Modeling the phenomenon of ultrasonic wave propagation in selected fluids using Comsol – a case study

Konrad W. Nowak

WNT UWM w Olsztynie

Agata Wielkopolan

University of Warmia and Mazury in Olsztyn


Abstract

The aim of this study was to model the propagation of acoustic waves with frequencies in the ultrasound range in three selected fluids. Ultrasonic wave propagation in the studied fluids was tested in a laboratory to validate the model. The laboratory tests involved simple measurements of the time of flight of an ultrasonic wave with a frequency of 5 MHz in fluids with different parameters: demineralized water, rapeseed oil, and gelatinized potato starch colloid. In the second part of the study, the COMSOL Multiphysics program was used to develop a model of ultrasonic wave propagation in the same fluids. The model was developed using the Transient analysis type in the Pressure Acoustics application mode of the Acoustics Module. The modeling results were somewhat different from those obtained in laboratory tests; therefore, they did not meet the research assumptions in this stage of research. The limitations of the presented model were discussed. The study demonstrated that medium density was a parameter that exerted the greatest influence on the modeling process.


Keywords:

ultrasound, modeling of wave propagation, acoustic propagation in fluids, COMSOL

Supporting Agencies

National Science Centre in Krakow, Poland (grant No. 2014/15/N/ST8/02529)


ANTONIO J., TADEU A., GODINHO L. 2007. Sound wave propagation modeling in a 3D absorbing acoustic dome using the Method of Fundamental Solution. The International Conference on Computer Engineering and Systems, 3(3): 157-162. https://doi.org/10.3970/ices.2007.003.157   Google Scholar

DEINES E., MICHEL F., HERING-BERTRAM M., MOHRING J., HAGEN H. 2007. Simulation, visualisation, and virtual reality based modelling of room acoustics. 19th International Congress on Acoustics, Madrid, 2-7 September 2007.   Google Scholar

GUO J., SONG X., CHEN X., XU M., MING D. 2022. Mathematical model of ultrasound attenuation with skull thickness for transcranial-focused ultrasound. Frontiers in Neuroscience, 15: 778616. https://doi.org/10.3389/fnins.2021.778616
Crossref   Google Scholar

KOCHANOWICZ Z. 2020. Modelling ship-source noise impacts on marine mammals in Tallurutiup Imanga National Marine Conservation Area. Doctoral dissertation, University of Ottawa.   Google Scholar

LIU S., MANOCHA D. 2020. Sound synthesis, propagation, and rendering: A survey. Retrieved from arXiv:2011.05538v5 [cs.SD]. https://doi.org/10.48550/arXiv.2011.05538   Google Scholar

MACKIEWICZ S. 2019. Modelowanie propagacji fal ultradźwiękowych w badaniach nieniszczących. XXV Seminarium “Nieniszczące badania materiałów”, Zakopane, 20-22 marca 2019.   Google Scholar

MCCLEMENTS D.J. 1995. Advances in the application of ultrasound in food analysis and processing. Trends in Food Science & Technology, 6(9): 293-299. https://doi.org/10.1016/S0924-2244(00)89139-6
Crossref   Google Scholar

NOWAK K.W., MARKOWSKI M. 2020. Evaluation of selected properties of a gelatinized potato starch colloid by an ultrasonic method. Measurement, 158: 107717. https://doi.org/10.1016/j.measurement.2020.107717
Crossref   Google Scholar

NOWAK K.W., ROPELEWSKA E., BEKHIT A.E.D.A., MARKOWSKI M. 2017. Ultrasound applications in the meat industry. In: Advances in meat processing technology. Ed. A.E.D.A. Bekhit. CRC Press Taylor & Francis Group, Boca Raton, London, New York. https://doi.org/10.1201/9781315371955
Crossref   Google Scholar

OTAWSKI P., DZIURA A., SKUZA M., RYBCZYŃSKA-SZEWCZYK M., SZEWCZYK J. 2021. Raport o oddziaływaniu na środowisko – dla decyzji o środowiskowych uwarunkowaniach dla przedsięwzięcia „Morska farma wiatrowa MFW Bałtyk II”. T. II, Sekcja 9, Warszawa.   Google Scholar

SIMAL S., BENEDITO J., CLEMENTE G., FEMENIA A., ROSSELLO C. 2003. Ultrasonic determination of the composition of a meat-based product. Journal of Food Engineering, 58(3): 253-257. https://doi.org/10.1016/S0260-8774(02)00375-8
Crossref   Google Scholar

ŚLIWIŃSKI A. 2001. Ultradźwięki i ich zastosowania. Wydawnictwo Naukowo-Techniczne, Warszawa.   Google Scholar

WINKLER-SKALNA A. 2010. Propagacja dźwięku w ośrodkach o parametrach niepewnych. Rozprawa doktorska. Biblioteka Cyfrowa Politechniki Śląskiej, Gliwice.   Google Scholar

VORLÄNDER M. 2008. Auralisation. Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48830-9
Crossref   Google Scholar

YOKOTA T., SAKAMOTO S., TACHIBANA H. 2002. Visualization of sound propagation and scattering in rooms. Acoustical Science and Technology, 23(1): 40-46. https://doi.org/10.1250/ast.23.40
Crossref   Google Scholar

YOUZWISHEN C.F., MARGRAVE G.F. 1999. Finite difference modeling of acoustic waves in Matlab. CREWES Research Report, 11: 1-19. Retrieved from https://www.crewes.org/Documents/ResearchReports/1999/1999-06.pdf   Google Scholar

ZHU S.M. 1995. Modelling and visualisation of wave propagation for echolocation. PhD Thesis. University of Wollongong. Retrieved from http://ro.uow.edu.au/theses/1297   Google Scholar

Download


Published
2024-12-02

Cited by

Nowak, K. W., & Wielkopolan, A. (2024). Modeling the phenomenon of ultrasonic wave propagation in selected fluids using Comsol – a case study. Technical Sciences, 27(27), 341–356. https://doi.org/10.31648/ts.10550

Konrad W. Nowak 
WNT UWM w Olsztynie
Agata Wielkopolan 
University of Warmia and Mazury in Olsztyn



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.





-->