From the Cosserats mechanics backgrounds to modern field theory

Waldemar Dudda

Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn

Janusz Badur




Abstract

In the paper, yet weekly known, Cosserats’ original four concepts as follow: the four-time unification of rigid body dynamics, statics of flexible rods, statics of elastic surfaces and 3D deformable body dynamics; the intrinsic formulation based on the local, von Helmholtz symmetry group of monodromy; the invariance under the Euclidean group. The concept of a set of low-dimensional branes immersed into Euclidean space are revalorized and explained in terms of the modern gauge field theory and the extended strings theory. Additionally, some useful mathematical tools that connect the continuum mechanics and the classical field theory (for instance, the convective coordinates, von Mises’ “Motorrechnung”, the Grassmann extensions, Euclidean invariance, etc.) are involved in the historical explanation that how the ideas were developing themself.


Keywords:

Cosserats continuum, Darboux curvature vector, moving frame, Frenet trihedron, intrinsic coordinates, four-time operators, gauge symmetry flux conservation, gauge potentials, Mauer-Cartan structure equations, von Helmholtz symmetry group, Euclidean group of transformations, weak principle of momentum and angular momentum conservation, Euler laws of dynamics, Cauchy first and second laws


ALBLAS J.B. 1969. Continuum mechanics of media with internal structure. In: Teoria dei continui polari. Istituto Nazionale di Alta Matematica (INDAM), Rome, Italy, April 2-5, 1968. Symposia Mathematica, 1: 229-251. Academic Press Inc., London.   Google Scholar

ANDRADE J. 1898. Leçons de mécanique physiquek. Société d’éditions scientifiques, Paris.   Google Scholar

ARIANO R. 1924. Deformacioni finite di sistemi continui. Annali di Matématica Pura ed Applicata (ser 4o), 2: 216-261.   Google Scholar

ARMERO F., ROMERO I. 2003. Energy-dissipative momentum-conserving time-stepping algorithms for the dynamics of nonlinear Cosserat rods. Computational Mechanics, 31: 3-26.   Google Scholar

ARON H. 1874. Das Geleichgewicht und die Bewegung einer unendlich dünnen beliebig gekrümmten elestischen Schale. Journal fur die Reine und Angewandte Mathematik, 78: 136-174.   Google Scholar

ATLURI S.N., CAZZANI A. 1995. Rotations in computational solid mechanics. Archives of Computational Methods in Engineering, 2: 49-138. https://doi.org/10.1007/BF02736189   Google Scholar

BADUR J. 1989. A Yang-Mills type of equation for the compatibility conditions. International Journal of Engineering Science, 27: 1439-1442.   Google Scholar

BADUR J. 1990. Quasi-Abelian gauge theory of axisymmetric deformation of shells of revolution. International Journal of Engineering Science, 28: 563-572.   Google Scholar

BADUR J. 1991. Extension of many-time Hamiltonian formalism to the theory of deformable Cosserat bodies. International Journal of Engineering Science, 29: 69-77.   Google Scholar

BADUR J. 1993. Pure gauge theory of the Cosserat surface. International Journal of Engineering, Science, 31: 41-59.   Google Scholar

BADUR J. 1993. Space-time compatibility conditions for strains and velocities. Rendiconti di Matematica, 13: 1-29.   Google Scholar

BADUR J. 2009. Principles of Cosserat p-brane extended mechanics. In: COSSERAT+100, International Conference on legacy of Théorie des corps déformables by E.F. Cosserat. Ed. C. Capriz. M. Brocato. Paris.   Google Scholar

BADUR J. 2021. Eternal symmetries of Noether. IMP Press, Gdańsk.   Google Scholar

BADUR J. 2022. Eternal relativity of Whitehead. IMP Press, Gdańsk.   Google Scholar

BADUR J., CHRÓŚCIELEWSKI J. 1983. Powłokowy element skończony oparty o kinematykę Cosseratów. Konferencja „Metody numeryczne w mechanice”. Białystok.   Google Scholar

BADUR J., CHRÓŚCIELEWSKI J. 2015. On a four-time unification of the Cosserats continua by the intrinsic approach. 3rd Polish Congress of Mechanics, Gdańsk.   Google Scholar

BADUR J., OCHRYMIUK T., KOWALCZYK T., DUDDA W., ZIÓŁKOWSKI P. 2022. From fluid mechanics backgrounds to modern field theory. Acta Mechanica, 223: 3453-3465.   Google Scholar

BADUR J., PIETRASZKIEWICZ W. 1986. On geometrically non-linear theory of elastic shells derived from pseudo-Cosserat continuum with constrained microrotations. In: Finite Rotations in Structural Mechanics. Ed. W. Pietraszkiewicz. Springer-Verlag, Wien, p. 19-32.   Google Scholar

BADUR J., POVSTIENKO Y. 1998. Cosserat boundle versus the motor calculus. Archives of Mechanics, 50: 367-376.   Google Scholar

BADUR J., STUMPF H. 1989. On the influence of E. and F. Cosserat on modern continuum mechanics and the field theory. Mitteilungen aus dem Institut für Mechanik, no 72, Ruhr-Universität, Bochum.   Google Scholar

BADUR J., ZIÓŁKOWSKI P., ZIÓŁKOWSKI P.J. 2015. On angular velocity slip in nonoflows. Microfluidics and Nanofluidics, 19: 191-199.   Google Scholar

BASAR Y. 1987. A consistent theory of geometrically non-linear shells with an independent rotation vector. International Journal of Solids and Structures, 23(10): 1401-1415.   Google Scholar

BASAR Y., WEICHERT D. 2000. Nonlinear continuum mechanics of solids. Springer Verlag, Berlin.   Google Scholar

BASSET A.B. 1894. On the deformation of thin elastic plates and shellsk. American Journal of Mathematics, 16: 255-290.   Google Scholar

BASSET A.B. 1895. On the deformation of thin elastic wiresk. American Journal of Mathematics, 17: 281-317.   Google Scholar

BELTRAMI E. 1871. Sur principi fondamentali della idrodinamica. Memorie Reale Accademia Scienze Istituto Bologna, series 3, t. 1, p. 431-476.   Google Scholar

BELTRAMI E. 1872. Sur principi fondamentali della idrodinamica. Memorie Reale Accademia Scienze Istituto Bologna, series 3, t. 2, p. 381-437.   Google Scholar

BELTRAMI E. 1873. Sur principi fondamentali della idrodinamica. Memorie Reale Accademia Scienze Istituto Bologna, series 3, t. 3, p. 349-407.   Google Scholar

BELTRAMI E. 1874. Sur principi fondamentali della idrodinamica. Memorie Reale Accademia Scienze Istituto Bologna, series 3, t. 5, p. 443-484.   Google Scholar

BELTRAMI E. 1911. Sulle equazioni generali dell’elasticità. Opere Matematiche, III: 383.   Google Scholar

BESDO D. 1974. Ein Beitrag zur nichtlinearen theorie des Cosserat-Kontinuums. Acta Mechanica, 20: 105-131.   Google Scholar

BESSAN E. 1963. Sui sistemi continui nel case asimetrico. Annali di Matematica Pura ed Applicata, 62: 169-222.   Google Scholar

BORST R. DE. 1991. Simulation of strain localization: a reappraisal of the Cosserat continuum. Engineering with Computers, 8: 317-332.   Google Scholar

BROCATO M., CAPRIZ G. 2001. Gyrocontinua. International Journal of Solids and Structures, 38: 1089-1103.   Google Scholar

CAPRIZ G. 2008. On ephemeral continua. Physical Mesomechanics, 11: 285-298.   Google Scholar

CAPRIZ G. 2010. Hypocontinua. In: Continuous Media with Microstructure. Ed. B. Albers. Springer, Berlin.   Google Scholar

CAPRIZ G., PODIO-GUIDUGLI P. 1977. Formal structure and classification of theories of oriented media. Annali di Matematica Pura ed Applicata, Ser. IV, 115: 17-39.   Google Scholar

CAPRIZ G., VIRGA E. 1994. On singular surfaces in the dynamics of continua with microstructure. Quarterly of Applied Mathematics, 52: 509-517.   Google Scholar

CARNOT L. 1793. Les Principes fondamentaux de l’équilibre et du movement. De l’imprimerie de Crapelet chez Deterville, Paris.   Google Scholar

CARTAN E. 1923. Sur les variétés à connexion affine et la theorie de la relativité généralisée (premièrepartie). Annales Scientifiques de l’École Normale Supérieure, Serie 3, 40: 325-412.   Google Scholar

CARTAN E. 1924. Sur les variétés à connexion affine et la theorie de la relativité généralisée (première partie) (Suite). Annales Scientifiques de l’École Normale Supérieure, Serie 3, 41: 1-25.   Google Scholar

CARTAN E. 1925. Sur les variétés à connexion affine et la theorie de la relativité généralisée (deuxième partie). Annales Scientifiques de l’École Normale Supérieure, 42: 17-88.   Google Scholar

CARTAN E. 1935. La méthóde du repére mobile, la théorie des groupes continus et les espaces generalisés. Hermann, Paris.   Google Scholar

CAUCHY A.-L. 1823. Recherchessur l’équilibre et le mouvement des corpes solides ou fluides, élastiques ou non élastiques. Bulletin de la Societe Philomatique de Paris, p. 9-13.   Google Scholar

CESARO E. 1926. Vorlesugen über Natüraliche Geometre. 2nd ed. Trans. G. Kowalewski. Verlag und Druck von B.G. Teubner, Leipzig.   Google Scholar

CHAICHIAN M., NELIPA N.F. 1984. Introduction to the Gauge Field Theories. Springer, Berlin.   Google Scholar

CHEN W.Z. 1944. The intrinsic theory of thin shells and plates. I. General theory. Quarterly of Applied Mathematics, 1: 297-327.   Google Scholar

CHRÓŚCIELEWSKI J., MAKOWSKI J., PIETRASZKIEWICZ W. 2004. Statyka i dynamika powłok wielopłatowych. Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk, Warszawa.   Google Scholar

CHRÓŚCIELEWSKI J., MAKOWSKI J., STUMPF H. 1992. Genuinely resultant shell finite elements accounting for geometric and material nonlinearity. International Journal for Numerical Methods in Engineering, 35: 63-94.   Google Scholar

CHRÓŚCIELEWSKI J., PIETRASZKIEWICZ W., WITKOWSKI W. 2010. On shear correction factors in the nonlinear theory of elastic shells. International Journal of Solids and Structures, 47: 3537-3445.   Google Scholar

CLAYTON J.D. 2022. Finsler differential geometry in continuum mechanics: Fundamental concepts, history, and renewed application to ferromagnetic solids. Mathematics and Mechanics of Solids, 27(5). https://doi.org/10.1177/10812865211049468   Google Scholar

COSSERAT E., COSSERAT F. 1909. Note sur la théorie de l’action euclidienne. In: Traité de mécanique rationelle. Ed. P. Appell. T. III, p. 557-629. Gauthier-Villars, Paris.   Google Scholar

COSSERAT E., COSSERAT F. 1909. Théorie des corps déformables. Hermann, Paris.   Google Scholar

COSSERAT E., COSSERAT F. 1896. Sur la theorie de l’elasticite. Premier mémoire. Annales de la Faculté des sciences de Toulouse, Mathématiques, 10(3-4): 1-116.   Google Scholar

COSSERAT E., COSSERAT F. 1907. Sur la mécanique générale. Comptes Rendus, 145: 1139-1142.   Google Scholar

CRAIG T. 1898. Displacement depending on one, two and three parameters in a space of four dimensions. American Journal of Mathematics, 20: 135-156.   Google Scholar

CRISFIELD M.A., JELENIĆ G. 1998, Objectivity of strain measures in geometrically exact 3D beam theory and its finite element implementation. Proceedings of the Royal Society of London, 455: 1125-1147.   Google Scholar

DANIELSON D.A., HODGES D.H. 1984. Nonlinear beam kinematics by decomposition of the rotation tensor. ASME Journal of Applied Mechanics, 54: 258-262.   Google Scholar

DARBOUX G. 1890. Leçons sur la théorie générale des surfaces. Gauthier Villars Et Fils, Paris.   Google Scholar

DARBOUX G. 1900. Sur les déformations finites et sur les systèmes triples de surfaces orthogonales. Proceedings of the London Mathematical Society, 32: 377-383.   Google Scholar

DE LEÓN M., EPSTEIN V., JIMÉNEZ V. 2021. Material geometry: groupoids in continuum mechanics. Pergamon, New York.   Google Scholar

DELENS P.-C. 1927. Méthods et problèmes des géométries différentielles, Euclidienne et conforme. Gauther-Villars, Paris.   Google Scholar

DELL’ISOLA F., DELLA CROTE A., GIROGIO I. 2015. Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Tupin and some future research perspectives. Mathematics and Mechanics of Solids, 20(8): 887-928.   Google Scholar

DILL E.H. 1992. Kirchhoff’s theory of rods. Archive for History of Exact Sciences, 44(1): 1-23.   Google Scholar

DUHEM P. 1893. Le potentel thermodynamique et la pression hydrostatique. Annales Scientifiques de l’École Normale Supérieure, Ser. 3, 10: 187-230.   Google Scholar

DUHEM P. 1901a. Reserches sur l’hydrodynamique. Annales de la Faculté des sciences de Toulouse. Mathématiques, 3(3): 315-377.   Google Scholar

DUHEM P. 1901b. Reserches sur l’hydrodynamique. Annales de la Faculté des sciences de Toulouse, 2e série, 3(4): 379-431.   Google Scholar

DUHEM P. 1902. Reserches sur l’hydrodynamique. Annales de la Faculté des sciences de Toulouse, 2e série, 4: 101-169.   Google Scholar

DUHEM P. 1903. Reserches sur l’hydrodynamique. Annales de la Faculté des sciences de Toulouse, 2e série, 5(2): 5-61, 197-255, 353-404.   Google Scholar

DUHEM P. 1904. Recherches sur l’elasticite. Annales scientifiques de l’École Normale Supérieure, (3)2: 99-139, 375-414.   Google Scholar

DUHEM P. 1905. Recherches sur l’elasticite. Annales scientifiques de l’École Normale Supérieure, 2: 143-217.   Google Scholar

DUHEM P. 1906. Recherches sur l’elasticite. Annales scientifiques de l’École Normale Supérieure, 23: 169-223.   Google Scholar

EDELEN D.G.E., LAGOUDAS D.C. 1988. Gauge Theory of Defects in Solids. North-Holland, Amsterdam.   Google Scholar

EHLERS W., RAMM E., DIEBELS S., D’ADDETTA G.A. 2003. From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. International Journal of Solids and Structures, 40: 6681-6702.   Google Scholar

EL NASCHIE M.S. 2016. Cosserat-Cartan and de Sitter-Witten spacetime setting for dark energy. Quantum Matter, 5: 1-4. https://doi.org/10.1166/qm.2016.1247   Google Scholar

EPSTEIN M., DE LEON M. 1998. Geometrical theory of uniform Cosserat media. Journal of Geometry and Physics, 26(1-2): 127-170.   Google Scholar

ERICKSEN J.L., TRUESDELL C. 1958. Exact theory of stress and strain in rods and shells. Archive for Rational Mechanics and Analysis, 1: 295-323.   Google Scholar

ERINGEN A.C., SUHUBI E.S. 1964. Nonlinear theory of simple microelastic solids. Part I. International Journal of Engineering Science, 2: 189-203.   Google Scholar

ERINGEN A.C., SUHUBI E.S. 1964. Nonlinear theory of simple microelastic solids. Part II. International Journal of Engineering Science, 2: 389-404.   Google Scholar

EULER L. 1752. Découverte d’un nouveau principle de mécanique. Mémoires de l’académie des sciences de Berlin, 6: 185-217.   Google Scholar

FERRARESE G. 1959. Sulla velocita angolare nei moti rigidi e la rotazione locale nelle deformazioni finite. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, 36(5): 629-638,   Google Scholar

FERRARESE G. 1971. Sulla compatibilita dei continui alla Cosserat. Annali di Matematica Pura ed Applicata, 108: 109-124.   Google Scholar

FERRARESE G. 1972. Intrinsic formulation of Cosserat continua dynamics. In: Trends in Applications of Pure Mathematics to Mechanics, t. II. Ed. H. Zorski. Pitman, London.   Google Scholar

FERRARESE G. 1976. Sulla formulazione intrinseca della dinamica dei continui alla Cosserat. Annali di Matematica Pura ed Applicata, 108: 109-124.   Google Scholar

FINZI B. 1932. Equazioni intrinseche della meccanica dei sistemi continui perfettamente od imperfettamente flessibili. Annali di Matematica Pura ed Applicata, 11: 215-245.   Google Scholar

FOREST S., CAILLETAUD G., SIEVERT R. 1997. A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Archives of Mechanics, 49(4): 705-736.   Google Scholar

FOREST S., SIEVERT R. 2003. Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mechanica, 160: 71-111.   Google Scholar

FOREST S., SIEVERT R. 2006. Nonlinear microstrain theories. International Journal of Solids and Structures, 43: 7224-7245.   Google Scholar

FORTUNE D., VALLEE C. 2001. Bianchi identities in case of large deformations. International Journal of Engineering Science, 39: 113-123.   Google Scholar

FRANKE J.N. 1889. Mechanika teoretyczna. T. X. Biblioteka Matematyczno-Fizyczna, Kasa J. Mianowskiego, Warszawa.   Google Scholar

FRENET F. 1847. Sur les courbes a double courbure. Thése, Toulouse.   Google Scholar

GOSIEWSKI W. 1877. O zasadach teorii bezwzględnej zjawisk materialnych. Pamiętnik Towarzystwa Nauk Ścisłych w Paryżu, 10: 1-6.   Google Scholar

GREEN A.E., LAWS N. 1966. A general theory of rods. Proceedings of the Royal Society of London, 293: 145-155.   Google Scholar

GREEN A.E., NAGHDI P.M., WAINWRIGHT W.L. 1965. A general theory of Cosserat surfaces. Archive for Rational Mechanics and Analysis, 20: 287-308.   Google Scholar

GRIOLI G. 1960. Elasticità asimmetrica. Annali di Matematica Pura ed Applicata, 50: 389-417.   Google Scholar

GRIOLI G. 1968. Questioni di compatibilità per continui di Cossarat. Sumposia Mathemetica, I: 271-287.   Google Scholar

GRUTTMAN F., SAUER R., WAGNER W. 1998. A geometrically nonlinear eccentric 3D-beam element with arbitrary cross sections. Computer Methods in Applied Mechanics and Engineering, 160: 383-400.   Google Scholar

GRUTTMANN F., STEIN E., WRIGGERS P. 1989. Theory and numerics of thin elastic shells with finite rotations. Ingenieur-Archiv, 59: 54-67.   Google Scholar

GÜNTHER W. 1958. Zur Statik und Kinematik des Cosseratschen Kontinuum. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 10: 195-213.   Google Scholar

GÜNTHER W. 1961. Analoge Systeme von Schalengeleichungen. Ingenieur-Archiv, 30: 160-186.   Google Scholar

HAY G.E. 1942. The finite displacement of thin rods. Transactions of the American Mathematical Society, 51: 65-102.   Google Scholar

HEHL F., KRÖNER E. 1965. Über den Spin in der allgemeinen Relativitätstheorie Eine notwendige Erweiterung der Einsteinschen Feldgleichungen. Zeitschrift für Physik, 187: 478-489.   Google Scholar

HEHL F., KRÖNER E. 1965. Zum materialgesetz eines elastischen Medius mit Momentenspannungen. Zeitschrift für Naturforschung, 20: 336-350.   Google Scholar

HEHL F.W. 1973. Spin and torsion in general relativity. I. Foundations. General Relativity and Gravitation, 4: 333-349.   Google Scholar

HEHL F.W. 2017. Gauge theory of gravity and spacetime. In: Towards a theory of spacetime theories. Eds. D. Lehmkuhl, G. Schiemann, E. Scholz. Springer, Berlin.   Google Scholar

HEHL F.W., OBUKHOV Y.N. 2007. Élie Cartan’s torsion in geometry and in field theory, an essay. General Relativity and Quantum Cosmology. arXiv preprint arXiv:0711.1535. https://doi.org/10.48550/arXiv.0711.1535   Google Scholar

HELLINGER E. 1914. Die allgemein ansätze der mechanik der kontinua. Enzyklopädie der Mathematischen Wissenschaften, virter Tailband – Mechanik, part 4, Artikel 30, p. 601-694. Eds. F. Klein, C.H. Müller. B.G. Teubner Verlag, Leipzig.   Google Scholar

HELMHOLTZ H. 1868. Über die Tataschen die Geometrie zugrunde liegen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 9: 193-221.   Google Scholar

HENCKY H. 1915. Űber den Spannungszustand kreisrundem platten. Zeitschrift für Angewandte Mathematik und Physik, 63: 311-317.   Google Scholar

HESS W. 1884. Ueber die Biegung und Drillung eines unendlich dünnen elastischen Stabes, dessen eines Ende von einem Kräftepaar angegriffen wied. Mathematische Annalen, 23: 181-212.   Google Scholar

HODGES D.H. 1990. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. International Journal of Solids and Structures, 26: 1253-1273.   Google Scholar

HODGES D.H., ATILGAN A.R., DANIELSON D.A. 1993. A geometrically nonlinear theory of elastic plates. Journal of Applied Mechanics, 60: 109-116.   Google Scholar

IBRAHIMBEGOVIC A. 1994. Stress resultant geometrically nonlinear shell theory with drilling rotations. Part 1. A consistent formulation. Computer Methods in Applied Mechanics and Engineering, 118: 265-284.   Google Scholar

JAUMANN R.G. 1918. Physik der kontinuierlichen Medien. Denkschriften by Akademie der Wissenschaften in Wien, 95: 461-562.   Google Scholar

KADIĆ A., EDELEN D.G. 1983. A gauge theory of dislocations and disclinations. Lecture Notes in Physics, 174.   Google Scholar

KAFADAR C., ERINGEN A.C. 1971. Micropolar media. Part I. The classical theory. International Journal of Engineering Science, 9: 271-329.   Google Scholar

KESSEL S. 1970. Spannungsfelder einer Schraubenversetzung und einer Stufenversetzung im Cosseratschen Kontinuum. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 50: 547-553.   Google Scholar

KIRCHHOFF G. 1850. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik, 40: 51-88.   Google Scholar

KIRCHHOFF G. 1852. Über die Gleichungen des Gleichgewichts eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Teile. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, 9: 762-773.   Google Scholar

KIRCHHOFF G. 1859. Űber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. Journal für die reine und angewandte Mathematik, 56: 285-313.   Google Scholar

KIRCHHOFF G. 1876. Vorlesungen über mathematische Physik: Mechanik. B.G. Teubner, Leipzig.   Google Scholar

KIRCHHOFF G. 1883. Vorlesungen über mathematische Physik: Mechanik. B.G. Teubner, Leipzig.   Google Scholar

KLINGER F. 1942. Die Statik und Kinematik des räumlich gekrümmten elastischen Stabes. Sitzungsberichte, Akademie der Wissenschaften in Wien, IIa, 151: 13-79.   Google Scholar

KLUGE G. 1969. Zur Dynamik der allgemeinen versetzungstheorie bei berücksichtigung von momentenspannungen. International Journal of Engineering Science, 7: 169-182.   Google Scholar

KOITER W.T. 1964. Couple-stresses in the theory of elasticity. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, 64: 17-44.   Google Scholar

KRAUSS F. 1929. Űber die Grundleichungen der Elastizitätstheorie scheach deformirter Schalen. Mathematische Annalen, 101: 61-92.   Google Scholar

KRÖNER E. 1960. Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Archive for Rational Mechanics and Analysis, 4: 273-334.   Google Scholar

LACHNER D., LIPPMANN H., TOTH L.S. 1994. On Cosserat plasticity and plastic spin for isotropic materials. Archives of Mechanics, 46: 531-539.   Google Scholar

LAGRANGE J.L. 1762. Application de la méthode exposée précédente a la solution de différmes problémes de dynamique. Mélanges de Philosophie et de Mathématiques de la Société Royale de Turin, 2: 196-298.   Google Scholar

LAKES R. 1995. Experimental methods for study of Cosserat elastic solids and other generalized continua. In: Continuum models for materials with micro-structure. Ed. H. Mühlhaus. Ch. 1, p. 1-22. J. Wiley, New York..   Google Scholar

LAMÉ G. 1852. Leçons sur la Théorie Mathématique de l’Élasticité. Bachelier, Paris.   Google Scholar

LAME G., CLAPEYRON E. 1833. Mémoire sur l’équilibre intérieur des corps solides homogènes. Mémoires l’Acad. Royale des Sciences de l’Institut de France, 4: 465-562.   Google Scholar

LANGE L. 1885. Über die wissenschaftliche Fassung des Galileischen Beharrungsgesetzes. Philosophische Studien, 2: 266-297.   Google Scholar

LAZAR M., HEHL F.W. 2010. Cartan’s spiral staircase in physics and, in particular, in the gauge theory of dislocations. Foundations of Physics, 40: 1298-1325.   Google Scholar

LE CORRE Y. 1965. La dissymétrie du tenseur des efforts et ses conséquences. Journal de Physique et Le Radium, 17: 934-939.   Google Scholar

LE K.C., STUMPF H. 1998. Strain measures, integrability condition and frame indifference in the theory of oriented media. International Journal of Solids and Structures, 35(9-10): 783-798.   Google Scholar

LECORNU M.L. 1880. Sur l’équilibre des surfaces flexibiles at inextensibiles. Journal de l’École polytechnique, 29: 1-100.   Google Scholar

LEHMANN TH. 1964. Formäderungen eines klassischen Kontinuum in vierdimensionaler Darstellung. International Congress for Applied Mechanics, Ed. H. Görtler, p. 376-382.   Google Scholar

LIPPMANN H. 1969. Eine Cosserat-Theorie des plastischen Fließens. Acta Mechanica, 8: 255-284.   Google Scholar

LOVE A.E.H. 1888. The small free vibrations and deformations of a thin elastic shell. Philosophical Transactions of the Royal Society, A, 179: 491-546.   Google Scholar

LUO A.C.J. 2010. On a nonlinear theory of thin rods. Communications in Nonlinear Science and Numerical Simulation, 15: 4181-4197.   Google Scholar

MAC CULLAGH J. 1839. An essay towards a dynamical theory of crystalline reflexion and refraction. Transactions of the Royal Irish Academy, 21: 17-50.   Google Scholar

MAKOWSKI J., STUMPF H. 1990. Buckling equations for elastic shells with rotational degrees of freedom undergoing finite strain deformation. International Journal of Solids and Structures, 26(3): 353-368.   Google Scholar

MALCOLM D.J., GLOCKNER P.G. 1972. Nonlinear sandwich shell and Cosserat surface theory. Journal of the Engineering Mechanics Division, 98(EM5): 1183-1203.   Google Scholar

MAUGIN G.A. 1998. On the structure of the theory of polar elasticity. Philosophical Transactions of the Royal Society A, 356: 1367-1395.   Google Scholar

MAUGIN G.A. 2014. Continuum Mechanics Through the Eighteenth and Nineteenth Centuries 2014 Historical Perspectives from John Bernoulli (1727) to Ernst Hellinger (1914). Springer, Cham.   Google Scholar

MEISSNER K. 2013. Classical Field Theory. Wydawnictwo Naukowe PWN, Warszawa.   Google Scholar

MINDLIN R.D. 1964. Microstructure in linear elasticity. Archive for Rational Mechanics and Analysis, 16: 51-78.   Google Scholar

MINDLIN R.D., TRIESTEN H. 1962. Effects of complex-stress in linear elasticity. Archive for Rational Mechanics and Analysis, 11: 415-448.   Google Scholar

MISES R. VON. 1924. Motorrechnung, ein neues Hilfsmittel der mechanic. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 4: 155-181.   Google Scholar

NADLER B., RUBIN M.B. 2003. A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point. International Journal of Solids and Structures, 40: 4585-4614.   Google Scholar

NEFF P. 2006. A finite-strain elastic–plastic Cosserat theory for polycrystals with grain rotations. International Journal of Engineering Science, 44: 574-594.   Google Scholar

NEFF P. 2019. Cosserat Theory by Prof. Dr. Patrizio Neff. Lehrstuhl für Nichtlineare Analysis, Universität Duisburg-Essen. Retrieved from http://www.uni-due.de/mathematik/ag_neff/cosserat   Google Scholar

NOWACKI W. 1966. Couple-stresses in the theory of thermoelasticity. Bulletin de L’Academie Polonaise des Sciences, 14: 97-106, 203-212.   Google Scholar

NOWACKI W. 1986. Theory of Asymmetric Elasticity. Pergamon-Press, Oxford.   Google Scholar

O’REILLY O.M., TURCOTTE J.S. 1997. Elastic rods with moderate rotation. Journal of Elasticity, 48: 193-216.   Google Scholar

OPOKA S., PIETRASZKIEWICZ W. 2004. Intrinsic equation of nonlinear deformation and stability of thin elastic shells. International Journal of Solids and Structures, 41: 3275-3292.   Google Scholar

PAPENFUSS C., FOREST S. 2006. Thermodynamical frameworks for higher grade material theories with internal variables or additional degrees of freedom. Journal of Non-Equilibrium Thermodynamics, 31: 319-353.   Google Scholar

PASTORI M. 1934. Equilibro di lastre a membrane elastiche. Rendiconti del Circolo Matematico di Palermo, 58: 1-48.   Google Scholar

PIETRASZKIEWICZ W. 1979. Finite rotation and lagrangean description in the non-linear theory of shells. Państwowe Wydawnictwo Naukowe, Warszawa.   Google Scholar

PIETRASZKIEWICZ W. 1988. Geometrically non-linear theories of thin elastic shells. Mitteilungen aus dem Institut für Mechanik, Ruhr-Universität, Bochum.   Google Scholar

PIETRASZKIEWICZ W., BADUR J. 1983a. Finite rotations in the description of continuum deformation. International Journal of Engineering Science, 21: 1097-1115.   Google Scholar

PIETRASZKIEWICZ W., BADUR J. 1983b. On non-classical forms of compatibility conditions in continuum mechanics. Trends in Applications of Pure Mathematics to Mechanics, IV: 197-227.   Google Scholar

PIOLA G. 1833. La meccanica dei’corpi naturalmente esteci trattata col calcolo delle variazioni. Opuscoli matematici e fisici di diversi autori, 1: 201-236. Giusti, Milano.   Google Scholar

PIOLA G. 1848. Intorno alle equazioni fondamentali del movimento di copri qualsivoglino, considerati second la naturale loro forma e costituzione. Memorie di matematica e fisica della Società italiana delle scienze, 24: 1-186.   Google Scholar

POINCARÉ H. 1892. Leçons sur la théorie de l’Élasticité. Georges Carré, Paris.   Google Scholar

POISSON S.-D. 1831. Mémoire sur la equations generales de la l’équilibre et du mouvement des corps solides élastiques et des fluides. Journal de l’École polytechnique, 13(20): 1-174.   Google Scholar

POISSON S.-D. 1833. Traité de Mécanique. Courcier, Paris.   Google Scholar

POMMARET J.-F. 1997. E. and F. Cosserat et le secret de la théorie mathématique de l’élasticité. Annales des ponts et chaussées, Nouvelle série, 82: 59-66.   Google Scholar

POMMARET J.-F. 2010. Parametrization of Cosserat Equations. Acta Mechanica, 215: 43-55.   Google Scholar

POMMARET J.-F. 2014. The mathematical foundations of gauge theory revisited. Journal of Modern Physics, 5: 157-170.   Google Scholar

POMMARET J.-F. 2016. Deformation Theory of Algebraic and Geometric Structures. LAP-publishing, Saarbrucken.   Google Scholar

POMMARIET J.-F. 1989. Gauge Theory and General Relativity. Reports on Mathematical Physics, 3(27): 313-344.   Google Scholar

RANKINE W.J.M. 1851. Laws of the elasticity of solids bodies. Cambridge and Dublin mathematical Journal, 6: 41-80, 178-181, 185-186.   Google Scholar

REECH F. 1852. Cours de mécanique, d’après la nature généralement flexible et élastique des corps. Carilian-Goeury, Paris.   Google Scholar

REISSNER E. 1950. On axisymmetrical deformation of thin shells of revolution. Proceedings of Symposia in Applied Mathematics, 3: 27-52.   Google Scholar

REISSNER E. 1972. On finite symmetrical strain in thin shells of revolution. Journal of Applied Mechanics, 39: 1137-1138.   Google Scholar

REISSNER E. 1974. Linear and nonlinear theory of shells. In: Thin Shell Structures, p. 29-44. Prentice-Hall, Englewood Cliffs.   Google Scholar

REISSNER E. 1981. On finite deformation of space-curved beams. Journal of Applied Mathematics and Physics, 32: 734-744.   Google Scholar

REISSNER E., WAN F.M. 1968. A note on Günther’s analysis of couple stress. In: Mechanics of Generalized Continua. Ed. E. Kröner. Springer-Verlag, Berlin.   Google Scholar

RUBIN M.B. 2000. Cosserat Theories: Shells, Rods and Points. Kluwer Academic Publishers, Dordrecht.   Google Scholar

SANSOUR C. 1998. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. Journal de Physique IV Proceedings, 8: 341-348.   Google Scholar

SANSOUR C. 1998. A theory of the elastic-viscoplastic Cosserat continuum. Archives of Mechanics, 50: 577-597.   Google Scholar

SANSOUR C., BUER H. 1992. An exact finite rotation shell theory, its mixed variational formulation and its fnite element implementation. International Journal for Numerical Methods in Engineering, 34: 73-115.   Google Scholar

SANSOUR C., SKATULLA S. 2008. A non-linear Cosserat continuum-based formulation and moving least square approximations in computations of size-scale effects in elasticity. Computational Materials Science, 41: 589-601.   Google Scholar

SAWCZUK A. 1967. On the yielding of Cosserat-Continua. Archiwum Mechaniki Stosowanej, 19: 471-492.   Google Scholar

SCHAEFER H. 1967. Analysis der Motorfelder im Cosserat-Kontinuum. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 47: 319-328.   Google Scholar

SCHAEFER H. 1967. Das Cosserat-Kontinuum. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 47: 485-498.   Google Scholar

SCHOUTEN J.A. 1954. Calculus Ricci. 2nd ed. Springer Verlag, Berlin.   Google Scholar

SHIELD R.T. 1973. The rotation associated with large strains. SIAM Journal on Applied Mathematics, 25: 483-491.   Google Scholar

SIGNORINI A. 1943. Transformazioni termoelastiche finite. Annali di Matematica Pura ed Applicata, 22: 33-143.   Google Scholar

SIMMONDS J.G., DANIELSON D.A. 1972. Nonlinear shell theory with finite rotation and stress function vectors. Journal of Applied Mechanics, 39: 1085-1090.   Google Scholar

SIMO J.C. 1992. The (symmetric) hessian for geometrically nonlinear models in solid mechanics: Intrinsic definition and geometric interpretation. Computer Methods in Applied Mechanics and Engineering, 96: 189-200.   Google Scholar

SIMON E.R., DELL’ISOLA F. 2017. Exegesis of the Introduction and Sect. I from “Fundamentals of the Mechanics of Continua” by E. Hellinger. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 97(4): 477-506. https://doi.org/10.1002/zamm.201600108   Google Scholar

SIMON E.R., DELL’ISOLA F. 2018a. Exegesis of Sect. II and III.A from “fundamentals of the mechanics of continua by E. Hellinger. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 98(1): 36-68. https://doi.org/10.1002/zamm.201600293   Google Scholar

SIMON E.R., DELL’ISOLA F. 2018b. Exegesis of Sect. III.B from from “fundamentals of the mechanics of continua by E. Hellinger. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 98(1): 69-105. https://doi.org/10.1002/zamm.201700112   Google Scholar

SKIBA E. 1874. Przyczynek do teorii strun. Pamiętnik Akademii Umiejętności w Krakowie, 3: 130-154.   Google Scholar

STAZI L. 1976. Sulla mechanica intrinseca dei continui iperelastici. Rendiconti del Circolo Matematico di Palermo.   Google Scholar

STEINMANN P. 1994. A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. International Journal of Solids and Structures, 31(8): 1063-1084.   Google Scholar

STEINMANN P., STEIN E. 1997. A uniform treatment of variational principles for two types of micropolar continua. Acta Mechanica, 121: 215-232.   Google Scholar

STOJANOVIĆ R. 1972. Nonlinear micropolar elasticity. In: Micropolar Elasticity. Eds. W. Nowacki, W. Olszak. International Centre for Mechanical Sciences, Udine.   Google Scholar

STUMPF H., BADUR J. 1990. On the non-Abelian motor calculus. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 70: 551-555.   Google Scholar

SUDRIA J. 1925. Contribution à la théorie de l’action euclidienne. Annales de la Faculté des Sciences de Toulouse, 3ème série, 17: 63-152.   Google Scholar

SUDRIA J. 1935. L’action éuclidéenne de déformation et de mouvement. Mémoires de mathématique et de physique, 29: 56.   Google Scholar

SYNGE J.L., CHIEN W.Z. 1941. The intrinsic theory of elastic shells and plates. In: Theodore von Kármán, anniversary volume; contributions to applied mechanics and related subjects by the friends of Theodore von Kármán on his sixtieth birthday. California Institute of Technology, Pasadena.   Google Scholar

THOMSON W., TAIT P.G. 1879. Treatise on Natural Philosophy. Vol. I. Cambridge University Press, Cambridge.   Google Scholar

THOMSON W., TAIT P.G. 1883. Treatise on Natural Philosophy. Vol II. Cambridge University Press, Cambridge.   Google Scholar

TONOLO A. 1930. Equaqzioni intrinseche di equilibro dell’elasticità negli spazî a curvatura costante. Rendiconti del Seminario Matematico della Università di Padova, 1: 73-84.   Google Scholar

TONTI E. 1976. On the formal structure of Physical Theories. Dipartimento di Matematica del Politecnico di Milano.   Google Scholar

TOUPIN R. 1962. Elastic materials with couple stresses. Archive for Rational Mechanics and Analysis, 11: 385-413.   Google Scholar

TOUPIN R. 1964. Theories of elasticity with couple-stress. Archive for Rational Mechanics and Analysis, 17: 85-112.   Google Scholar

TRUESDELL C. 1953. The mechanical foundation of elasticity and fluid dynamics. Journal for Rational Mechanics and Analysis, 1: 125-300, errata 2: 593-616.   Google Scholar

TRUESDELL C. 1960. The Rational Mechanics of Elastic or Flexible Bodies. Leonhardi Euleri Opera Omnia, II: 1-435.   Google Scholar

TRUESDELL C., TOUPIN R.A. 1960. The Classical Field Theories. In: Handbuck der Physik. Vol. III/I. Ed. S. Flugge. Springer-Verlag, Berlin   Google Scholar

VALID R. 1979. An intrinsic formulation for the nonlinear theory of shells and some approximations. Computers and Structures, 10: 183-194.   Google Scholar

VARDOULAKIS I. 2019. Cosserat Continuum Mechanics. With Applications to Granular Media. Lecture Notes in Applied and Computational Mechanics, 87. https://doi.org/10.1007/978-3-319-95156-0   Google Scholar

VOIGT W. 1887. Teoretische Studien über Elasticitätverhältinsse der Krystalle. I. II. Abh K Ges Wissen Göttingen, 34: 3-52, 53-100.   Google Scholar

WEATHEBURN C.E. 1927. On small deformation of surfaces and of thin elastic shells. The Quarterly Journal of Pure and Applied Mathematics, 50: 272-296.   Google Scholar

WILSON E.B. 1913. An advance in theoretical mechanics: Théorie des corps déformables by E. and F. Cosserat. Bulletin of the American Mathematical Society, 19(5): 242-246.   Google Scholar

WIŚNIEWSKI K. 1998. A shell theory with independent rotations for relaxed Biot stress and right stretch strain. Computational Mechanics, 21(2): 101-122.   Google Scholar

ZERNA W. 1950. Beitrag zur allgemeinen Schalenbiegetheore. Ingenieur-Archiv, 17: 147-164.   Google Scholar

ZHONG-HENG G. 1963. Homographic representation of the theory of finite thermoelastic deformations. Archives of Mechanics (Archiwum Mechaniki Stosowanej), 15: 475-505.   Google Scholar

ZHOUNG-HENG G., DUBEY R.N. 1983. “Method of principal axes” in nonlinear continuum mechanics. Advances in Mechanical Engineering, 13: 1-17.   Google Scholar

Download


Published
2024-10-02

Cited by

Dudda, W., & Badur, J. (2024). From the Cosserats mechanics backgrounds to modern field theory. Technical Sciences, 27(27), 211–264. https://doi.org/10.31648/ts.10315

Waldemar Dudda 
Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn
Janusz Badur 




License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.





-->