Forecasting the number of road accidents in Poland using weather-dependent trend models

Piotr Gorzelanczyk

Państwowa Uczelnia Stanisława Staszica w Pile


Abstract

Every year a very large number of people die on the roads. From year to year, the value decreases, there are still a very high number of them. The pandemic has reduced the number of road accidents, but the value is still very high. For this reason, it is necessary to know under which weather conditions the highest number of road accidents occur, and to know the forecast of accidents according to the prevailing weather conditions for the coming years, in order to be able to do everything possible to minimize the number of road accidents.

The purpose of the article is to make a forecast of the number of road accidents in Poland depending on the prevailing weather conditions. The research was divided into two parts. The first was the analysis of annual data from the Police statistics on the number of road accidents in Poland in 2001-2021, and on this basis the forecast of the number of road accidents for 2022-2031 was determined. The second part of the research, dealt with monthly data from 2007-2021. Again, the analyzed forecast for the period January 2022-December 2023 was determined.

The results of the study indicate that we can still expect a decline in the number of accidents in the coming years, which is particularly evident when analyzing annual data. It is worth noting that the prevailing pandemic distorts the results obtained. The research was conducted in MS Excel, using selected trend models.


Keywords:

traffic accident, forecasting, trend models, weather conditions


ABDULLAH E., EMAM A. 2016. Traffic accidents analyzer using big data. 2015 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, Las Vegas, NV, p. 392–397. https://doi.org/10.1109/CSCI.2015.187.
Crossref   Google Scholar

AL-MADANI H. 2018. Global road fatality trends’estimations based on country-wise microlevel data. Accident Analysis & Prevention, 111: 297–310. https://doi.org/10.1016/j.aap.2017.11.035.
Crossref   Google Scholar

ARTEAGA C., PAZ A., PARK J. 2020. Injury severity on traffic crashes: A text mining with an interpretable machine-learning approach. Safety Science, 132: 104988. https://doi.org/10.1016/j.ssci.2020.104988.
Crossref   Google Scholar

BĄK I., CHEBA K., SZCZECIŃSKA B. 2019. The statistical analysis of road traffic in cities of Poland. Transportation Research Procedia, 39: 14-23. https://doi.org/10.1016/j.trpro.2019.06.003.
Crossref   Google Scholar

BISWAS A.A., MIA J., MAJUMDER A. 2019. Forecasting the Number of Road Accidents and Casualties using Random Forest Regression in the Context of Bangladesh. 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), p. 1-5. https://doi.org/10.1109/ICCCNT45670.2019.8944500.
Crossref   Google Scholar

BLOOMFIELD P. 1973. An exponential model in the spectrum of a scalar time series. Biometrika, 60(2): 217-226. https://doi.org/10.2307/2334533. Retrieved from https://www.jstor.org/stable/2334533.
Crossref   Google Scholar

CHAND A., JAYESH S., BHASI A.B. 2021. Road traffic accidents: An overview of data sources, analysis techniques and contributing factors. Materials Today: Proceedings, 47(15): 5135-5141. https://doi.org/10.1016/j.matpr.2021.05.415.
Crossref   Google Scholar

CHEN C. 2017. Analysis and Forecast of Traffic Accident Big Data. ITM Web of Conferences, 12: 04029. https://doi.org/10.1051/itmconf/20171204029.
Crossref   Google Scholar

CHUDY-LASKOWSKA K., PISULA T. 2014. Forecast of the number of road accidents in Poland. Logistics, 6: 2710-2721.   Google Scholar

CHUDY-LASKOWSKA K., PISULA T. 2015. Prognozowanie liczby wypadków drogowych na Podkarpaciu. Logistics, 4(2): 2782-2796.   Google Scholar

DUDEK G. 2013a. Exponential smoothing models for short-term power system load forecasting. Rynek Energii, 106(3): 14-19.   Google Scholar

DUDEK G. 2013b. Forecasting Time Series with Multiple Seasonal Cycles Using Neural Networks with Local Learning. In: Artificial Intelligence and Soft Computing. Eds. L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada. ICAISC 2013. Lecture Notes in Computer Science, 7894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38658-9_5.
Crossref   Google Scholar

DUTTA B., BARMAN M.P., PATOWARY A.N. 2020. Application of Arima model for forecasting road accident deaths in India. International Journal of Agricultural and Statistical Sciences, 16(2): 607-615.   Google Scholar

FIJOREK K., MRÓZ K., NIEDZIELA K., FIJOREK D. 2010. Forecasting electricity prices on the day-ahead market using data mining methods. Energy Market, 12.   Google Scholar

FISZEDER P. 2009. GARCH class models in empirical financial research. Scientific Publishers of the Nicolaus Copernicus University, Toruń.   Google Scholar

GORZELAŃCZYK P., PYSZEWSKA D., KALINA T., JURKOVIC M. 2020. Analysis of road traffic safety in the Pila poviat. Scientific Journal of Silesian University of Technology, Series Transport, 107: 33-52. https://doi.org/10.20858/sjsutst.2020.107.3.
Crossref   Google Scholar

GREGORCZYK A., SWARCEWICZ M. 2012. Analiza wariancji w układzie powtarzanych pomiarów do określenia efektów czynników wpływających na pozostałości linuronu w glebie. Polish Journal of Agronomy, 11: 15–20.   Google Scholar

HELGASON A. 2016. Fractional integration methods and short Time series: evidence from asimulation study. Political Analysis, 24(1): 59–68. Retrieved from http://www.jstor.org/stable/24573204.
Crossref   Google Scholar

KARLAFTIS M., VLAHOGIANNI E. 2009. Memory properties and fractional integration in trans-portation time-series. Transportation Research, Part C, Emerging Technologies, 17(4): 444-453. https://doi.org/10.1016/j.trc.2009.03.001.
Crossref   Google Scholar

KASHPRUK N. 2010. Comparative research of statistical models and soft computing for identification of time series and forecasting. Politechnika Opolska, Opole.   Google Scholar

KHALIQ K.A., CHUGHTAI O., SHAHWANI A., QAYYUM A., PANNEK J. 2019. Road accidents detection, data collection and data analysis using V2X communication and edge/cloud computing. Electronics, 8(8): 896. https://doi.org/10.3390/electronics8080896.
Crossref   Google Scholar

KOWALSKI L. 2022. Prognozowanie na podstawie szeregów czasowych. Prognozowanie i Symulacje. Strona Lucjana Kowalskiego. Retrieved from http://pis.rezolwenta.eu.org/Materialy/PiS-W-5.pdf.   Google Scholar

KRZYCZKOWSKA Z. 2019. Przy jakiej pogodzie najczęściej dochodzi do wypadków? Wcale nie podczas złych warunków. Gazeta.pl. Moto.pl. Retrieved from https://moto.pl/MotoPL/ 7,88389,25510393,przy-jakiej-pogodzie-najczesciej-dochodzi-do-wypadkow-wcale.html.   Google Scholar

KUMAR S., VISWANADHAM V., BHARATHI B. 2019. Analysis of road accident. IOP Conference Series Materials Science and Engineering, 590(1): 012029. https://doi.org/10.1088/1757-899X/590/1/012029
Crossref   Google Scholar

Las losowy (2023). Wikipedia. Wolna encyklopedia. Retrieved from https://pl.wikipedia.org/wiki/Las_losowy.   Google Scholar

LAVRENZ S., VLAHOGIANNI E., GKRITZA K., KE Y. 2018. Time series modeling in traffic safetyresearch. Accident Analysis & Prevention, 117: 368–380.
Crossref   Google Scholar

LI L, SHRESTHA S., HU G. 2017. Analysis of road traffic fatal accidents using data mining techniques. IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), p. 363-370. https://doi.org/10.1109/SERA.2017.7965753.
Crossref   Google Scholar

ŁOBEJKO S., MASŁOWSKA K., WOJDAN R. 2015. Analiza i prognozowanie szeregów czasowych z programem SAS. Oficyna Wydawnicza Szkoły Głównej Handlowej, Warszawa.   Google Scholar

MAMCZUR M. 2020. Jak działa regresja liniowa? I czy warto ją stosować? Mirosław Mamczur. Blog o data science, sztucznej inteligencji, uczeniu maszynowym i wizualizacji danych Retrieved from https://miroslawmamczur.pl/jak-dziala-regresja-liniowa-i-czy-warto-ja-stosowac/.   Google Scholar

MARCINKOWSKA J. 2015. Metody statystyczne i eksploracji danych (data mining) w ocenie występowania omdleń w grupie częstoskurczu z wąskim zespołem QRS (AVNRT i AVRT). Katedra i Zakład Informatyki i Statystyki Uniwersytetu Medycznego im. Karola Marcinkowskiego, Poznań. Retrieved from http://www.wbc.poznan.pl/Content/373785/index.pdf.   Google Scholar

MCILROY R.C., PLANT K.A., HOQUE M.S., WU J., KOKWARO G.O., NAM V.H., STANTON N.A. 2019. Who is responsible for global road safety? A cross-cultural comparison ofactor maps. Accident Analysis & Prevention, 122: 8–18. https://doi.org/10.1016/j.aap.2018.09.011.
Crossref   Google Scholar

MONEDEROA B.D., GIL-ALANAA L.A., MARTÍNEZAA M.C.V. 2021. Road accidents in Spain: Are they persistent? IATSS Research, 45(3): 317-325. https://doi.org/10.1016/j.iatssr.2021.01.002.
Crossref   Google Scholar

MUCK J. 2022. Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Retrieved from http://web.sgh.waw.pl/~jmuck/Ekonometria/EkonometriaPrezentacja5.pdf.   Google Scholar

PERCZAK G., FISZEDER P. 2014. GARCH model – using additional information on minimum and maximum prices. Bank and Credit, 2.   Google Scholar

PIŁATOWSKA M. 2012. The choice of the order of autoregression depending on the parameters of the generating model. Econometrics, 4(38).   Google Scholar

PROCHAZKA J., CAMAJ M. 2017. Modelling the number of road accidents of uninsured drivers and their severity. Proceedings of International Academic Conferences 5408040, International Institute of Social and Economic Sciences.
Crossref   Google Scholar

PROCHÁZKA J., FLIMMEL S., ČAMAJ M., BAŠTA M. 2017. Modelling the Number of Road Accidents. Publishing House of the University of Economics, Wrocław. https://doi.org/10.15611/amse.2017.20.29.
Crossref   Google Scholar

RAJPUT H., SOM T., KAR S. 2015. An automated vehicle license plate recognition system. Computer, 48(8): 56-61. https://doi.org/10.1109/MC.2015.244.
Crossref   Google Scholar

SEBEGO M., NAUMANN R.B., RUDD R.A., VOETSCH K., DELLINGER A.M., NDLOVU C. 2011. The impact of alcohol and road traffic policies on crash rates in Botswana, 2004–2011:atime-series analysis. Accident Analysis & Prevention, 70: 33–39. https://doi.org/10.1016/j.aap.2014.02.017.
Crossref   Google Scholar

SHETTY P., SACHIN P.C., KASHYAP V.K., MADI V. 2017. Analysis of road accidents using data mining techniques. Inernational Research Journal of Engineering and Technology, 4.   Google Scholar

Statystyka. Portal Polskiej Policji. 2022. Retrieved from https://statystyka.policja.pl/.   Google Scholar

SUNNY C.M., NITHYA S., SINSHI K.S., VINODINI V.M.D., LAKSHMI A.K.G., ANJANA S., MANOJKUMAR T.K. 2018. Forecasting of Road Accident in Kerala: A Case Study. International Conference on Data Science and Engineering (ICDSE). https://doi.org/10.1109/ICDSE.2018.8527825.
Crossref   Google Scholar

SZMUKSTA-ZAWADZKA M., ZAWADZKI J. 2009. Forecasting on the basis of Holt-Winters models for complete and incomplete data. Research papers of the Wrocław University of Economics, 38.   Google Scholar

TAMBOURATZIS T., SOULIOU D., CHALIKIAS M., GREGORIADES A. 2014. Maximising accuracy and efficiency of traffic accident prediction combining information mining with computational intelligence approaches and decision trees. Journal of Artificial Intelligence and Soft Computing Research, 4(1): 31-42. https://doi.org/10.2478/jaiscr-2014-0023.
Crossref   Google Scholar

Techniki zgłębiania danych (data mining). 2022. StatSoft Polska. Electronic Statistics Textboks. Retrieved from https://www.statsoft.pl/textbook/stathome_stat.html?https%3A%2F%2Fwww.statsoft.pl%2Ftextbook%2Fstdatmin.html.   Google Scholar

The Global Status on Road Safety. 2018. World Health Organization. Retrieved from https://www.who.int/publications/i/item/9789241565684.   Google Scholar

Top Advantages and Disadvantages of Hadoop 3. 2022. DataFlair. Retrieved from https://data-flair.training/blogs/advantages-and-disadvantages-of-hadoop/.   Google Scholar

VILAÇA M., SILVA N., COELHO M.C. 2017. Statistical analysis of the occurrence and severity of crashes involving vulnerable road users. Transportation Research Procedia, 27: 1113-1120. https://doi.org/10.1016/j.trpro.2017.12.113.
Crossref   Google Scholar

WÓJCIK A. 2014. Autoregressive vector models as a response to the critique of multi-equation structural econometric models. Publishing House of the University of Economics, Katowice.   Google Scholar

WROBEL M.S. 2017. Application of neural fuzzy systems in chemistry. PhD thesis. University of Silesia, Katowice.   Google Scholar

YANG Z., ZHANG W., FENG J. 2022. Predicting multiple types of traffic accident severity with explanations: A multi-task deep learning framework. Safety Science, 146: 105522. https://doi.org/10.1016/j.ssci.2021.105522.
Crossref   Google Scholar

ZHENG Z., WANG C., WANG P., XIONG Y., ZHANG F., LV Y. 2018. Framework for fusing traffic information from social and physical transportation data. PLoS One, 13. https://doi.org/10.1371/journal.pone.0201531.
Crossref   Google Scholar

ZHU L., LU L., ZHANG W., ZHAO Y., SONG M. 2019. Analysis of accident severity for curved roadways based on bayesian networks. Sustainability, 11(8): 2223.
Crossref   Google Scholar

Download


Published
2023-02-07

Cited by

Gorzelanczyk, P. (2023). Forecasting the number of road accidents in Poland using weather-dependent trend models. Technical Sciences, 26(26), 57–76. https://doi.org/10.31648/ts.8289

Piotr Gorzelanczyk 
Państwowa Uczelnia Stanisława Staszica w Pile



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.





-->