Using deep learning algorithms and a flatbed scanner to assess rice quality

Piotr Zapotoczny

WNT UWM w Olsztynie

Przemysław Karol Graczyk

Visacom Sp. z o.o


Abstract

This article presents the results of research on the application of deep learning techniques in the automatic assessment of rice grain quality. A measurement methodology and a computer program were developed, which uses a deep learning model to identify individual grains in an image and detect impurities for further qualitative analysis. The program was implemented in Python using the OpenCV 4, Numpy, and Ultralytics YOLO libraries. The study used a flatbed scanner, enabling the identification of approximately 3,000 objects in a single scanner ruler pass.


Keywords:

deep learning, rice, segmentation, OpenCV, flatbed scanner

Supporting Agencies

UWM in Olszty


Aukkapinyo K., Sawangwong S., Pooyoi P., Kusakunniran W. 2020. Localization and classification of rice-grain images using region proposals-based convolutional neural network. International Journal of Automation and Computing, 17(2): 233-246.   Google Scholar

Bienvenido O., Juliano A.P.P. 2019. Rice: Chemistry and Technology. Fourth Edition. American Association for Clinical Chemistry, Washington.   Google Scholar

Borowy T., Kubiak M.S. 2014. Wartość technologiczna i żywieniowa ryżu. Przegląd Zbożowo-Młynarski, 58(3): 9-11.   Google Scholar

Chollet F., 2019. Deep Learning: Praca z językiem Python i biblioteką Keras. Helion, Gliwice.   Google Scholar

Dharmik R.C., Chavhan S., Gotarkar S., Pasoriya A. 2022. Rice quality analysis using image processing and machine learning. 3C TIC. Cuadernos de desarrollo aplicados a las TIC, 11(2): 158-164.   Google Scholar

Elgendy M. 2020. Deep learning for vision systems. Manning Publications, Shelter Island.   Google Scholar

Forsyth D.A., Ponce J. 2011. Computer vision: A modern approach. Prentice Hall, Saddle River.   Google Scholar

Gao Q., Li H., Meng T., Xu X., Sun T., Yin L., Chai X. 2024. A rapid construction method for high-throughput wheat grain instance segmentation dataset using high-resolution images. Agronomy, 14(5): 1032.   Google Scholar

Geron A. 2020. Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow. Helion, Gliwice.   Google Scholar

Gilanie G., Javed M., Rauf B., Cheema S., Latif A., Perveen S., Sajid M., Saeed M. 2021. RiceAgeNet: Age estimation of Pakistani grown rice seeds using convolutional neural networks. International Journal of Computational Intelligence in Control, 13(2): 831-843.   Google Scholar

Gonzalez R.C., Woods R.E. 2001. Digital image processing. Second Edition. Prentice Hall, Saddle River.   Google Scholar

Goodfellow I., Bengio Y., Courville A. 2016. Deep learning. The MIT Press, Cambridge.   Google Scholar

He Y., Fan B., Sun L., Fan X., Zhang J., Li Y., Suo X. 2023. Rapid appearance quality of rice based on machine vision and convolutional neural network research on automatic detection system. Frontiers in Plant Science, 14: 1190591.   Google Scholar

Howard J., Gugger S. 2020. Deep learning for coders with fastai and PyTorch. O’Reilly Media, Sebastopol.   Google Scholar

Krizhevsky A., Sutskever I., Hinton G.E. 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6): 84-90.   Google Scholar

Li S., Li B., Li J., Liu B. 2022. Brown rice germ integrity identification based on deep learning network. Journal of Food Quality, 1. http://dx.doi.org/10.1155/2022/6709787   Google Scholar

Ma N., Li Z., Kong Q. 2024. Wheat grains automatic counting based on lightweight YOLOv8. INMATEH Agricultural Engineering, 73(2).   Google Scholar

Matthes E. 2016. Python: Instrukcje dla programisty. Helion, Gliwice.   Google Scholar

Mavaddati S., Razavi M. 2024. A CNN-LSTM-based approach for classification and quality detection of rice varieties. Journal of AI and Data Mining, 12(4): 473-485.   Google Scholar

PN-ISO 7301:2004. Ryż – Wymagania. Polski Komitet Normalizacyjny, Warszawa.   Google Scholar

Ramalho L. 2015. Zaawansowany Python. O’Reilly Media, Sebastopol.   Google Scholar

Rath S. 2023. Getting started with YOLOv5 instance segmentation. LearnOpenCV. Retrieved from https://learnopencv.com/yolov5-instance-segmentation/ (29.08.2023).   Google Scholar

Redmon J., Divvala S., Girshick R., Farhadi A. 2016. You only look once: unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779-788. Las Vegas. https://doi.org/10.1109/CVPR.2016.91   Google Scholar

Szelski R. 2022. Computer vision algorithms and applications. Second Edition. Springer Nature Switzerland, Cham.   Google Scholar

Ultralytics YOLOv8. 2023. Ultralytics. Retrieved from github.com/ultralytics/ultralytics (29.08.2023).   Google Scholar

Velesaca H.O., Suárez P.L., Mira R., Sappa A.D. 2021. Computer vision-based food grain classification: A comprehensive survey. Computers and Electronics in Agriculture, 187: 106287.   Google Scholar

Wei J., Ni L., Luo L., Chen M., You M., Sun Y., Hu T. 2024. GFS-YOLO11: A maturity detection model for multi-variety tomato. Agronomy, 14: 2644.   Google Scholar

Xu X., Geng Q., Gao F. 2023. Segmentation and counting of wheat spike grains based on deep learning and textural feature. Plant Methods, 19: 77.   Google Scholar

Ziarno M., Zaręba D. 2008. Ryż - cenny składnik żywności. Przemysł Spożywczy, 62(5): 22-26.   Google Scholar

Download


Published
2025-06-10

Cited by

Zapotoczny, P., & Graczyk, P. K. (2025). Using deep learning algorithms and a flatbed scanner to assess rice quality. Technical Sciences, 28(28), 85–102. https://doi.org/10.31648/ts.11180

Piotr Zapotoczny 
WNT UWM w Olsztynie
Przemysław Karol Graczyk 
Visacom Sp. z o.o



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.





-->