Modification of activated carbons for application in adsorption cooling systems

Eliza Wolak



Elżbieta Vogt



Jakub Szczurowski




Abstract

In this paper commercially available activated WD-extra carbon (Gryfskand) which is applied for water treatment was used. Activated carbon was modified by the following chemical agents: H2O2, HNO3 and HCl. Chemical modifications significantly affect the chemical, structural and surface properties of activated carbons. Hydrophobization with ethereal stearic acid was performed on the raw material and samples after chemical modification. Hydrophobic properties of the samples were specified. The relationship of the chemical modification agents with hydrophobization degree was indicated. The thermal effects of wetting by methanol was measured. The heat of wetting was calculated. The purpose of the work was to modify the WD carbon properties to obtain an adsorbent for cooling systems characterized by both good thermal capacity and moisture resistance. The modifying chemical substances applied accounted for an increase in the concentration of the acid functional groups. The hydrophobized and HCl-modified WD(HCl) carbon has the best hydrophobized properties. The results of studies describing such modifications allow to conclude that the use of hydrophobic materials may lead to the production of sorbents with new functions facilitating their storage and use.


Keywords:

activated carbon, hydrophobization, modification, heat of wetting


Bagreev A., Bandosz T.J., Locke D.C. 2001. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon, 39: 13.
Boehm H.P. 2002. Surface oxides on carbon and their analysis: a critical assessment. Carbon, 40: 145.
Buczek B., Chwiałkowski W. 2005. Wpływ modyfikacji powierzchni węgla aktywnego na jego zdolność do oczyszczania zużytego oleju smażalniczego. Żywność. Nauka. Technologia. Jakość, 4: 45.
Buczek B., Wolak E. 2008. Potassium hydroxide modified active carbon for adsorptive refrigerators. Adsorption, 14 : 283-287.
Buczek B., Wolak E. 2009. Nanostructural active carbons from vegetable precursors for heat storage system. Chemical and Process Engineering, 30: 173-180.
Duong Do D. 1998. Adsorption analysis: Equilibria and kinetics. Imperial College Press.
El-Hendawy A.N.A. 2003. Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon, 41: 4.
EN 1097-6:2013 standard. Tests for mechanical and physical properties of aggregates. Part 6: Determination of particle density and water absorption.
Kalijadis A.M., Vukcevic M.M., Jovanovic Z.M., Lausevic Z.V., Lausevic M.D. 2011. Characterization of surface oxygen groups on different carbon materials by the Boehm method and temperature programmed desorption. Journal of the Serbian Chemical Society, 76 : 5.
Kerry F.G. 2006, Industrial gas handbook: gas separation and purification. Taylor & Francis Group, LLC.
Lee C.H., Johnson N., Drelich J., Yap Y.K. 2011. The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water – oil filtration. Carbon, 49: 669.
Leite A.P.F., Grilo M.B., Andrade R.R.D., Belo F.A., Meunier F. 2005. Experimental evaluation of a multi-tubular adsorber operating with activated carbon-methanol. Adsorption, 11: 543–548.
López-Ramón M.V., Stoeckli F., Moreno-Castilla C., Carrasco-Marín F. 2000. Specific and non-specific interactions of water molecules with carbon surfaces from immersion calorimetry. Carbon, 38: 825-829.
Marsh H., Rodriguez-Reinoso F. 2006. Activated carbon. Elsevier, Amsterdam.
Menendez J.A., Phillips J., Xia B., Radovic L.R. 1996. On the Modification and Characterization of Chemical Surface Properties of Activated Carbon: In the Search of Carbons with Stable Basic Propertiesi. Langmuir, 12(18): 4404-4410.
Meunier F. 2001. Adsorptive cooling: a clan technology. Clean Production Process, 3: 8–20.
Namasivaya, C., Sangeetha, D., Gunasekaran, R. 2007. Trans IChemE. Part B. Process Safety and Environmental Protection, 85(B2): 181.
Ntim S.A., Mitra S. 2012. Adsorption of arsenic on multiwall carbon nanotube–zirconia nanohybrid for potential drinking water purification. Journal of Colloid and Interface Science, 375: 154.
Pradhan B.K., Sandle N.K. 1999. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon, 37: 8.
Repelewicz M., Jedynak K., Choma J. 2009. Struktura porowata i chemia powierzchni węgli aktywnych modyfikowanych kwasami nieorganicznymi. Ochrona Środowiska, 31(3) : 45-50.
Szymański G.S., Biniak S., Rychlicki G. 2002. Carbon surface polarity from immersion calorimetry. Fuel Processing Technology, 79: 217-223.
Thomas W.J., Crittenden B. 1998. Adsorption Technology and Design. Elsevier Science & Technology Books.
Vogt E. 2008. Hydrophobization of fine solids presented on the example of limestone powder. Polish Journal of Chemical Technology, 10: 1.
Vogt E. 2012. Zastosowanie przemysłowych domieszek do hydrofobizacji mączki wapiennej. Cement Lime Concrete, 3: 160. Wang L.W., Wu J.Y., Wang R.Z., Xu Y.X.,
Wang S.G. 2003. Experimental study of a solidified activated carbon-methanol adsorption ice maker. Applied Thermal Engineering, 23: 1453–1462.
Yang R.T. 2003. Adsorbents: Fundamentals and application. John Wiley & Sons, New York.
Download


Published
2019-01-08

Cited by

Wolak, E., Vogt, E., & Szczurowski, J. (2019). Modification of activated carbons for application in adsorption cooling systems. Technical Sciences, 22(1), 87–98. https://doi.org/10.31648/ts.4350

Eliza Wolak 

Elżbieta Vogt 

Jakub Szczurowski 








-->