Modelling and simulation of functioning of the GSh-23 aviation autocannon mechanisms

Michał Jasztal

a:1:{s:5:"en_US";s:97:"Faculty of Mechatronics, Armament and Aviation, Military University of Technology, Warsaw, Poland";}

Mateusz Kunikowski




Abstract

Article presents the simulation model and the study of the basic mechanisms of the GSh-23 aviation autocannon. The research made use of Solid Edge ST9 software and the multibody systems method implemented in it. Simulation of functioning cannon mechanisms was carried out for two variants of forcing a piston mechanism movement by the gunpowder gases. The results obtained are time courses of a bolt and a cartridge belt drive mechanism elements movement. Assumed variants of a piston mechanism movement and elaborated simulation model will be verified in the next (planned) stage of studies basing on the results of the measurements of the experimental kinematic parameters utilising high-speed camera (Phantom) and TEMA software.


Keywords:

aviation autocannon, simulation model, multibody systems method


mm DZIAŁKO LOTNICZE GSz-23Ł Opis techniczny i eksploatacja. 1990. Dowództwo Wojsk Lotniczych, Poznań.   Google Scholar

FLORIO L.A. 2011. Update on gas flow and heat transfer modeling in small arms systems. US Army ARDEC conference publications.   Google Scholar

GRUSZCZYŃSKI J. 1993. Uzbrojenie lotnicze Wschód. Przegląd Konstrukcji Lotniczych, 15: 1-28.   Google Scholar

HUAI-KU S., CUN-GIN Ch., HUE-POE W. 2007. Dynamic Analysis of rigid-body mechanisms mounted on flexible support structures – Spatial case. J. Chinese Society Mech. Eng., 28(6): 585-591.   Google Scholar

HUAI-KU S., YUN-TIEN L., CUN-GIN CH. 2009a. Dynamic analysis of a vehicular-mounted automatic weapon-planar case. Defence Science Journal, 59(3): 265-272. doi: 10.14429/dsj.59.1520.   Google Scholar

HUAI-KU S., YUN-TIEN L., CUN-GIN Ch. 2009b. Dynamic analysis of a vehicular-mounted automatic weapon-planar case. Defence Science Journal, 59(3): 265-272. doi: 10.14429/dsj.59.1520.   Google Scholar

JASZTAL M. 2006. Metoda modelowania i badania zespołów mechanicznych wybranych urządzeń uzbrojenia lotniczego. Przegląd Mechaniczny, 4(6): 15-20.   Google Scholar

JASZTAL M. 2017. Zastosowanie systemów CAD/CAE w badaniach elementów uzbrojenia lotniczego. In: Wybrane aspekty zastosowania bojowego lotnictwa. Eds. A. Wetoszka, A. Truskowski. Wyższa Szkoła Oficerska Sił Powietrznych, Dęblin.   Google Scholar

JASZTAL M., TOMASZEK H., WAŻNY M. 2007. Zarys modelu oceny niezawodności pracy działka lotniczego w aspekcie powstawania uszkodzeń katastroficznych w postaci zacięć. Zagadnienia Eksploatacji Maszyn, 4(152): 129-140.   Google Scholar

LOGAN D.L. 2007. A first course in finite element method. Ed. 4. Thomas Learning, University of Wisconsin, Platteville.   Google Scholar

NI J., WANG X., XU Ch. 2011. Virtual test technology study of automatic weapon. World J. Modelling Simulation, 7: 155-160.   Google Scholar

PATHAK A., BREI D., LUNTZ J., LAVIGNA C. 2006. A dynamic model for generating actuator specifications for small arms barrel active stabilisation. The Proceedings of SPIE – the International Society for Optical Engineering.   Google Scholar

PLATEK P., DAMAZIAK K., MALACHOWSKI J., KUPIDURA P., WOZNIAK R., ZAHOR M. 2015. Numerical Study of Modular 5.56 mm Standard Assault Rifle Referring to Dynamic Characteristics. Defence Science Journal, 65(6): 431-437, doi: 10.14429/dsj.65.8259.   Google Scholar

SCHABANA A.A. 2005. Dynamics of multibody systems. Cambridge University Press, Cambridge.   Google Scholar

SCHIEHLEN W. 1997. Multibody system dynamic: Roots and perspective. Multibody Syst. Dyn., 1: 149-188.   Google Scholar

SHIPLEY P., MCCONVILLE J.B. 2006. The creation of fully functional virtual prototype of an automatic weapon using MSC. Adams, MSC, Software VPD Conference.   Google Scholar

TOMULIK P., FRACZEK J. 2011. Simulation of multibody systems with the use of coupling techniques: A case study. Multibody Syst. Dyn., 25(2): 145-165. doi: 10.1007/s11044-010-9206-y.   Google Scholar

URRIOLAGOITIA-SOSA G., MOLINA-BALLINAS A., VERDUZCO-CEDEÑO V.F., ROMERO-ANGELES B., URRIOLAGOITIA-CALDERÖN G., HERNÁNDEZ-GÖMEZ L.H., BELTRÁN-FERNÁNDEZ J.A. 2011. Residual stress interaction against mechanical loading during the manufacturing process of an assault rifle component. Appl. Mech. Mater., 70: 482-487. doi: 10.4028/www.scientific.net/AMM.70.482.   Google Scholar

WEI WU Ch., HAI WU Y., MAN FAN Q. 2013. Analysis of temperature and stress of a thin-walled cylinder based on FEM. Appl. Mech. Mater., 12: 373-375. doi:10.4028/www.scientific.net/AMM.373-375.12.   Google Scholar

ZIENKIEWICZ O.C., TAYLOR R.L. 2005. The finite element method for solid and structural mechanics. Ed. 6. Elsevier Ltd., Amsterdam.   Google Scholar

Download


Published
2021-11-24

Cited by

Jasztal, M., & Kunikowski, M. (2021). Modelling and simulation of functioning of the GSh-23 aviation autocannon mechanisms. Technical Sciences, 24(1), 211–220. https://doi.org/10.31648/ts.7076

Michał Jasztal 
a:1:{s:5:"en_US";s:97:"Faculty of Mechatronics, Armament and Aviation, Military University of Technology, Warsaw, Poland";}
Mateusz Kunikowski 




License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.





-->