Characteristics of porous beds based on fractal parameters

Mirosław Bramowicz



Sławomir Kulesza



Wojciech Sobieski




Abstract

The paper presents the results of a fractal analysis of the cross-sections of a porous mineral deposit consisting of spherical elements which formed a spatial system with varying porosity (0.4 to 0.95). The virtual deposit was generated using the Discrete Element Method in the YADE code by means of the so-called Radius Expansion Method. The fractal analysis was carried out using the structure function method, determining the fractal dimension (D), the topothesy (L) and the corner frequency (l) (MAINSAH et al. 2001). The conducted simulations have confirmed to a considerable extent the test results available in the literature involving the fractal analysis of mineral deposits with varying porosity. They clearly indicate that the fractal dimension does not change along with the porosity of the deposit, if the autocorrelation function or their transformations (e.g. structure function) methods are used. Moreover, based on the information available in the literature, it can be concluded that the value of the fractal dimension corresponds to mineral deposits with the specified geometric shapes of the elements which form them.


Keywords:

granular beds, porosity, fractal analysis, numerical modeling


ANDRONACHE I.C., PEPTENATU D., CIOBOTARU A.M., GRUIA A.K., GROPOSILAˇ M.N. 2016. Using fractal analysis in modeling trends in the national economy. Procedia Environmental Sciences, 32: 344-351.
BRAMOWICZ M., KULESZA S., CZAJA P., MAZIARZ W. 2014. Application of the autocorrelation function and fractal geometry methods for analysis of MFM images. Archives of Metallurgy and Materials, 59(2): 441-457.
BRAMOWICZ M. 2008. Analiza morfologii mikrostruktury martenzytycznej w stopie Ni-Mn-Ga z magnetyczną pamięcią kształtu. Rozprawa doktorska. UWM Olsztyn.
BRAMOWICZ M., KULESZA S., LIPIŃSKI T., SZABRACKI P., PIATKOWSKI P. 2013. Fractal Analysis of AFM Data Characterizing Strongly Isotropic and Anisotropic Surface Topography. Solid State Phenomena, 203-204: 86-89.
CUNDALL P.A., STRACK O.D. 1979. A Discrete Element Model for granular assemblies. Ge´otehnique, 29: 47-65.
KULESZA S., BRAMOWICZ M. 2014. A comparative study of correlation methods for determination of fractal parameters in surface characterization. Applied Surface Science, 293: 196-201.
MAINSAH E., GREENWOOD J.A., CHETWYND D.G. 2001. Metrology and Properties of Engineering Surfaces. Kluwer Academic Publishers Inc., Norwell, MA.
MANDELBROT B.B. 1982. The Fractal Geometry of Nature. W.H. Freeman & Company, New York.
SAYLES R.S., THOMAS T.R. 1977. Spatial representation of surface roughness by means of structure function - practical alternative to correlation. Wear, 42: 263-276.
SOBIESKI W., LIPIŃSKI S. 2016. PathFinder User’s Guide. http://www.uwm.edu.pl/pathfinder (access: 1.05. 2016).
SOBIESKI W., LIPIŃSKI S., DUDDA W., TRYKOZKO A., MAREK M., WIĄCEK J., MATYKA M., GOŁEMBIEWSKI J. 2016. Grannular porous media. Department of Mechanics and Machine Design, Olsztyn.
SOBIESKI W., TRYKOZKO A. 2011. Sensitivity aspects of Forchheimer’s approximation. Transport In Porous Media, 89(2): 155-164.
SUN H., KOCH M. 1998. Numerical generation of porous structure with fractal properties. Computational Methods in Water Resources, XII(2): 149-157.
THOMAS T.R., ROSE’N B.G., AMINI N. 1999. Fractal characterisation of the anisotropy of rough surfaces. Wear, 232: 41-50.
VAN’YAN P.L. 1996. Structure function of the velocity field in turbulent flows. Journal of Experimental and Theoretical Physics, 82(3): 580-586.
YADAV R.P., KUMAR M., MITTAL A.K., PANDEY A.C. 2015. Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructured BaF2 thin film surfaces. Chaos, 25: 083115-083115-9.
Yade. https://yade-dem.org/doc/ (access: 1.05. 2016).
Yade Documentation. https://launchpad.net/yade (access: 1.05. 2016).
PN EN ISO 25178-2:2012. Specyfikacje geometrii wyrobów (GPS) - Struktura geometryczna powierzchni: przestrzenna. Część 2. Terminy, definicje i parametry struktury geometrycznej powierzchni.
PN EN ISO 25178-3:2012. Specyfikacje geometrii wyrobów (GPS) - Struktura geometryczna powierzchni: przestrzenna. Część 3. Specyfikacje operatorów.
Download


Published
2017-03-27

Cited by

Bramowicz, M., Kulesza, S., & Sobieski, W. (2017). Characteristics of porous beds based on fractal parameters. Technical Sciences, 20(2), 171–179. https://doi.org/10.31648/ts.5152

Mirosław Bramowicz 

Sławomir Kulesza 

Wojciech Sobieski 








-->