Modeling the phenomenon of ultrasonic wave propagation in selected fluids using Comsol – a case study
Konrad W. Nowak
WNT UWM w OlsztynieAgata Wielkopolan
University of Warmia and Mazury in OlsztynAbstract
The aim of this study was to model the propagation of acoustic waves with frequencies in the ultrasound range in three selected fluids. Ultrasonic wave propagation in the studied fluids was tested in a laboratory to validate the model. The laboratory tests involved simple measurements of the time of flight of an ultrasonic wave with a frequency of 5 MHz in fluids with different parameters: demineralized water, rapeseed oil, and gelatinized potato starch colloid. In the second part of the study, the COMSOL Multiphysics program was used to develop a model of ultrasonic wave propagation in the same fluids. The model was developed using the Transient analysis type in the Pressure Acoustics application mode of the Acoustics Module. The modeling results were somewhat different from those obtained in laboratory tests; therefore, they did not meet the research assumptions in this stage of research. The limitations of the presented model were discussed. The study demonstrated that medium density was a parameter that exerted the greatest influence on the modeling process.
Keywords:
ultrasound, modeling of wave propagation, acoustic propagation in fluids, COMSOLSupporting Agencies
References
ANTONIO J., TADEU A., GODINHO L. 2007. Sound wave propagation modeling in a 3D absorbing acoustic dome using the Method of Fundamental Solution. The International Conference on Computer Engineering and Systems, 3(3): 157-162. https://doi.org/10.3970/ices.2007.003.157 Google Scholar
DEINES E., MICHEL F., HERING-BERTRAM M., MOHRING J., HAGEN H. 2007. Simulation, visualisation, and virtual reality based modelling of room acoustics. 19th International Congress on Acoustics, Madrid, 2-7 September 2007. Google Scholar
GUO J., SONG X., CHEN X., XU M., MING D. 2022. Mathematical model of ultrasound attenuation with skull thickness for transcranial-focused ultrasound. Frontiers in Neuroscience, 15: 778616. https://doi.org/10.3389/fnins.2021.778616
Crossref
Google Scholar
KOCHANOWICZ Z. 2020. Modelling ship-source noise impacts on marine mammals in Tallurutiup Imanga National Marine Conservation Area. Doctoral dissertation, University of Ottawa. Google Scholar
LIU S., MANOCHA D. 2020. Sound synthesis, propagation, and rendering: A survey. Retrieved from arXiv:2011.05538v5 [cs.SD]. https://doi.org/10.48550/arXiv.2011.05538 Google Scholar
MACKIEWICZ S. 2019. Modelowanie propagacji fal ultradźwiękowych w badaniach nieniszczących. XXV Seminarium “Nieniszczące badania materiałów”, Zakopane, 20-22 marca 2019. Google Scholar
MCCLEMENTS D.J. 1995. Advances in the application of ultrasound in food analysis and processing. Trends in Food Science & Technology, 6(9): 293-299. https://doi.org/10.1016/S0924-2244(00)89139-6
Crossref
Google Scholar
NOWAK K.W., MARKOWSKI M. 2020. Evaluation of selected properties of a gelatinized potato starch colloid by an ultrasonic method. Measurement, 158: 107717. https://doi.org/10.1016/j.measurement.2020.107717
Crossref
Google Scholar
NOWAK K.W., ROPELEWSKA E., BEKHIT A.E.D.A., MARKOWSKI M. 2017. Ultrasound applications in the meat industry. In: Advances in meat processing technology. Ed. A.E.D.A. Bekhit. CRC Press Taylor & Francis Group, Boca Raton, London, New York. https://doi.org/10.1201/9781315371955
Crossref
Google Scholar
OTAWSKI P., DZIURA A., SKUZA M., RYBCZYŃSKA-SZEWCZYK M., SZEWCZYK J. 2021. Raport o oddziaływaniu na środowisko – dla decyzji o środowiskowych uwarunkowaniach dla przedsięwzięcia „Morska farma wiatrowa MFW Bałtyk II”. T. II, Sekcja 9, Warszawa. Google Scholar
SIMAL S., BENEDITO J., CLEMENTE G., FEMENIA A., ROSSELLO C. 2003. Ultrasonic determination of the composition of a meat-based product. Journal of Food Engineering, 58(3): 253-257. https://doi.org/10.1016/S0260-8774(02)00375-8
Crossref
Google Scholar
ŚLIWIŃSKI A. 2001. Ultradźwięki i ich zastosowania. Wydawnictwo Naukowo-Techniczne, Warszawa. Google Scholar
WINKLER-SKALNA A. 2010. Propagacja dźwięku w ośrodkach o parametrach niepewnych. Rozprawa doktorska. Biblioteka Cyfrowa Politechniki Śląskiej, Gliwice. Google Scholar
VORLÄNDER M. 2008. Auralisation. Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48830-9
Crossref
Google Scholar
YOKOTA T., SAKAMOTO S., TACHIBANA H. 2002. Visualization of sound propagation and scattering in rooms. Acoustical Science and Technology, 23(1): 40-46. https://doi.org/10.1250/ast.23.40
Crossref
Google Scholar
YOUZWISHEN C.F., MARGRAVE G.F. 1999. Finite difference modeling of acoustic waves in Matlab. CREWES Research Report, 11: 1-19. Retrieved from https://www.crewes.org/Documents/ResearchReports/1999/1999-06.pdf Google Scholar
ZHU S.M. 1995. Modelling and visualisation of wave propagation for echolocation. PhD Thesis. University of Wollongong. Retrieved from http://ro.uow.edu.au/theses/1297 Google Scholar
WNT UWM w Olsztynie
University of Warmia and Mazury in Olsztyn