameworks for higher grade material theories with internal variables or additional degrees of freedom. Journal of Non-Equilibrium Thermodynamics, 31: 319-353. Google Scholar
PASTORI M. 1934. Equilibro di lastre a membrane elastiche. Rendiconti del Circolo Matematico di Palermo, 58: 1-48. Google Scholar
PIETRASZKIEWICZ W. 1979. Finite rotation and lagrangean description in the non-linear theory of shells. Państwowe Wydawnictwo Naukowe, Warszawa. Google Scholar
PIETRASZKIEWICZ W. 1988. Geometrically non-linear theories of thin elastic shells. Mitteilungen aus dem Institut für Mechanik, Ruhr-Universität, Bochum. Google Scholar
PIETRASZKIEWICZ W., BADUR J. 1983a. Finite rotations in the description of continuum deformation. International Journal of Engineering Science, 21: 1097-1115. Google Scholar
PIETRASZKIEWICZ W., BADUR J. 1983b. On non-classical forms of compatibility conditions in continuum mechanics. Trends in Applications of Pure Mathematics to Mechanics, IV: 197-227. Google Scholar
PIOLA G. 1833. La meccanica dei’corpi naturalmente esteci trattata col calcolo delle variazioni. Opuscoli matematici e fisici di diversi autori, 1: 201-236. Giusti, Milano. Google Scholar
PIOLA G. 1848. Intorno alle equazioni fondamentali del movimento di copri qualsivoglino, considerati second la naturale loro forma e costituzione. Memorie di matematica e fisica della Società italiana delle scienze, 24: 1-186. Google Scholar
POINCARÉ H. 1892. Leçons sur la théorie de l’Élasticité. Georges Carré, Paris. Google Scholar
POISSON S.-D. 1831. Mémoire sur la equations generales de la l’équilibre et du mouvement des corps solides élastiques et des fluides. Journal de l’École polytechnique, 13(20): 1-174. Google Scholar
POISSON S.-D. 1833. Traité de Mécanique. Courcier, Paris. Google Scholar
POMMARET J.-F. 1997. E. and F. Cosserat et le secret de la théorie mathématique de l’élasticité. Annales des ponts et chaussées, Nouvelle série, 82: 59-66. Google Scholar
POMMARET J.-F. 2010. Parametrization of Cosserat Equations. Acta Mechanica, 215: 43-55. Google Scholar
POMMARET J.-F. 2014. The mathematical foundations of gauge theory revisited. Journal of Modern Physics, 5: 157-170. Google Scholar
POMMARET J.-F. 2016. Deformation Theory of Algebraic and Geometric Structures. LAP-publishing, Saarbrucken. Google Scholar
POMMARIET J.-F. 1989. Gauge Theory and General Relativity. Reports on Mathematical Physics, 3(27): 313-344. Google Scholar
RANKINE W.J.M. 1851. Laws of the elasticity of solids bodies. Cambridge and Dublin mathematical Journal, 6: 41-80, 178-181, 185-186. Google Scholar
REECH F. 1852. Cours de mécanique, d’après la nature généralement flexible et élastique des corps. Carilian-Goeury, Paris. Google Scholar
REISSNER E. 1950. On axisymmetrical deformation of thin shells of revolution. Proceedings of Symposia in Applied Mathematics, 3: 27-52. Google Scholar
REISSNER E. 1972. On finite symmetrical strain in thin shells of revolution. Journal of Applied Mechanics, 39: 1137-1138. Google Scholar
REISSNER E. 1974. Linear and nonlinear theory of shells. In: Thin Shell Structures, p. 29-44. Prentice-Hall, Englewood Cliffs. Google Scholar
REISSNER E. 1981. On finite deformation of space-curved beams. Journal of Applied Mathematics and Physics, 32: 734-744. Google Scholar
REISSNER E., WAN F.M. 1968. A note on Günther’s analysis of couple stress. In: Mechanics of Generalized Continua. Ed. E. Kröner. Springer-Verlag, Berlin. Google Scholar
RUBIN M.B. 2000. Cosserat Theories: Shells, Rods and Points. Kluwer Academic Publishers, Dordrecht. Google Scholar
SANSOUR C. 1998. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. Journal de Physique IV Proceedings, 8: 341-348. Google Scholar
SANSOUR C. 1998. A theory of the elastic-viscoplastic Cosserat continuum. Archives of Mechanics, 50: 577-597. Google Scholar
SANSOUR C., BUER H. 1992. An exact finite rotation shell theory, its mixed variational formulation and its fnite element implementation. International Journal for Numerical Methods in Engineering, 34: 73-115. Google Scholar
SANSOUR C., SKATULLA S. 2008. A non-linear Cosserat continuum-based formulation and moving least square approximations in computations of size-scale effects in elasticity. Computational Materials Science, 41: 589-601. Google Scholar
SAWCZUK A. 1967. On the yielding of Cosserat-Continua. Archiwum Mechaniki Stosowanej, 19: 471-492. Google Scholar
SCHAEFER H. 1967. Analysis der Motorfelder im Cosserat-Kontinuum. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 47: 319-328. Google Scholar
SCHAEFER H. 1967. Das Cosserat-Kontinuum. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 47: 485-498. Google Scholar
SCHOUTEN J.A. 1954. Calculus Ricci. 2nd ed. Springer Verlag, Berlin. Google Scholar
SHIELD R.T. 1973. The rotation associated with large strains. SIAM Journal on Applied Mathematics, 25: 483-491. Google Scholar
SIGNORINI A. 1943. Transformazioni termoelastiche finite. Annali di Matematica Pura ed Applicata, 22: 33-143. Google Scholar
SIMMONDS J.G., DANIELSON D.A. 1972. Nonlinear shell theory with finite rotation and stress function vectors. Journal of Applied Mechanics, 39: 1085-1090. Google Scholar
SIMO J.C. 1992. The (symmetric) hessian for geometrically nonlinear models in solid mechanics: Intrinsic definition and geometric interpretation. Computer Methods in Applied Mechanics and Engineering, 96: 189-200. Google Scholar
SIMON E.R., DELL’ISOLA F. 2017. Exegesis of the Introduction and Sect. I from “Fundamentals of the Mechanics of Continua” by E. Hellinger. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 97(4): 477-506. https://doi.org/10.1002/zamm.201600108 Google Scholar
SIMON E.R., DELL’ISOLA F. 2018a. Exegesis of Sect. II and III.A from “fundamentals of the mechanics of continua by E. Hellinger. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 98(1): 36-68. https://doi.org/10.1002/zamm.201600293 Google Scholar
SIMON E.R., DELL’ISOLA F. 2018b. Exegesis of Sect. III.B from from “fundamentals of the mechanics of continua by E. Hellinger. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 98(1): 69-105. https://doi.org/10.1002/zamm.201700112 Google Scholar
SKIBA E. 1874. Przyczynek do teorii strun. Pamiętnik Akademii Umiejętności w Krakowie, 3: 130-154. Google Scholar
STAZI L. 1976. Sulla mechanica intrinseca dei continui iperelastici. Rendiconti del Circolo Matematico di Palermo. Google Scholar
STEINMANN P. 1994. A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. International Journal of Solids and Structures, 31(8): 1063-1084. Google Scholar
STEINMANN P., STEIN E. 1997. A uniform treatment of variational principles for two types of micropolar continua. Acta Mechanica, 121: 215-232. Google Scholar
STOJANOVIĆ R. 1972. Nonlinear micropolar elasticity. In: Micropolar Elasticity. Eds. W. Nowacki, W. Olszak. International Centre for Mechanical Sciences, Udine. Google Scholar
STUMPF H., BADUR J. 1990. On the non-Abelian motor calculus. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 70: 551-555. Google Scholar
SUDRIA J. 1925. Contribution à la théorie de l’action euclidienne. Annales de la Faculté des Sciences de Toulouse, 3ème série, 17: 63-152. Google Scholar
SUDRIA J. 1935. L’action éuclidéenne de déformation et de mouvement. Mémoires de mathématique et de physique, 29: 56. Google Scholar
SYNGE J.L., CHIEN W.Z. 1941. The intrinsic theory of elastic shells and plates. In: Theodore von Kármán, anniversary volume; contributions to applied mechanics and related subjects by the friends of Theodore von Kármán on his sixtieth birthday. California Institute of Technology, Pasadena. Google Scholar
THOMSON W., TAIT P.G. 1879. Treatise on Natural Philosophy. Vol. I. Cambridge University Press, Cambridge. Google Scholar
THOMSON W., TAIT P.G. 1883. Treatise on Natural Philosophy. Vol II. Cambridge University Press, Cambridge. Google Scholar
TONOLO A. 1930. Equaqzioni intrinseche di equilibro dell’elasticità negli spazî a curvatura costante. Rendiconti del Seminario Matematico della Università di Padova, 1: 73-84. Google Scholar
TONTI E. 1976. On the formal structure of Physical Theories. Dipartimento di Matematica del Politecnico di Milano. Google Scholar
TOUPIN R. 1962. Elastic materials with couple stresses. Archive for Rational Mechanics and Analysis, 11: 385-413. Google Scholar
TOUPIN R. 1964. Theories of elasticity with couple-stress. Archive for Rational Mechanics and Analysis, 17: 85-112. Google Scholar
TRUESDELL C. 1953. The mechanical foundation of elasticity and fluid dynamics. Journal for Rational Mechanics and Analysis, 1: 125-300, errata 2: 593-616. Google Scholar
TRUESDELL C. 1960. The Rational Mechanics of Elastic or Flexible Bodies. Leonhardi Euleri Opera Omnia, II: 1-435. Google Scholar
TRUESDELL C., TOUPIN R.A. 1960. The Classical Field Theories. In: Handbuck der Physik. Vol. III/I. Ed. S. Flugge. Springer-Verlag, Berlin Google Scholar
VALID R. 1979. An intrinsic formulation for the nonlinear theory of shells and some approximations. Computers and Structures, 10: 183-194. Google Scholar
VARDOULAKIS I. 2019. Cosserat Continuum Mechanics. With Applications to Granular Media. Lecture Notes in Applied and Computational Mechanics, 87. https://doi.org/10.1007/978-3-319-95156-0 Google Scholar
VOIGT W. 1887. Teoretische Studien über Elasticitätverhältinsse der Krystalle. I. II. Abh K Ges Wissen Göttingen, 34: 3-52, 53-100. Google Scholar
WEATHEBURN C.E. 1927. On small deformation of surfaces and of thin elastic shells. The Quarterly Journal of Pure and Applied Mathematics, 50: 272-296. Google Scholar
WILSON E.B. 1913. An advance in theoretical mechanics: Théorie des corps déformables by E. and F. Cosserat. Bulletin of the American Mathematical Society, 19(5): 242-246. Google Scholar
WIŚNIEWSKI K. 1998. A shell theory with independent rotations for relaxed Biot stress and right stretch strain. Computational Mechanics, 21(2): 101-122. Google Scholar
ZERNA W. 1950. Beitrag zur allgemeinen Schalenbiegetheore. Ingenieur-Archiv, 17: 147-164. Google Scholar
ZHONG-HENG G. 1963. Homographic representation of the theory of finite thermoelastic deformations. Archives of Mechanics (Archiwum Mechaniki Stosowanej), 15: 475-505. Google Scholar
ZHOUNG-HENG G., DUBEY R.N. 1983. “Method of principal axes” in nonlinear continuum mechanics. Advances in Mechanical Engineering, 13: 1-17. Google Scholar
Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn