Analysis of the development of technology for producing ethanol from biomass

Alicja Szymańska

Institute of Technical Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology
https://orcid.org/0009-0009-5888-5861

Alicja Waleriańczyk

Institute of Technical Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology
https://orcid.org/0009-0000-2342-0460

Grzegorz M. Szymański

Institute of Transport, Faculty of Civil Engineering and Transport, Poznan University of Technology";}

Bogdan Wyrwas

Institute of Technical Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology
https://orcid.org/0000-0002-4791-5318


Abstract

Bioethanol is one of the most important liquid biofuels and is capable of significantly reducing fossil fuel consumption and greenhouse gas emissions. A wide range of raw materials are used for its production. First- and fourth-generation bioethanol is distinguished. The ethanol production process can be carried out using biological or synthetic technologies. Fermentation allows the production of ethanol from renewable raw materials, while synthetic production allows for a high-purity product, but requires the use of petrochemical raw materials. Process optimization includes, among other things, modernizing process water recovery systems, using biological methods involving algae, and integrating bioethanol production with other energy processes. Life-Cycle Assessment (LCA) indicates that greenhouse gas emissions from field fertilization and the high water consumption of the entire process remain a significant environmental issue. The use of bioethanol as a transport fuel additive is supported by European Union policy, while the first-generation bioethanol market is successfully developing in Brazil and its production is currently the cheapest. Bioethanol, especially second generation, is an important element of energy transformation, but its economic competitiveness requires further technological innovation and regulatory support.


Keywords:

bioethanol, biomass, LCA, ethanol, synthesis, fermentation, distillation, environmental protection


Broda M., Yelle D.J., Serwańska K. 2022. Bioethanol Production from Lignocellulosic Biomass – Challenges and Solutions. Molecules, 27(24): 8717. https://doi.org/10.3390/molecules27248717   Google Scholar

Chiu C.C., Shiang W.-J., Lin C.J. 2015. The Water Footprint of Bioethanol. Journal of Clean Energy Technologies, 4(1):43-47. https://doi.org/10.7763/JOCET.2016.V4.251   Google Scholar

Chowdhury P., Mahi N.A., Yeassin R., Chowdhury N.U.R., Farrok O. 2025. Biomass to biofuel: Impacts and mitigation of environmental, health, and socioeconomic challenges. Energy Conversion and Management, X, 25: 100889. https://doi.org/10.1016/J.ECMX.2025.100889   Google Scholar

Clark J. 2002. The mechanism for the acid catalysed hydration of ethene. Available at: https://www.chemguide.co.uk/physical/catalysis/hydrate.html (Accessed: 10.08.2025).   Google Scholar

Golisz E. 2014. Konkurencyjność brazylijskiego bioetanolu na świecie. Zeszyty Naukowe SGGW W Warszawie – Problemy Rolnictwa Światowego, 14(1): 16-24. https://doi.org/https://doi.org/10.22630/PRS.2014.14.1.2   Google Scholar

Guragain Y.N., Probst K.V., Vadlani, P.V. 2015. Fuel Alcohol Production. Encyclopedia of Food Grains: Second Edition, 3-4: 235-244. https://doi.org/10.1016/B978-0-12-394437-5.00137-6   Google Scholar

Hackenhaar I.C., Moraga G., Thomassen G., Taelman S.E., Dewulf, J., Bachmann, T. M. 2024. A comprehensive framework covering Life Cycle Sustainability Assessment, resource circularity and criticality. Sustainable Production and Consumption, 45: 509-524. https://doi.org/10.1016/J.SPC.2024.01.018   Google Scholar

Hailu G. 2020. Energy systems in buildings. Energy Services Fundamentals and Financing,   Google Scholar

-209. https://doi.org/10.1016/B978-0-12-820592-1.00008-7   Google Scholar

Hermann J., Uzar L. 1993. Badania stabilizacji nawozu wytworzonego ze szlamów pognojowicowych poddanych fermentacji metanowej. Zeszyty Problemowe Postępów Nauk Rolniczych, 409: 270-273.   Google Scholar

Jakóbiec J., Wądrzyk M. 2010. Microalgae as a potential source for biodiesel production. Agricultural Engineering, 6(124): 51-56.   Google Scholar

Kazmi A., Sultana T., Ali A., Nijabat A., Li G., Hou H. 2025. Innovations in bioethanol production: A comprehensive review of feedstock generations and technology advances. Energy Strategy Reviews, 57: 101634. https://doi.org/10.1016/J.ESR.2024.101634   Google Scholar

Mohsenzadeh, A., Zamani, A., Taherzadeh, M.J. 2017. Bioethylene Production from Ethanol: A Review and Techno-economical Evaluation. ChemBioEng Reviews, 4(2): 75-91. https://doi.org/10.1002/cben.201600025   Google Scholar

Neto A.S., Wainaina S., Chandolias K., Piatek P., Taherzadeh M.J. 2025. Exploring the Potential of Syngas Fermentation for Recovery of High-Value Resources: A Comprehensive Review. Current Pollution Reports. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40726-024-00337-3   Google Scholar

Numjuncharoen T., Papong S., Malakul P., Mungcharoen T. 2015. Life-Cycle GHG Emissions of Cassava-Based Bioethanol Production. Energy Procedia, 79: 265-271. https://doi.org/10.1016/j.egypro.2015.11.477   Google Scholar

Owczuk M., Rogulska M., Bogumił R. 2015. Development prospects of biorefinery technologies Chemik 11(69):754-758.   Google Scholar

Pasoń Ł. 2022. Współczesne zastosowanie mikroalg w biotechnologii, inżynierii środowiska i przemyśle. In A. Rosińska, B. Karwowska, M. Madeła (Eds.) Inżynieria środowiska i biotechnologia – wyzwania i nowe technologie. Częstochowa: Wydawnictwo Politechniki Częstochowskiej, 215-228.   Google Scholar

Pepin, C., Marzzacco C. 2015. The fermentation of sugars using yeast: A discovery experiment. Available at: https://uwaterloo.ca/chem13-news-magazine/april-2015/activities/fermentation-sugars-using-yeast-discovery-experiment (Accessed: 17.08.2025).   Google Scholar

Reijnders L., Huijbregts M.A.J. 2011. Nitrous oxide emissions from liquid biofuel production in life cycle assessment. Current Opinion in Environmental Sustainability, 3(5):432-437. https://doi.org/10.1016/J.COSUST.2011.08.005   Google Scholar

Robak, K., Balcerek M. 2018. Review of second generation bioethanol production from residual biomass. Food Technology and Biotechnology. University of Zagreb, 174-187. https://doi.org/10.17113/ftb.56.02.18.5428   Google Scholar

Rudolf A., Karhumaa K., Hahn-Hägerdal B. 2009. Ethanol Production from Traditional and Emerging Raw Materials. In Yeast Biotechnology: Diversity and Applications. Dordrecht: Springer Netherlands, 489-513. https://doi.org/10.1007/978-1-4020-8292-4_23   Google Scholar

Smuga M. 2011. Innowacyjne metody otrzymywania bioetanolu jako paliwa II generacji. Autobusy: technika, eksploatacja, systemy transportowe, 5(12): 378-380.   Google Scholar

Smuga-Kogut M. 2015a. Możliwość wykorzystania surowców ligninocelulozowych do produkcji bioetanolu II generacji. Autobusy: technika, eksploatacja, systemy transportowe, 5: 435-438.   Google Scholar

Smuga-Kogut M. 2015b. Znaczenie produkcji biopaliw w Polsce na przykładzie bioetanolu. Autobusy, 6: 202-205.   Google Scholar

Syaera Hidzir N., Abdullah Z., Som A.M., Som M., Alam S. 2014. Ethanol Production via Direct Hydration of Ethylene: A review. In International Conference on Global Sustainability and Chemical Engineering (ICGSE). Kuala Lumpur.   Google Scholar

Download


Published
2025-12-05

Cited by

Szymańska, A. ., Waleriańczyk, A., Szymański, G. M., & Wyrwas, B. (2025). Analysis of the development of technology for producing ethanol from biomass. Technical Sciences, 28(28), 281–290. https://doi.org/10.31648/ts.11751

Alicja Szymańska 
Institute of Technical Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology
https://orcid.org/0009-0009-5888-5861
Alicja Waleriańczyk 
Institute of Technical Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology
https://orcid.org/0009-0000-2342-0460
Grzegorz M. Szymański 
Institute of Transport, Faculty of Civil Engineering and Transport, Poznan University of Technology";}
Bogdan Wyrwas 
Institute of Technical Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology
https://orcid.org/0000-0002-4791-5318



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.





-->