From the Cosserats mechanics backgrounds to modern field theory
Waldemar Dudda
a:1:{s:5:"en_US";s:73:"Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn";}Janusz Badur
Abstract
In the paper, yet weekly known, Cosserats’ original four concepts as follow: the four-time unification of rigid body dynamics, statics of flexible rods, statics of elastic surfaces and 3D deformable body dynamics; the intrinsic formulation based on the local, von Helmholtz symmetry group of monodromy; the invariance under the Euclidean group. The concept of a set of low-dimensional branes immersed into Euclidean space are revalorized and explained in terms of the modern gauge field theory and the extended strings theory. Additionally, some useful mathematical tools that connect the continuum mechanics and the classical field theory (for instance, the convective coordinates, von Mises’ “Motorrechnung”, the Grassmann extensions, Euclidean invariance, etc.) are involved in the historical explanation that how the ideas were developing themself.
Keywords:
Cosserats continuum, Darboux curvature vector, moving frame, Frenet trihedron, intrinsic coordinates, four-time operators, gauge symmetry flux conservation, gauge potentials, Mauer-Cartan structure equations, von Helmholtz symmetry group, Euclidean group of transformations, weak principle of momentum and angular momentum conservation, Euler laws of dynamics, Cauchy first and second lawsReferences
ALBLAS J.B. 1969, Continuum mechanics of media with internal structure. Symposia Mathematica, (Inst. Naz. Alt. Mat.) 1, 229-251.
Crossref
Google Scholar
ANDRADE J. 1898, Leçons de mécanique physiquek Paris. Google Scholar
ARIANO R. 1924, Deformacioni finite di sistemi continui. Annali di Matématica Pura ed Applicata, [ser4o] 2, 216-261.
Crossref
Google Scholar
ARMERO F., ROMERO I. 2003, Energy-dissipative momentum-conserving time-stepping algorithms for the dynamics of nonlinear Cosserat rods. Computational Mechanics 31 3–26.
Crossref
Google Scholar
ARON H. 1874, Das Geleichgewicht und die Bewegung einer unendlich dünnen beliebig gekrümmten elestischen Schale. J. reine angew. Math. (Crelle) 78, 136-174.
Crossref
Google Scholar
ATLURI S.N., CAZZANI A. 1995, Rotations in computational solid mechanics. Achieves
Crossref
Google Scholar
BADUR J., CHRÓŚCIELEWSKI J. 1983, Powłokowy element skończony oparty o kinematykę Cosseratów, Konf. Metod Num. Mech, Białystok. Google Scholar
BADUR J., PIETRASZKIEWICZ W. 1986, On geometrically non-linear theory of elastic shells derived from pseudo-Cosserat continuum with constrained microrotations.[in:] Pietraszkiewicz, W. (Ed.) 1986, Finite Rotations in Structural Mechanics. Springer-Verlag, Wien, pp. 19–32.
Crossref
Google Scholar
BADUR J., STUMPF H. 1989, On the influence of E. and F. Cosserat on modern continuum mechanics and the field theory. Mitt. Aus dem Ins. F. Mechanik, Ruhr-Universität Bochum, no 72. Google Scholar
BADUR J., YANG A. 1989, Mills type of equation for the compatibility conditions. Int. J. Eng. Sci. 27, 1439-1442.
Crossref
Google Scholar
BADUR J. 1990, Quasi-Abelian gauge theory of axisymmetric deformation of shells of revolution. Int. J. Eng. Sci. 28 563-572.
Crossref
Google Scholar
BADUR J. 1991, Extension of many-time Hamiltonian formalism to the theory of deformable Cosserat bodies. Int. J. Eng. Sci. 29, 69-77.
Crossref
Google Scholar
BADUR J. 1993, Pure gauge theory of the Cosserat surface. Int. J. Eng. Sci. 31, 41-59.
Crossref
Google Scholar
BADUR J. 1993, Space-time compatibility conditions for strains and velocities. Rendiconti di Matematica, 13, 1-29. Google Scholar
BADUR J., POVSTIENKO Y. 1998, Cosserat boundle versus the motor calculus. Arch. Mech. 50, 367-376. Google Scholar
BADUR J. 2009, Principles of Cosserat p-brane extended mechanics, [in:] ed. C. Capriz, M. Brocato; COSSERAT+100, int. Conf. on legacy of “Théorie des corps déformables by E.F. Cosserat, Paris 15-17 July (2009). Google Scholar
BADUR J., CHRÓŚCIELEWSKI J. 2015, On a four-time unification of the Cosserats continua by the intrinsic approach. PCM, Gdańsk. Google Scholar
BADUR J., ZIÓŁKOWSKI P., ZIÓŁKOWSKI P.J. 2015, On angular velocity slip in nonoflows. Microfluidics and Nanofluidics, 19, 191-199.
Crossref
Google Scholar
BADUR J. 2021, Eternal symmetries of Noether. IMP Press, Gdańsk, 1-514. Google Scholar
BADUR J. 2022, Eternal relativity of Whitehead. IMP Press, Gdańsk, 1-501. Google Scholar
BADUR J., OCHRYMIUK T., KOWALCZYK T., DUDDA W., ZIÓŁKOWSKI P. 2022, From fluid mechanics backgrounds to modern field theory. Acta Mech. 223, 3453-3465.
Crossref
Google Scholar
BASAR Y. 1987, A consistent theory of geometrically non-linear shells with an independent rotation vector. Int. J. Solids Struct. 23(10), 1401–1415.
Crossref
Google Scholar
BASAR Y., WEICHERT D. 2000, Nonlinear continuum mechanics of solids. Springer Verlag, Berlin.
Crossref
Google Scholar
BASSET A.B. 1894, On the deformation of thin elastic plates and shellsk Amer. J. Math. 16, 255-290.
Crossref
Google Scholar
BASSET A.B. 1895, On the deformation of thin elastic wiresk Amer. J. Math. 17, 281-317.
Crossref
Google Scholar
BELTRAMI E. 1871, Sur principi fondamentali della idrodinamica. Memorie Reale Accademia Scienze Istituto Bologna (3), t.1, pp. 431-476; t.2 (1872), pp. 381-437; t.3 (1873), pp. 349-407; t.5 (1874), pp. 443-484. Google Scholar
BELTRAMI E. 1911, Sulle equazioni generali dell’elasticità. Opere matematiche, tom III, pag. 383, U. Hoepli (Milano). Google Scholar
BESDO D. 1974, Ein Beitrag zur nichtlinearen theorie des Cosserat-Kontinuums. Acta Mechanica, 20, 105-131.
Crossref
Google Scholar
BESSAN E. 1963, Sui sistemi continui nel case asimetrico. Ann. Mathem. Pura Appl. 62 169-222.
Crossref
Google Scholar
BROCATO M., CAPRIZ G. 2001, Gyrocontinua. Int. J. Solids Structures, 38, 1089-1103.
Crossref
Google Scholar
CAPRIZ G., PODIO-GUIDUGLI P. 1977, Formal structure and classification of theories of oriented media. Ann. Mat. Pura Appl., Ser. IV 115,17–39.
Crossref
Google Scholar
CAPRIZ G., VIRGA E. 1994, On singular surfaces in the dynamics of continua with microstructure, Quart. Appl. Math. 52, 509–517.
Crossref
Google Scholar
CAPRIZ G. 2008, On ephemeral continua. Physical Mesomechanics 11, 285-298.
Crossref
Google Scholar
CAPRIZ G. 2010, Hypocontinua. In Continuous Media with Microstructure (B. Albers,Editor). Springer: Berlin 61-70.
Crossref
Google Scholar
CARNOT L. 1793, Les Principes fondamentaux de l’équilibre et du movement. Paris. Google Scholar
CARTAN E. 1925, Sur les variétés à connexion affine et la theorie de la relativité généralisée. Annales scientifiques de l’École Norm. Sup.40, 325-412 (1923); 41, 1-25 (1924); 42, 17-88.
Crossref
Google Scholar
CARTAN E. 1935, La méthóde du repére mobile, la théorie des groupes continus et les espaces generalisés. Hermann, Paris. Google Scholar
CAUCHY A.-L. 1823, Reserches sur l’équilibre et le mouvement des corpes solides ou fluides, élastiques ou non élastiques. Bull. Soc. Philomatique, 9-13. Google Scholar
CESARO E. 1926, Vorlesugen über Natüraliche Geometre. 2nd ed. Verlag und Druck von B.G. Teubner, (trans. G. Kowalewski) Leipzig. Google Scholar
CHAICHIAN M., NELIPA N.F. 1984, Introduction to the Gauge Field Theories. Springer, Berlin.
Crossref
Google Scholar
CHEN W.Z. 1944, The intrinsic theory of thin shells and plates. I General theory, Quart. Appl. Math. 1, 297-327.
Crossref
Google Scholar
CHRÓŚCIELEWSKI J., MAKOWSKI J., STUMPF H. 1992, Genuinely resultant shell finite elements accounting for geometric and material nonlinearity. Int. J. Numer. Meth. Eng. 35, 63-94.
Crossref
Google Scholar
CHRÓŚCIELEWSKI J., MAKOWSKI J., PIETRASZKIEWICZ W. 2004, Statyka i Dynamika Powłok Wielopłatowych. Wyd. IPPT PAN, Warszawa. Google Scholar
CHRÓŚCIELEWSKI J., PIETRASZKIEWICZ W., WITKOWSKI W. 2010, On shear correction factors in the nonlinear theory of elastic shells, Int. J. Solids Struct. 47, 3537–3445.
Crossref
Google Scholar
CLAYTON J.D. 2022, Finsler differential geometry in continuum mechanics: Fundamental concepts, history, and renewed application to ferromagnetic solids. Mathematics and Mechanics of Solids.
Crossref
Google Scholar
COSSERAT E. AND F. 1896, Sur la theorie de l’elasticitek Ann. Toulouse 10 1-116.
Crossref
Google Scholar
COSSERAT E. AND F. 1907, Sur la mécanique générale, Comptes Rendus 145, 1139-1142. Google Scholar
COSSERAT E. AND F. 1909, Théorie des corps déformables. Paris, Hermann. Google Scholar
COSSERAT E. AND F. 1909, Note sur la théorie de l’action euclidienne. [in:] Traité de mécanique rationelle (ed. P. Appell) t. III, pp 557-629, Paris, Gauthier-Villars 1909. Google Scholar
CRAIG T. 1898, Displacement depending on one, two and three parameters in a space of four dimensionsk Amer. J. Math. 20, 135-156.
Crossref
Google Scholar
CRISFIELD M.A., JELENIĆ G. 1998, Objectivity of strain measures in geometrically exact 3D beam theory and its finite element implementation. Proc. Roy. Soc. London 455: 1125–1147.
Crossref
Google Scholar
DANIELSON D.A., HODGES D.H. 1984, Nonlinear beam kinematics by decomposition of the rotation tensor. ASME Journal of Applied Mechanics 54 258–262.
Crossref
Google Scholar
DARBOUX G. 1890, Leçons sur la théorie générale des surfacesk Paris. Google Scholar
DARBOUX G. 1900, Sur les déformations finites et sur les systèmes triples de surfaces orthogonales. Proc. Lond. Math. Soc. 32, 377-383.
Crossref
Google Scholar
DE BORST R. 1991, Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng. Comput. 8, 317–332.
Crossref
Google Scholar
DE LEÓN M., EPSTEIN V., JIMÉNEZ V. 2021, Material Geometry: Groupoids in Continuum Mechanics. Pergamon NY.
Crossref
Google Scholar
DELENS P.-C. 1927, Méthods et problèmes des géométries différentielles, Euclidienne et conforme. Gauther-Villars, Paris. Google Scholar
DELL’ISOLA F., DELLA CROTE A., GIROGIO I. 2015, Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Tupin and some future research perspectives. Math. Mech. Sol. 20, (8) 887-928. Google Scholar
DILL E.H. 1992, Kirchhoff's theory of rods. Arch. Hist. Exact Sci. 44 (1), 1-23.
Crossref
Google Scholar
DUHEM P. 1893, Le potentel thermodynamique et la pression hydrostatiquek Ann Ecole Norm. Sup., Ser 3, 10 187-230.
Crossref
Google Scholar
DUHEM P. 1901, Reserches sur l’hydrodynamique. Ann Toulouse (2) 3, 315-377, 379-431; 4 (1902), 101-169; 5 (1903), 5-61, 197-255, 353-404; [rep. separately Paris, 2 vols 1903, 1904]. Google Scholar
DUHEM P. 1904, Recherches sur l’elasticite. Ann. Ecole Norm. (3) 21 99-139, 375-414 (1904), 22 143-217 (1905), 23 169-223 (1906), repr. Separately, Paris 1906. Google Scholar
EDELEN D.G.E., LAGOUDAS D.C. 1988, Gauge Theory of Defects in Solids. North-Holland, Amsterdam. Google Scholar
EHLERS W., RAMM E., DIEBELS S., D’ADDETTA G.A. 2003, From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses, Int. J. Solids Struct. 40 6681–6702.
Crossref
Google Scholar
EL NASCHIE M.S. 2016, Cosserat-Cartan and de Sitter-Witten spacetime setting for dark energy, Quantum Matter.
Crossref
Google Scholar
EPSTEIN M. , DE LEON M. 1998, Geometrical theory of uniform Cosserat media. Journal of Geometry and Physics 26, (1–2), 127-170.
Crossref
Google Scholar
ERICKSEN J.L., TRUESDELL C. 1958, Exact theory of stress and strain in rods and shells. Arch. Rational. Mech. Anal. 1, 295-323.
Crossref
Google Scholar
ERINGEN A.C., SUHUBI E.S. 1964, Nonlinear theory of simple microelastic solids. I and II. Int. J. Eng. Sci. 2, 189–203. 389–404.
Crossref
Google Scholar
EULER L.1752, Découverte d’un nouveau principle de mécanique, Mém. Acad. Sci. Et belles letters. Berlin, t 6, 185-217 (1752) [submitted 1750] [Euler Opera omia ser 2. t12, pp 81-108] Google Scholar
FERRARESE G. 1959, Sulla velocita angolare nei moti rigidi e la rotazione locale nelle deformazioni finite. Rend. mat. E Appl. 18, 169-177. Google Scholar
FERRARESE G. 1971, Sulla compatibilita dei continui alla Cosserat, Rendiconti di Matem. 4, 151-174. Google Scholar
FERRARESE G. 1972, Intrinsic formulation of Cosserat continua dynamics, [in:] ed. H. Zorski, Trends in Applications of Pure Mathematics to Mechanics, II, pp 97-113 (1972). Google Scholar
FERRARESE G. 1976, Sulla formulazione intrinseca della dinamica dei continui alla Cosserat. Ann. Mathem. Pura Appl. 108 109-124.
Crossref
Google Scholar
FINZI B. 1932, Equazioni intrinseche della meccanica dei sistemi continui perfettamente od imperfettamente flessibili. Annali Math. Pura Appl. 11, 215-245.
Crossref
Google Scholar
FOREST S., CAILLETAUD G., SIEVERT R. 1997, A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Arch. Mech. 49 (4) 705–736. Google Scholar
FOREST S., SIEVERT R. 2003, Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111.
Crossref
Google Scholar
FOREST S., SIEVERT R. 2006, Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245.
Crossref
Google Scholar
FORTUNE D., VALLEE C. 2001, Bianchi identities in case of large deformations. Int. J. Eng. Sci. 39 113-123.
Crossref
Google Scholar
FRANKE J. N. 1889, Mechanika Teoretyczna. Biblioteka Matematyczno-Fizyczna, Kasa J. Mianowskiego, tom X, pp 1- 645, Warszawa. Google Scholar
FRENET F. 1847, Sur les courbes a double courbure. Toulouse: Thése. Google Scholar
GOSIEWSKI W. 1877, O zasadach teorii bezwzględnej zjawisk materialnych. Pamiętnik Towarzystwa Nauk Ścisłych w Paryżu, 10,1-6. Google Scholar
GREEN A.E. AND LAWS N. 1966, A general theory of rods. Proceedings of the Royal Society of London A293 145–155.
Crossref
Google Scholar
GREEN A.E., NAGHDI P.M. AND WAINWRIGHT W.L. 1965, A general theory of Cosserat surfaces. Arch. Rational Mech. Anal. 20, 287–308.
Crossref
Google Scholar
GRIOLI G. 1960, Elasticità asimmetrica. Ann. Mathem. Pura Appl. 50 389-417.
Crossref
Google Scholar
GRIOLI G. 1968, Questioni di compatibilità per continui di Cossarat. Sumposia Mathemetica, I, 271-287. Google Scholar
GRUTTMANN F., STEIN E., WRIGGERS P. 1989, Theory and numerics of thin elastic shells with finite rotations, Ing.-Arch. 59, 54-67.
Crossref
Google Scholar
GRUTTMAN F., SAUER R., WAGNER W. 1998, A geometrically nonlinear eccentric 3D-beam element with arbitrary cross sections. Comput. Meth. Appl. Mech. Eng. 160: 383–400.
Crossref
Google Scholar
GÜNTHER W. 1958, Zur Statik und Kinematik des Cosseratschen Kontinuum. Abh. d. Brauschweigisch Wiss. Ges., 10, 195-213. Google Scholar
GÜNTHER W. 1961, Analoge Systeme von Schalengeleichungen. Ing.-Arch., 30, 160-186.
Crossref
Google Scholar
HAY G.E. 1942, The finite displacement of thin rods, Trans. Am. Meth. Soc. 51, 65-102.
Crossref
Google Scholar
HEHL F., KRÖER E. 1965, Über den Spin in der allgemeinen Relativitätstheorie Eine notwendige Erweiterung der Einsteinschen Feldgleichungen. Zeitschrift für Physik, 187, 478-489.
Crossref
Google Scholar
HEHL F., KRÖER E. 1965, Zum materialgesetz eines elastischen Medius mit Momentenspannungen. Z. f. Naturforschg, 20, 336-350.
Crossref
Google Scholar
HEHL F.W. 1973, Spin and torsion in general relativity. I. Foundations, General relativity and gravitation 4, 333-349.
Crossref
Google Scholar
HEHL F.W., OBUKHOV Y.N. 2007, Élie Cartan's torsion in geometry and in field theory, an essay. arXiv preprint arXiv:0711.1535. Google Scholar
HEHL F.W. 2017, Gauge theory of gravity and spacetime. [in:] Towards a Theory of Spacetime Theories, Springer Berlin, 145-169 (2017).
Crossref
Google Scholar
HELLINGER E. 1914, Die allgemein ansätze der mechanik der kontinua. In: Klein F, Müller CH (eds) Enz math wiss, vol 4, part 4, Article 30, Springer, Berlin, pp 602–694. Google Scholar
HELMHOLTZ H. 1868, Über die Tataschen die Geometrie zugrunde liegen. Nachr. Ges. Wiss. Göttingen 9, 193-221. Google Scholar
HENCKY H. 1915, Űber den Spannungszstand kreisrundem platten. Z. Math. Phys. 63, 311-317. Google Scholar
HESS W. 1884, Ueber die Biegung und Drillung eines unendlich dünnen elastischen Stabes, dessen eines Ende von einem Kräftepaar angegriffen wied. Math. Ann. 23, 181-212.
Crossref
Google Scholar
HODGES D.H. 1990, A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. Int. J. Solids Struct. 26, 1253–1273.
Crossref
Google Scholar
HODGES D.H., ATILGAN A.R., DANIELSON D.A. 1993, A geometrically nonlinear theory of elastic plates. Journal of Applied Mechanics 60, 109–116.
Crossref
Google Scholar
IBRAHIMBEGOVIC A. 1994, Stress resultant geometrically nonlinear shell theory with drilling rotations. Part 1. A consistent formulation. Comput. Methods Appl. Mech. Eng. 118, 265-284.
Crossref
Google Scholar
JAUMANN R G. 1918, Physik der kontinuierlichen Medien. Denkschr. Akad. Wiss. Wien 95 461-562. Google Scholar
KADIĆ A., EDELEN D.G. 1983, A gauge theory of dislocations and disclinations. Lect. Not. Phys. No. 174, Springer, Berlin.
Crossref
Google Scholar
KAFADAR C., ERINGEN A.C. 1971, Micropolar media, Part I – The classical theory, Int. J. Eng. Sci. 9, 271-329.
Crossref
Google Scholar
KESSEL S. 1970, Spannungsfelder einer Schraubenversetzung und einer Stufenversetzung im Cosseratschen Kontinuum. ZAMM, 50:547–553. Google Scholar
KIRCHHOFF G. 1850, Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. reine angew. Math. 40, 51-88.
Crossref
Google Scholar
KIRCHHOFF G. 1852, Über die Gleichungen des Gleichgewichts eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Teile. Sitzgsber. Akad. Wiss. Wien 9, 762-773. Google Scholar
KIRCHHOFF G. 1859, Űber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. reine angew. Math. 56, 285-313.
Crossref
Google Scholar
KIRCHHOFF G. 1883, Vorlesungen über mathematische Physik: Mechanik. Leipzig; (1876); 2nd ed. (1877); 3ed. Google Scholar
KLINGER F. 1942, Die Statik und Kinematik des räumlich gekrümmten elastischen Stabes. Sitzun. Akad. Wiss. Wien, IIa, 151, 13-79. Google Scholar
KLUGE G. 1969, Zur Dynamik der allgemeinen versetzungstheorie bei berücksichtigung von momentenspannungen. Int. J. Engng Sci. 7, 169-182.
Crossref
Google Scholar
KOITER W. T. 1964, Couple-stresses in the theory of elasticity. Proc. Kon. Ned. Acad. Wet., Amsterdam, 64, 17-44. Google Scholar
KRAUß F. 1929, Űber die Grundleichungen der Elastizitätstheorie scheach deformirter Schalen. Math. Ann. 101, 61-92.
Crossref
Google Scholar
KRÖNER E. 1960, Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rational Mech. Anal., Vol. 4, 273-334.
Crossref
Google Scholar
LACHNER D., LIPPMANN H., TOTH L.S. 1994, On Cosserat plasticity and plastic spin for isotropic materials. Archive Mech. 46, 531–539. Google Scholar
LAGRANGE J.L. 1762, Application de la méthode exposée précédente a la solution de différmes problémes de dynamique. Misc. Taur, 2, 196-298. Google Scholar
LAKES R. 1995, Experimental methods for study of Cosserat elastic solids and other generalized continua. [in:]Continuum models for materials with micro-structure, ed. H. Mühlhaus, J. Wiley, N. Y. Ch. 1, p. 1-22, (1995). Google Scholar
LAME G., CLAPEYRON E. 1833, Mémoire sur l’équilibre intérieur des corps solides homogènes. Mémoires l’Acad. Royale des Sciences de l’Institut de France, tome 4, 465-562. Google Scholar
LAMÉ G. 1852, Leçons sur la Théorie Mathématique de l’Élasticité. Paris. Google Scholar
LANGE L. 1885, Über die wissenschaftliche Fassung des Galileischen Beharrungsgesetzes. Berl. Kgl. Ges. Wiss. Math-Phys. Kl. 333-351. Google Scholar
LAZAR M., HEHL F.W. 2010, Cartan’s spiral staircase in physics and, in particular, in the gauge theory 2013of dislocations. Foundations of Physics 40, 1298-1325.
Crossref
Google Scholar
LE CORRE Y. 1965, La dissymétrie du tenseur des efforts et ses conséquences. J Phys Radium 17:934–939.
Crossref
Google Scholar
LE K.C., STUMPF H. 1998, Strain measures, integrability condition and frame indifference in the theory of oriented media. Int. J. Solids Struct 35 (9–10), 783–798.
Crossref
Google Scholar
LECORNU M.L. 1880, Sur l’équilibre des surfaces flexibiles at inextensibiles. J. De l’Ecole Polytech. 29, 1-100. Google Scholar
LEHMANN TH. 1964, Formäderungen eines klassischen Kontinuum in vierdimensionaler Darstellung. Proc. 19 Int. Congers of Appl. Mech. Ed. H. Görtler, pp 376-382.
Crossref
Google Scholar
LIPPMANN H. 1969, Eine Cosserat-Theorie des plastischen Fließens. Acta Mech. 8, 255–284.
Crossref
Google Scholar
LOVE A.E.H. 1888, The small free vibrations and deformations of a thin elastic shell. Phil. Trans. Roy. Soc. London, A 179, 491-546.
Crossref
Google Scholar
LUO A.C.J., 2010, On a nonlinear theory of thin rods. Comm. Nonlinear Sci Numer Simulat 15 4181–4197.
Crossref
Google Scholar
MAC CULLAGH J. 1839, An essay towards a dynamical theory of crystalline reflexion and refraction. Transactions of the Royal Irish Academy, 21 17-50. Google Scholar
MAKOWSKI J., STUMPF H. 1990, Buckling equations for elastic shells with rotational degrees of freedom undergoing finite strain deformation. Int. J. Solids Struct. 26 (3), 353–368.
Crossref
Google Scholar
MALCOLM D.J., GLOCKNER P.G. 1972, Nonlinear sandwich shell and Cosserat surface theory. Trans. ASCE J. Eng. Mech.Div. 98(EM5), 1183–1203.
Crossref
Google Scholar
MAUGIN G. A. 2014, Continuum Mechanics Through the Eighteenth and Nineteenth Centuries 2014 Historical Perspectives from John Bernoulli (1727) to Ernst Hellinger (1914). Springer Cham, pp 1-269.
Crossref
Google Scholar
MAUGIN G.A. 1998, On the structure of the theory of polar elasticity. Philos. Trans. R. Soc. Lond. A 356, 1367–1395.
Crossref
Google Scholar
MEISSNER K. 2013, Classical Field Theory. PWN Press, 1-162, Warszawa. Google Scholar
MINDLIN R. D., TRIESTEN H. 1962, Effects of complex-stress in linear elasticity. Arch. Rat. Mech. Anal. 11, 415-448.
Crossref
Google Scholar
MINDLIN R.D. 1964, Microstructure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51-78.
Crossref
Google Scholar
NADLER B., RUBIN M.B. 2003, A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point. Int. J. Solids Structures, 40, 4585–4614.
Crossref
Google Scholar
NEFF P. 2006, A finite-strain elastic–plastic Cosserat theory for polycrystals with grain rotations. Int. J. of Engineering Sci. 44 574–594.
Crossref
Google Scholar
NEFF P. 2019, Cosserat Theory by Prof. Dr. Patrizio Neff. Lehrstuhl für Nichtlineare Analysis, Universität Duisburg-Essen - from http://www.uni-due.de/mathematik/ag_neff/cosserat . Google Scholar
NOWACKI W. 1966, Couple-stresses in the theory of thermoelasticity. Bull. de L’Acad. Polonaise des Sci. 14 97-106, 203-212. Google Scholar
NOWACKI W. 1986, Theory of Asymmetric Elasticity. Pergamon-Press, Oxford. Google Scholar
O’REILLY O. M., TURCOTTE J.S. 1997, Elastic rods with moderate rotation, Journal of Elasticity 48: 193–216.
Crossref
Google Scholar
OPOKA S., PIETRASZKIEWICZ W. 2004, Intrinsic equation of nonlinear deformation and stability of thin elastic shells. Int. J. Solids Struct. 41, 3275–3292.
Crossref
Google Scholar
PAPENFUSS C., FOREST S. 2006, Thermodynamical frameworks for higher grade material theories with internal variables or additional degrees of freedom. J. Non-Equilib. Therm, 31:319–353.
Crossref
Google Scholar
PASTORI M. 1934, Equilibro di lastre a membrane elastiche. Rend. Cirolo Math. Palermo, 58, 1-48.
Crossref
Google Scholar
PIETRASZKIEWICZ W. 1979, Finite rotation and lagrangean description in the non-linear theory of shells. PWN, Warszawa, pp 1-109. Google Scholar
PIETRASZKIEWICZ W., BADUR J. 1983, Finite rotations in the description of continuum deformation. Int. J. Eng Sci. 21, 1097-1115.
Crossref
Google Scholar
PIETRASZKIEWICZ W., BADUR J. 1983, On non-classical forms of compatibility conditions in continuum mechanics, [in:] Trends in Applications of Pure Math. Mech., vol IV, pp 197-227. Google Scholar
PIETRASZKIEWICZ W. 1988, Geometrically non-linear theories of thin elastic shells. Mitt. Aus dem Ins. F. Mechanik, Ruhr-Universität Bochum, no 55. Google Scholar
PIOLA G. 1833, La meccanica de’corpi naturalmente esteci trattata col calcolo delle variazioni. Opuscoli matematici e fisici di diversi autori, 201-236. Google Scholar
PIOLA G. 1848, Intorno alle equazioni fondamentali del movimento di copri qualsivoglino, considerati second la naturale loro forma e costituzione. Mem. Mat. Fis. Soc. Ital. Moderna 24 1-186. Google Scholar
POINCARÉ H. 1898, Leçons sur la théorie de l’Élasticité. Paris. Google Scholar
POISSON S.-D. 1831, Mémoire sur la equations generales de la l’équilibre et du mouvement des corps solides élastiques et des fluides. J. École Polytech. 13 cahier 20, 1-174. Google Scholar
POISSON S.-D. 1833, Traité de Mécanique. Paris. Google Scholar
POMMARIET J.-F. 1989, Gauge Theory and General Relativity. Reports on Mathematical Physics, 3, 27, 313-344.
Crossref
Google Scholar
POMMARET J.-F. 1997, F. Cosserat et le secret de la théorie mathématique de l’élasticité. Ann. Ponts et Chaussées, Nouvelle série, no. 82, 59–66. Google Scholar
POMMARET J.-F. 2010, Parametrization of Cosserat Equations, Acta Mechanica, 215, 43- 55.
Crossref
Google Scholar
POMMARET J.-F. 2014, The mathematical foundations of gauge theory revisited, Journal of Modern Physics, 5, 157-170.
Crossref
Google Scholar
POMMARET J.-F. 2016, Deformation Theory of Algebraic and Geometric Structures. LAP-publishing, Saarbrucken, Germany, 200. Google Scholar
RANKINE W.J.M. 1851, Laws of the elasticity of solids bodies. Camb. Dubl. Math J. 6, 41-80, 178-181, 185-186. Google Scholar
REECH F. 1852, Cours de mécanique, d’après la nature généralement flexible et élastique des corps. Paris. Google Scholar
REISSNER E. 1950, On axisymmetrical deformation of thin shells of revolution. Proc. Symposia in Appl. Mech. 3, 27-52.
Crossref
Google Scholar
REISSNER E., WAN F.M. 1968, A note on Günther’s analysis of couple stress. [in:] ed. E. Kröner; Mechanics of Generalized Continua, Springer-Verlag, Berlin.
Crossref
Google Scholar
REISSNER E. 1972, On finite symmetrical strain in thin shells of revolution. J. App. Mech. 39 1137-1138.
Crossref
Google Scholar
REISSNER E. 1974, Linear and nonlinear theory of shells. [in:] Thin Shell Structures, 29-44, Prentice-Hall, Englewood Cliffs (1974). Google Scholar
REISSNER E. 1981, On finite deformation of space-curved beams. J. Appl. Math. Phys. 32, 734–744.
Crossref
Google Scholar
RUBIN M.B. 2000, Cosserat Theories: Shells, Rods and Points. Kluwer Academic Publishers, Dordrecht.
Crossref
Google Scholar
SANSOUR C., BUER H. 1992, An exact finite rotation shell theory, its mixed variational formulation and its fnite element implementation. Int. J. Num. Methods Engrg. 34, 73-115.
Crossref
Google Scholar
SANSOUR C. 1998, A unified concept of elastic–viscoplastic Cosserat and micromorphic continua. Journal de Physique IV Proceedings 8, 341–348.
Crossref
Google Scholar
SANSOUR C. 1998, A theory of the elastic–viscoplastic Cosserat continuum. Arch. Mech. 50 577–597. Google Scholar
SANSOUR C., SKATULLA S. 2008, A non-linear Cosserat continuum-based formulation and moving least square approximations in computations of size-scale effects in elasticity. Computational Materials Science 41, 589–601.
Crossref
Google Scholar
SAWCZUK A. 1967, On the yielding of Cosserat-Continua. Arch. Mech. Stosow. 19, 471-492. Google Scholar
SCHAEFER H. 1967, Analysis der Motorfelder im Cosserat-Kontinuum. ZAMM, 47, 319-328.
Crossref
Google Scholar
SCHAEFER H. 1967, Das Cosserat-Kontinuum. ZAMM, 47, 485-498.
Crossref
Google Scholar
SCHOUTEN J. A. 1954, Calculus Ricci. 2nd ed. Springer Verlag Berlin. Google Scholar
SHIELD R.T. 1973, The rotation associated with large strains. SIAM Journal on Applied Mathematics 25 483–491.
Crossref
Google Scholar
SIGNORINI A. 1943, Transformazioni termoelastiche finite, Annali Math. Pura et Applicata, 22, 33-143.
Crossref
Google Scholar
SIMMONDS J.G., DANIELSON D.A. 1972, Nonlinear shell theory with finite rotation and stress function vectors. J. Appl. Mech. 39, 1085-1090.
Crossref
Google Scholar
SIMO J.C. 1992, The (symmetric) hessian for geometrically nonlinear models in solid mechanics: Intrinsic definition and geometric interpretation. Com. Meth. Appl. Mech. Eng., 96:189–200.
Crossref
Google Scholar
SIMON E.R., DELL’ISOLA F. 2018, Exegesis from “fundamentals of the mechanics of continua by E. Hellinger. Z. Angew. Math. Mech. 97(4) a477-506 (2017); 98(1), 31-68 (2018); 98(1), 69-105. Google Scholar
SKIBA E. 1874, Przyczynek do teorii strun. Pamiętnik Akademii Umiejętności w Krakowie, 3,130-154. Google Scholar
STAZI L. 1976, Sulla mechanica intrinseca dei continui iperelastici. Rend. Circ. Matem. Palermo. Google Scholar
STEINMANN P. 1994, A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct. 31 (8) 1063–1084.
Crossref
Google Scholar
STEINMANN P., STEIN E. 1997, A uniform treatment of variational principles for two types of micropolar continua. Acta Mechanica 121, 215–232.
Crossref
Google Scholar
STOJANOVIĆ R. 1972, Nonlinear micropolar elasticity. In: Nowacki, W., Olszak, W. (Eds.), Micropolar Elasticity. CISM, Udine, pp. 73–103 (1972).
Crossref
Google Scholar
STUMPF H., BADUR J. 1990, On the non-Abelian motor calculus. ZAMM, 70, 551-555.
Crossref
Google Scholar
SUDRIA J. 1925, Contribution à la théorie de l’action euclidienne. Ann Fac Sci Toulouse, 3ème série, 17:63–152.
Crossref
Google Scholar
SUDRIA J. 1935, L’action éuclidéenne de déformation et de mouvement, Mém. Sci. Phys. Paris no 29 pp56. Google Scholar
SYNGE J.L., CHIEN W.Z. 1941, The intrinsic theory of elastic shells and plates. [in:] von Kàrmàn anniv. vol. Pasadena pp 103-120 (1941). Google Scholar
THOMSON W., TAIT P.G. 1883, Treatise on Natural Philosophy. Cambridge University Press vol. I (1879), vol II. Google Scholar
TONOLO A. 1930, Equaqzioni intrinseche di equilibro dell’elasticità negli spazî a curvatura costante. Rend. del Sem. Matem. della Univ. Di Padova, 1, 73-84. Google Scholar
TONTI E. 1976, On the formal structure of Physical Theories. Ins. di Matemetica Politecnico di Milano. Google Scholar
TOUPIN R. 1962, Elastic materials with couple stresses. Arch. Rat. Mech. Anal. 11 385–413.
Crossref
Google Scholar
TOUPIN R. 1964, Theories of elasticity with couple-stress. Arch. Rat. Mech. Anal. 17, 85-112.
Crossref
Google Scholar
TRUESDELL C. 1953, The mechanical foundation of elasticity and fluid dynamics. Jour. Rat. Mech. Anal. 1 125-300 (1952) errata 2 593-616.
Crossref
Google Scholar
TRUESDELL C. 1960, The Rational Mechanics of Elastic or Flexible Bodies. L. Euler Opera Omnia, vol. II, 1-435. Google Scholar
TRUESDELL C., TOUPIN R.A. 1960, The Classical Field Theories. Hand. der Physik III/1, ed. S. Fluge, 226-793.
Crossref
Google Scholar
VALID R. 1979, An intrinsic formulation for the nonlinear theory of shells and some approximations. Computers and Structures, 10 183-194.
Crossref
Google Scholar
VARDOULAKIS I. 2019, Cosserat Continuum Mechanics, Lecture Notes in Applied and Computational Mechanics 87. Springer International Publishing.
Crossref
Google Scholar
VOIGT W. 1887, Teoretische Studien über Elasticitätverhältinsse der Krystalle. I.II. Abh K Ges Wissen Göttingen 34:3–52, 53–100. Google Scholar
MISES R. 1924, Motorrechnung, ein neues Hilfsmittel der mechanic. ZAMM, 4, 155-181.
Crossref
Google Scholar
WEATHEBURN C.E. 1927, On small deformation of surfaces and of thin elastic shells. The Quarterly Jour. Pure Appl. Math. 50, 272-296. Google Scholar
WILSON E.B. 1913, An advance in theoretical mechanics: Théorie des corps déformables by E. and F. Cosserat. Bull Amer Math Soc 19(5):242–246.
Crossref
Google Scholar
WIŚNIEWSKI K. 1998, A shell theory with independent rotations for relaxed Biot stress and right stretch strain. Comput. Mech. 21 (2) 101-122.
Crossref
Google Scholar
ZERNA W. 1950, Beitrag zur allgemeinen Schalenbiegetheore. Ing.-Arch. 17 147-164.
Crossref
Google Scholar
ZHONG-HENG G. 1963, Homographic representation of the theory of finite thermoelastic deformations. Arch. Mech. Stos. 15 475-505. Google Scholar
ZHOUNG-HENG G. 1983, “Method of principal axes” in nonlinear continuum mechanics. Adv. in Mech. 13 1-17. Google Scholar
a:1:{s:5:"en_US";s:73:"Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn";}