Modelling and simulation of functioning of the GSh-23 aviation autocannon mechanisms
Michał Jasztal
a:1:{s:5:"en_US";s:97:"Faculty of Mechatronics, Armament and Aviation, Military University of Technology, Warsaw, Poland";}Mateusz Kunikowski
Abstract
Article presents the simulation model and the study of the basic mechanisms of the GSh-23 aviation autocannon. The research made use of Solid Edge ST9 software and the multibody systems method implemented in it. Simulation of functioning cannon mechanisms was carried out for two variants of forcing a piston mechanism movement by the gunpowder gases. The results obtained are time courses of a bolt and a cartridge belt drive mechanism elements movement. Assumed variants of a piston mechanism movement and elaborated simulation model will be verified in the next (planned) stage of studies basing on the results of the measurements of the experimental kinematic parameters utilising high-speed camera (Phantom) and TEMA software.
Keywords:
aviation autocannon, simulation model, multibody systems methodReferences
mm DZIAŁKO LOTNICZE GSz-23Ł Opis techniczny i eksploatacja. 1990. Dowództwo Wojsk Lotniczych, Poznań. Google Scholar
FLORIO L.A. 2011. Update on gas flow and heat transfer modeling in small arms systems. US Army ARDEC conference publications. Google Scholar
GRUSZCZYŃSKI J. 1993. Uzbrojenie lotnicze Wschód. Przegląd Konstrukcji Lotniczych, 15: 1-28. Google Scholar
HUAI-KU S., CUN-GIN Ch., HUE-POE W. 2007. Dynamic Analysis of rigid-body mechanisms mounted on flexible support structures – Spatial case. J. Chinese Society Mech. Eng., 28(6): 585-591. Google Scholar
HUAI-KU S., YUN-TIEN L., CUN-GIN CH. 2009a. Dynamic analysis of a vehicular-mounted automatic weapon-planar case. Defence Science Journal, 59(3): 265-272. doi: 10.14429/dsj.59.1520. Google Scholar
HUAI-KU S., YUN-TIEN L., CUN-GIN Ch. 2009b. Dynamic analysis of a vehicular-mounted automatic weapon-planar case. Defence Science Journal, 59(3): 265-272. doi: 10.14429/dsj.59.1520. Google Scholar
JASZTAL M. 2006. Metoda modelowania i badania zespołów mechanicznych wybranych urządzeń uzbrojenia lotniczego. Przegląd Mechaniczny, 4(6): 15-20. Google Scholar
JASZTAL M. 2017. Zastosowanie systemów CAD/CAE w badaniach elementów uzbrojenia lotniczego. In: Wybrane aspekty zastosowania bojowego lotnictwa. Eds. A. Wetoszka, A. Truskowski. Wyższa Szkoła Oficerska Sił Powietrznych, Dęblin. Google Scholar
JASZTAL M., TOMASZEK H., WAŻNY M. 2007. Zarys modelu oceny niezawodności pracy działka lotniczego w aspekcie powstawania uszkodzeń katastroficznych w postaci zacięć. Zagadnienia Eksploatacji Maszyn, 4(152): 129-140. Google Scholar
LOGAN D.L. 2007. A first course in finite element method. Ed. 4. Thomas Learning, University of Wisconsin, Platteville. Google Scholar
NI J., WANG X., XU Ch. 2011. Virtual test technology study of automatic weapon. World J. Modelling Simulation, 7: 155-160. Google Scholar
PATHAK A., BREI D., LUNTZ J., LAVIGNA C. 2006. A dynamic model for generating actuator specifications for small arms barrel active stabilisation. The Proceedings of SPIE – the International Society for Optical Engineering. Google Scholar
PLATEK P., DAMAZIAK K., MALACHOWSKI J., KUPIDURA P., WOZNIAK R., ZAHOR M. 2015. Numerical Study of Modular 5.56 mm Standard Assault Rifle Referring to Dynamic Characteristics. Defence Science Journal, 65(6): 431-437, doi: 10.14429/dsj.65.8259. Google Scholar
SCHABANA A.A. 2005. Dynamics of multibody systems. Cambridge University Press, Cambridge. Google Scholar
SCHIEHLEN W. 1997. Multibody system dynamic: Roots and perspective. Multibody Syst. Dyn., 1: 149-188. Google Scholar
SHIPLEY P., MCCONVILLE J.B. 2006. The creation of fully functional virtual prototype of an automatic weapon using MSC. Adams, MSC, Software VPD Conference. Google Scholar
TOMULIK P., FRACZEK J. 2011. Simulation of multibody systems with the use of coupling techniques: A case study. Multibody Syst. Dyn., 25(2): 145-165. doi: 10.1007/s11044-010-9206-y. Google Scholar
URRIOLAGOITIA-SOSA G., MOLINA-BALLINAS A., VERDUZCO-CEDEÑO V.F., ROMERO-ANGELES B., URRIOLAGOITIA-CALDERÖN G., HERNÁNDEZ-GÖMEZ L.H., BELTRÁN-FERNÁNDEZ J.A. 2011. Residual stress interaction against mechanical loading during the manufacturing process of an assault rifle component. Appl. Mech. Mater., 70: 482-487. doi: 10.4028/www.scientific.net/AMM.70.482. Google Scholar
WEI WU Ch., HAI WU Y., MAN FAN Q. 2013. Analysis of temperature and stress of a thin-walled cylinder based on FEM. Appl. Mech. Mater., 12: 373-375. doi:10.4028/www.scientific.net/AMM.373-375.12. Google Scholar
ZIENKIEWICZ O.C., TAYLOR R.L. 2005. The finite element method for solid and structural mechanics. Ed. 6. Elsevier Ltd., Amsterdam. Google Scholar
a:1:{s:5:"en_US";s:97:"Faculty of Mechatronics, Armament and Aviation, Military University of Technology, Warsaw, Poland";}