A Design Concept of a Device for Measuring Air Flow Resistance in Vehicle Filters
Adrian Misztuk
Abstract
Internal combustion engines have to be supplied with adequate amounts of fuel and air.
The required amount of fuel and air is determined by the engine controller to guarantee that the fuel reaching the cylinder is burned effectively and that the composition of exhaust gas meets standard requirements. The air supplied to an internal combustion engine has to be adequately filtered because impurities reaching the engine can accelerate the wear of engine components. The air intake system features a filtering partition which captures impurities and prevents them from reaching the engine. However, the filtering process decreases the rate at which cylinders are filled with fresh air, which can compromise engine performance. Therefore, effective solutions are needed to ensure that the flow of filtered air does not significantly decrease the volumetric efficiency of cylinders.
This study presents a design concept of a device for measuring pressure in the air intake system in front of and behind the filtering partition. The proposed device can be useful for measuring filter wear. A prototype of the proposed device was built and tested on several air filters. To eliminate throttle valve impacts, the device was tested in a compression ignition engine. The results of the conducted tests demonstrated that the device correctly measured air flow. The conducted measurements also revealed that the presence of impurities in the air filter induced differences
in pressure in the air intake system in front of and behind the filtering partition. The maximum air flow resistance in a clogged filter could be even 100% higher than in a brand new filter.
Keywords:
internal combustion engine, filter, impurities, air flow resistanceReferences
Bielski A., Ciuryło R. 2001. Podstawy metod opracowania pomiarów. UMK, Toruń, p. 32-37. Google Scholar
BMP180 Digital pressure sensor. 2013. Datasheet, Document revision 2.5., Bosch. https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf. Google Scholar
BMP280 Digital Pressure Sensor, Datasheet. 2015. Document revision 1.14, Bosch. https://cdn-shop.adafruit.com/datasheets/BST-BMP280-DS001-11.pdf. Google Scholar
Chłopek Z. 2012. Testing of hazards to the environment caused by particulate matter during use of vehicles. Eksploatacja i Niezawodność, 2: 160-170. Google Scholar
Chłopek Z., Jakubowski A. 2009. Badania emisji cząstek stałych z układu hamulcowego pojazdu samochodowego Eksploatacja i Niezawodność, 4: 45-52. Google Scholar
Chłopek Z., Jakubowski A. 2010. The examination of the reduction of particulate matter emission from motor vehicle braking system. Eksploatacja i Niezawodność, 4: 29-36. Google Scholar
Dziubak T. 2003. Metodyka badań charakterystyk papierów filtracyjnych do filtru powietrza pojazdu eksploatowanego w warunkach dużego zapylenia powietrza. Zagadnienia Eksploatacji Maszyn PAN, 4(136): 101-117. Google Scholar
Dziubak T. 2006. Problemy filtracji powietrza zasysanego do spalinowych silników pojazdów mechanicznych. Biuletyn WAT, 60(3): 77-95. Google Scholar
Dziubak T. 2016. Zanieczyszczenia płynów eksploatacyjnych i ich wpływ na zużycie elementów silnika spalinowego pojazdu mechanicznego. Archiwum Motoryzacji, 72(2): 43-72. Google Scholar
Dziubak T., Borchet M. 2017. Badanie właściwości włókninowego wkładu filtracyjnego powietrza wlotowego silnika samochodu osobowego. Biuletyn WAT, 2: 148. Google Scholar
Dziubak T., Szwedkowicz S. 2013. Badania eksperymentalne cyklonów przelotowych filtrów powietrza silników spalinowych. Biuletyn WAT, 62(2): 201-217. Google Scholar
Dziubak T., Szwedkowicz S. 2014. Analiza porównawcza papierów i włóknin stosowanych do filtracji powietrza wlotowego silników pojazdów mechanicznych. Logistyka, 3: 1582-1591. Google Scholar
Hutten I.M. 2016. Handbook of nonwoven filter media. Butterworth-Heinemann, Oxford. Google Scholar
Kordziński C., Środulski T. 1968. Układy dolotowe silników spalinowych. WKiŁ, Warszawa. Google Scholar