Finite element analysis of the eigenfrequencies of milling machine support structure

Radosław Ciemierkiewicz

a:1:{s:5:"en_US";s:63:"Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie";}

Faculty of Mechanical Engineering and Robotics
Department of Machine Design and Maintenance



Bogusław Ładecki

AGH University of Krakow

AGH University of Krakow
Faculty of Mechanical Engineering and Robotics
Department of Machine Design and Maintenance

Position:
Assistant Professor

Academic Group:
Academic Staff – Assistant Professors




Abstract

The publication concerns the selection of dimensions for two support structure models of a woodworking spindle moulder, based on the results of finite element analyses: static structural and modal. Using the ANSYS Workbench software, a linear-elastic material behavior was assumed, and preliminary models of the milling machine frame and housing were analyzed, each assigned a different material – structural steel (S235JR) and gray cast iron (EN-GJL-250), respectively. After completing the Design and Analysis of Computer Experiments stage, optimization was carried out using ANSYS Workbench algorithms: the Response Surface Method and the Direct Optimization Method. As a result, the optimal geometric dimensions of the milling machine’s support structures were identified, satisfying both strength and modal criteria.


Keywords:

support structure of a milling machine, FE analysis, parametric optimization

Supporting Agencies

AGH University of Krakow (Faculty of Mechanical Engineering and Robotics)


Chan T.-C., Ullah A., Roy B., Chang S.-L. 2023. Finite element analysis and structure optimization of a gantry-type high-precision machine tool. Scientific Reports, 13(1): 13006.   Google Scholar

Dikmen E., Van Der HoogtP., De Boer A., AartsR., Jonker B. 2009. A Flexible Rotor on Flexible Supports: Modeling and Experiments. Volume 15: Sound, Vibration and Design, 51-56.   Google Scholar

Dong J., Wang G., Lin H., Bi X., Li Z., Zhao P., Pei T., Tan F. 2023. Vibration Characteristic Analysis and Structural Optimization of the Frame of a Triplex Row-Baling Cotton Picker. Agriculture, 13(7): 1440.   Google Scholar

DunajP., Marchelek K., Chodźko M. 2019. Application of the finite element method in the milling process stability diagnosis. Journal of Theoretical and Applied Mechanics, 57(2): 353-367.   Google Scholar

Géradin M., Rixen D., FarhatC. 2015. Mechanical vibrations: Theory and applications to structural dynamics (Third Edition). Wiley.   Google Scholar

Goli G., Fioravanti M., Marchal R., Uzielli L., Busoni S. 2010. Up-milling and down- milling wood with different grain orientations – the cutting forces behaviour. European Journal of Wood and Wood Products, 68(4): 385-395.   Google Scholar

Herz F., Nordmann R. 2020. Basics of Vibrations. Vibrations of Power Plant Machines (pp. 1-28). Springer International Publishing.   Google Scholar

Jaroszewicz J., Łukaszewicz K. 2018. Analysis of natural frequency of flexural vibrations of a single-span beam with the consideration of Timoshenko effect. Technical Sciences, 3(21): 215-232.   Google Scholar

Jaroszewicz J., Radziszewski L., Dragun Ł. 2017. The effect of influence of conservative and tangential axial forces on transverse vibrations of tapered vertical columns. Technical Sciences, 4(20): 333-342.   Google Scholar

Jaroszewicz J., Zoryj L. 1994. Transversal vibrations and stability of beams with variable parameters. International Journal of Applied Mechanics and Engineering, 30(9): 713-720.   Google Scholar

Liu J., Kizaki T., Ren Z., Sugita N. 2022. Mode shape database-based estimation for machine tool dynamics. International Journal of Mechanical Sciences, 236: 107739.   Google Scholar

Pedrammehr S., Farrokhi H., Rajab A.K.S., Pakzad S., Mahboubkhah M., Ettefagh M.M., Sadeghi M.H. 2011. Modal Analysis of the Milling Machine Structure through FEM and Experimental Test. Advanced Materials Research, 383-390, 6717-6721.   Google Scholar

Qiu M., Wang D., Wei H., Liang X., Ma Y. 2018. Vibration modal analysis and optimization of the motor base. MATEC Web of Conferences, 175: 03046.   Google Scholar

Sawa M., Szala M., Henzler W. 2021. Innovative device for tensile strength testing of welded joints: 3D modelling, FEM simulation and experimental validation of test rig – a case study. Applied Computer Science, 17(3): 92-105.   Google Scholar

Shihan M., Chandradass J., Kannan T. 2020. Investigation of vibration analysis during end milling process of Monel alloy. Materials Today Proceedings, 39: 695-699.   Google Scholar

Szmidla J., Kluba M. 2011. Stateczność i drgania swobodne niepryzmatycznego układu smukłego poddanego obciążeniu eulerowskiemu. Modelowanie Inżynierskie, 41: 385-394.   Google Scholar

Vervaeke R., Debruyne S., Vandepitte D. 2019. Numerical and experimental analysis of vibration damping performance of polyurethane adhesive in machine operations. International Journal of Adhesion and Adhesives, 90: 47-54.   Google Scholar

Xi S., Cao H., Chen X. 2019. Dynamic modeling of spindle bearing system and vibration response investigation. Mechanical Systems and Signal Processing, 114: 486-511.   Google Scholar

Zienkiewicz O.C., Taylor R.L. 2002. The Finite Element Method: The Basis (Volume 1). Butterworth-Heinemann.   Google Scholar

Download


Published
2025-12-05

Cited by

Ciemierkiewicz, R., & Ładecki, B. (2025). Finite element analysis of the eigenfrequencies of milling machine support structure. Technical Sciences, 28(28), 199–213. https://doi.org/10.31648/ts.11552

Radosław Ciemierkiewicz 
a:1:{s:5:"en_US";s:63:"Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie";}
<p>Faculty of Mechanical Engineering and Robotics<br data-start="223" data-end="226">Department of Machine Design and Maintenance</p>  Poland

Faculty of Mechanical Engineering and Robotics
Department of Machine Design and Maintenance


Bogusław Ładecki 
AGH University of Krakow
<p data-start="119" data-end="270">AGH University of Krakow<br data-start="174" data-end="177">Faculty of Mechanical Engineering and Robotics<br data-start="223" data-end="226">Department of Machine Design and Maintenance</p> <p data-start="272" data-end="320"><strong data-start="272" data-end="298">Position:</strong><br data-start="298" data-end="301">Assistant Professor</p> <p data-start="322" data-end="389"><strong data-start="322" data-end="349">Academic Group:</strong><br data-start="349" data-end="352">Academic Staff – Assistant Professors</p>  Poland

AGH University of Krakow
Faculty of Mechanical Engineering and Robotics
Department of Machine Design and Maintenance

Position:
Assistant Professor

Academic Group:
Academic Staff – Assistant Professors





License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.





-->