Analysis of the development of technology for producing ethanol from biomass
Alicja Szymańska
Institute of Technical Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technologyhttps://orcid.org/0009-0009-5888-5861
Alicja Waleriańczyk
Institute of Technical Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technologyhttps://orcid.org/0009-0000-2342-0460
Grzegorz M. Szymański
Institute of Transport, Faculty of Civil Engineering and Transport, Poznan University of Technology";}Bogdan Wyrwas
Institute of Technical Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technologyhttps://orcid.org/0000-0002-4791-5318
Abstract
Bioethanol is one of the most important liquid biofuels and is capable of significantly reducing fossil fuel consumption and greenhouse gas emissions. A wide range of raw materials are used for its production. First- and fourth-generation bioethanol is distinguished. The ethanol production process can be carried out using biological or synthetic technologies. Fermentation allows the production of ethanol from renewable raw materials, while synthetic production allows for a high-purity product, but requires the use of petrochemical raw materials. Process optimization includes, among other things, modernizing process water recovery systems, using biological methods involving algae, and integrating bioethanol production with other energy processes. Life-Cycle Assessment (LCA) indicates that greenhouse gas emissions from field fertilization and the high water consumption of the entire process remain a significant environmental issue. The use of bioethanol as a transport fuel additive is supported by European Union policy, while the first-generation bioethanol market is successfully developing in Brazil and its production is currently the cheapest. Bioethanol, especially second generation, is an important element of energy transformation, but its economic competitiveness requires further technological innovation and regulatory support.
Keywords:
bioethanol, biomass, LCA, ethanol, synthesis, fermentation, distillation, environmental protectionReferences
Broda M., Yelle D.J., Serwańska K. 2022. Bioethanol Production from Lignocellulosic Biomass – Challenges and Solutions. Molecules, 27(24): 8717. https://doi.org/10.3390/molecules27248717 Google Scholar
Chiu C.C., Shiang W.-J., Lin C.J. 2015. The Water Footprint of Bioethanol. Journal of Clean Energy Technologies, 4(1):43-47. https://doi.org/10.7763/JOCET.2016.V4.251 Google Scholar
Chowdhury P., Mahi N.A., Yeassin R., Chowdhury N.U.R., Farrok O. 2025. Biomass to biofuel: Impacts and mitigation of environmental, health, and socioeconomic challenges. Energy Conversion and Management, X, 25: 100889. https://doi.org/10.1016/J.ECMX.2025.100889 Google Scholar
Clark J. 2002. The mechanism for the acid catalysed hydration of ethene. Available at: https://www.chemguide.co.uk/physical/catalysis/hydrate.html (Accessed: 10.08.2025). Google Scholar
Golisz E. 2014. Konkurencyjność brazylijskiego bioetanolu na świecie. Zeszyty Naukowe SGGW W Warszawie – Problemy Rolnictwa Światowego, 14(1): 16-24. https://doi.org/https://doi.org/10.22630/PRS.2014.14.1.2 Google Scholar
Guragain Y.N., Probst K.V., Vadlani, P.V. 2015. Fuel Alcohol Production. Encyclopedia of Food Grains: Second Edition, 3-4: 235-244. https://doi.org/10.1016/B978-0-12-394437-5.00137-6 Google Scholar
Hackenhaar I.C., Moraga G., Thomassen G., Taelman S.E., Dewulf, J., Bachmann, T. M. 2024. A comprehensive framework covering Life Cycle Sustainability Assessment, resource circularity and criticality. Sustainable Production and Consumption, 45: 509-524. https://doi.org/10.1016/J.SPC.2024.01.018 Google Scholar
Hailu G. 2020. Energy systems in buildings. Energy Services Fundamentals and Financing, Google Scholar
-209. https://doi.org/10.1016/B978-0-12-820592-1.00008-7 Google Scholar
Hermann J., Uzar L. 1993. Badania stabilizacji nawozu wytworzonego ze szlamów pognojowicowych poddanych fermentacji metanowej. Zeszyty Problemowe Postępów Nauk Rolniczych, 409: 270-273. Google Scholar
Jakóbiec J., Wądrzyk M. 2010. Microalgae as a potential source for biodiesel production. Agricultural Engineering, 6(124): 51-56. Google Scholar
Kazmi A., Sultana T., Ali A., Nijabat A., Li G., Hou H. 2025. Innovations in bioethanol production: A comprehensive review of feedstock generations and technology advances. Energy Strategy Reviews, 57: 101634. https://doi.org/10.1016/J.ESR.2024.101634 Google Scholar
Mohsenzadeh, A., Zamani, A., Taherzadeh, M.J. 2017. Bioethylene Production from Ethanol: A Review and Techno-economical Evaluation. ChemBioEng Reviews, 4(2): 75-91. https://doi.org/10.1002/cben.201600025 Google Scholar
Neto A.S., Wainaina S., Chandolias K., Piatek P., Taherzadeh M.J. 2025. Exploring the Potential of Syngas Fermentation for Recovery of High-Value Resources: A Comprehensive Review. Current Pollution Reports. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40726-024-00337-3 Google Scholar
Numjuncharoen T., Papong S., Malakul P., Mungcharoen T. 2015. Life-Cycle GHG Emissions of Cassava-Based Bioethanol Production. Energy Procedia, 79: 265-271. https://doi.org/10.1016/j.egypro.2015.11.477 Google Scholar
Owczuk M., Rogulska M., Bogumił R. 2015. Development prospects of biorefinery technologies Chemik 11(69):754-758. Google Scholar
Pasoń Ł. 2022. Współczesne zastosowanie mikroalg w biotechnologii, inżynierii środowiska i przemyśle. In A. Rosińska, B. Karwowska, M. Madeła (Eds.) Inżynieria środowiska i biotechnologia – wyzwania i nowe technologie. Częstochowa: Wydawnictwo Politechniki Częstochowskiej, 215-228. Google Scholar
Pepin, C., Marzzacco C. 2015. The fermentation of sugars using yeast: A discovery experiment. Available at: https://uwaterloo.ca/chem13-news-magazine/april-2015/activities/fermentation-sugars-using-yeast-discovery-experiment (Accessed: 17.08.2025). Google Scholar
Reijnders L., Huijbregts M.A.J. 2011. Nitrous oxide emissions from liquid biofuel production in life cycle assessment. Current Opinion in Environmental Sustainability, 3(5):432-437. https://doi.org/10.1016/J.COSUST.2011.08.005 Google Scholar
Robak, K., Balcerek M. 2018. Review of second generation bioethanol production from residual biomass. Food Technology and Biotechnology. University of Zagreb, 174-187. https://doi.org/10.17113/ftb.56.02.18.5428 Google Scholar
Rudolf A., Karhumaa K., Hahn-Hägerdal B. 2009. Ethanol Production from Traditional and Emerging Raw Materials. In Yeast Biotechnology: Diversity and Applications. Dordrecht: Springer Netherlands, 489-513. https://doi.org/10.1007/978-1-4020-8292-4_23 Google Scholar
Smuga M. 2011. Innowacyjne metody otrzymywania bioetanolu jako paliwa II generacji. Autobusy: technika, eksploatacja, systemy transportowe, 5(12): 378-380. Google Scholar
Smuga-Kogut M. 2015a. Możliwość wykorzystania surowców ligninocelulozowych do produkcji bioetanolu II generacji. Autobusy: technika, eksploatacja, systemy transportowe, 5: 435-438. Google Scholar
Smuga-Kogut M. 2015b. Znaczenie produkcji biopaliw w Polsce na przykładzie bioetanolu. Autobusy, 6: 202-205. Google Scholar
Syaera Hidzir N., Abdullah Z., Som A.M., Som M., Alam S. 2014. Ethanol Production via Direct Hydration of Ethylene: A review. In International Conference on Global Sustainability and Chemical Engineering (ICGSE). Kuala Lumpur. Google Scholar
Institute of Technical Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology
https://orcid.org/0009-0009-5888-5861
Institute of Technical Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology
https://orcid.org/0009-0000-2342-0460
Institute of Transport, Faculty of Civil Engineering and Transport, Poznan University of Technology";}
Institute of Technical Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology
https://orcid.org/0000-0002-4791-5318

