Selected aspects of research on advanced states deformation of thin-wall aircraft composite structures
Tomasz Lis
Politechnika RzeszowskaAbstract
The paper concerns the most significant and characteristic stages of manufacturing and testing the properties of aircraft thin-wall composite structures. Structures of this kind, due to the high requirements in terms of safety, durability and economy of aircraft operation, force the emergence of a number of often mutually contradictory design assumptions. The basic problem is to ensure the necessary strength and stiffness of the structure at the lowest possible weight. In a typical thin-wall structure, due to the small thickness of the skin, it is the covering that buckles, while the frame elements do not lose stability. Therefore, when testing thin-wall structures, it is extremely important to properly prepare the model so that the loss of stability is only local. The choice of stiffness of individual elements and the adopted technological process, which directly determines the properties of the system, are of fundamental importance.
The text presents an exemplary solution of this problem, concerning the concept of research model with the given technological process. The model underwent the loading condition, which corresponds to the real conditions occurring during the flight. In the next stage, the characteristic properties of the composite thin-wall structure, which is a representative part of the aircraft, were recorded. The obtained results make it possible to determine the influence of the adopted solution on the character of the skin deformation and provide a basis for modifications and comparative analyses.
Keywords:
post-critical states, stability, aircraft thin-wall structures, compositesReferences
Boczkowska A., Krzesiński G. 2016. Kompozyty i techniki ich wytwarzania. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa. Google Scholar
Breuer P. 2016. Commercial aircraft composite technology. Springer, Switzerland. Google Scholar
Brzoska Z. 1961. Statyka i stateczność konstrukcji prętowych i cienkościennych. PWN, Warszawa. Google Scholar
Chun-Young Niu M. 1992. Composites airframe structures. Conmilit Press, Hong Kong. Google Scholar
Cutler J. 1999. Understanding aircraft structures. Oxword Blackwell Science Ltd. Google Scholar
Degenhardt R., Zimmerman R., Rolfes R., Rohwer K. 2006. COCOMAT – improved material exploitation of composite airframe structures by accurate silmulation of postbuckling and collapse. Composite Structures, 73(2): 175-178. Google Scholar
Doyle J.F. 2001. Nonlinear analysis of thin-walled structures. Springer, New York. Google Scholar
Eswarda Prasad N., Wanhill R.J.H. (Eds.). 2017. Aerospace materials and material technologies. Vol. 1. Aerospace materials. IIMS. https://doi.org/10.1007/978-981-10-2134-3 Google Scholar
Galińska A. 2020. Mechanical joining of fibre reinforced polymer composites to metals – a review. Part I. Bolted joining. Polymers, 12(10): 2252; https://doi.org/10.3390/polym12102252 Google Scholar
Galiński C. 2017. Wybrane zagadnienia projektowania samolotów. Wydawnictwo Instytutu Lotnictwa, Warszawa. Google Scholar
Galiński C. 2020. Wybrane zagadnienia konstrukcji samolotów. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa. Google Scholar
German J. 2001. Podstawy mechaniki kompozytów włóknistych. Politechnika Krakowska, Kraków. Google Scholar
Hertel H. 1960. Leichtbau. Springer, Berlin. Google Scholar
Howe D. 2004. Aircraft loading and structural layout. American Institute of Aeronautics and Astronautics, Reston. Google Scholar
Kopecki T. 2010. Stany zaawansowanych deformacji w projektowaniu cienkościennych ustrojów nośnych. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów. Google Scholar
Kopecki T., Bakunowicz J., Lis T. 2016. Post-critical deformation states of composite thin-walled aircraft load-bearin structures. Journal of Theoretical and Applied Mechanics, 54(1). Google Scholar
Kopecki T., Lis T., Mazurek P. 2019. Experimental and numerical analysis of a composite thin-walled cylidrical structures with different variants of stiffeners, sobjected to torsion. Materials, 12(19): 3230. https://doi.org/10.3390/ma12193230 Google Scholar
Skoczylas J., Samborski S., Kłonica M. 2019. The application of composite materials in the aerospace industry. Journal of Technology and Exploitation in Mechanical Engineering, 5(1). http://dx.doi.org/10.35784/jteme.73 Google Scholar
Stafiej W., Rodzewicz M., Borkowski P., Hejduk H., Latuszek M., Roszak J., Wymysłowski P. 2000. Obliczenia stosowane przy projektowaniu szybowców. Politechnika Warszawska, Warszawa. Google Scholar
Tiwary A., Kumar R., Chochan J.S. 2022. A review of characteristics of composites and advanced materials used for aerospace applications. Materialstoday. Proseedings, 51(1): 865-870. https://doi.org/10.1016/j.matpr.2021.06.276 Google Scholar
Politechnika Rzeszowska

