An analysis of non-isothermal primary crystallization kinetics of Fe95Si5 amorphous alloy

Adam Frączyk

Department of Material and Machine Technology University of Warmia and Mazury in Olsztyn
http://orcid.org/0000-0002-3056-3141

Krzysztof Kuś

Department of Material and Machine Technology University of Warmia and Mazury in Olsztyn
http://orcid.org/0000-0001-9811-5831

Adam Wojtkowiak

Department of Material and Machine Technology University of Warmia and Mazury in Olsztyn


Abstract

The paper describes the primary crystallization of metallic Fe95Si5 glass which was studied by differential scanning calorimetry (DSC) with non-isothermal methods. The activation energy of crystal transformation was calculated with the equations proposed by Kissinger, Mahadevan and a modified version of the equation developed by Augis and Bennett. Activation energy was determined at Ea = 242.0 - 254.2 kJ / mol, subject to the applied method. The Avrami exponent  of crystallization in the amorphous phase n was determined in the range of n = 2.40 - 2.52, depending on the method of calculating the transformation of activation energy.


Keywords:

metallic glass, energy activation, Avrami exponent, crystallization kinetics parameter, DSC


AL-HENITI S.H. 2009. Kinetic study of non-isothermal crystallization in Fe78Si9B13 metallic glass. Journal of Alloys and Compounds, 484: 177–184.
ANSARINIYA M., SEIFODDINI A., HASANI S. 2018. (Fe0.9Ni0.1)77Mo5P9C7.5B1.5 bulk metallic glass matrix composite produced by partial crystallization: The non-isothermal kinetic analysis. Journal of Alloys and Compounds, 763: 606–612.
AUGIS J.A., BENNTT J.E. 1978. Calculation of the Avrami Parameters for Heterogeneous Solid State Reactions Using a Modification of the Kissinger Method. Journal of Thermal Analysis, 13: 283–292.
FRĄCZYK A. 2011. The activation energy of primary crystallization of Fe95Si5 metallic glass. Technical Science, 14(1): 93-100.
GAO Y.Q., WANG W. 1986. On the activation energy of crystallization in metallic glasses. Journal of Non-Crystalline Solids, 81: 129–134.
GIBSON M.A., DELAMORE G.W. 1987. Crystallization kinetics of some iron-based metallic glasses. Journal of Material Science, 22(12): 4550–4557.
JAKUBCZYK E., KRAJCZYK A., JAKUBCZYK M. 2008. Crystallization of amorphous Fe78Si9 B13 alloy. Journal of Physics: Conference Series, 79: 012008.
JUNG H. Y., STOICA M., YI S., KIM D.H., ECKERT J. 2015. Crystallization Kinetics of Fe76.5-x C6.0Si3.3B5.5P8.7Cux (x = 0, 0.5, and 1 at. pct) Bulk Amorphous Alloy. Metallurgical and Materials Transactions, 46(A): 2415-2421.
JAAFARI Z., SEIFODDINI A., HASANI S., REZAEI-SHAHREZA P. 2018. Kinetic analysis of crystallization process in [(Fe0.9Ni0.1)77 Mo5P9C7.5B1.5]100-xCux (x = 0.1 at.%) BMG. Journal of Thermal Analysis and Calorimetry, 134: 1565–1574.
KISSINGER H. E. 1957. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29: 1702–1706.
KONG L.H., GAO Y.L., SONG T.T., WANG G., ZHAI Q. J. 2011. Non-isothermal crystallization kinetics of FeZrB amorphous alloy. Thermochimica Acta, 522: 166–172.
LI H.X., JUNG H.Y., YI S. 2008. Glass forming ability and magnetic properties of bulk metallic glasses Fe68.7-xC7.0Si3.3B5.5P8.7Cr2.3Mo2.5Al2.0Cox (x = 0–10). Journal of Magnetism and Magnetic Materials, 320: 241–245.
MAHADEVAN S., GIRIDHAR A., SINGH A.K. 1986. Calorimetric measurements on as-sb-se glasses. Journal of Non-Crystalline Solids, 88(1): 11–34.
MÁLEK J. 2000. Kinetic analysis of crystallization processes in amorphous materials. Thermochimica Acta, 355: 239–253.
MATUSITA K, SAKKA S. 1979. Kinetic Study of the Crystallisation of Glass by Differential Scanning Calorimetry. Physics and Chemistry of Glasses, 20: 81–84.
MATUSITA K, SAKKA S. 1980. Kinetic study of crystallization of glass by differential thermal analysis-criterion on application of Kissinger plot. Journal of Non-Crystalline Solids, 38–39(2): 741–746.
NOBUYUKI N., KENJI A., AKIHISA I. 2007. Novel applications of bulk metallic glass for industrial products. Journal of Non-Crystalline Solids, 353: 3615-3621.
OZAWA T. 1970. Kinetic analysis of derivative curves in thermal analysis. Journal of Thermal Analysis, 2: 301–324.
REZAEI-SHAHREZA P., SEIFODDINI A., HASANI S. 2017. Thermal stability and crystallization process in a Fe-based bulk amorphous alloy: The kinetic analysis. Journal of Non-Crystalline Solids, 471: 286–294.
REZAEI-SHAHREZA P., SEIFODDINI A., HASANI S. 2017. Non-isothermal kinetic analysis of nano-crystallization process in (Fe41Co7Cr15Mo14Y2C15)94B6 amorphous alloy. Thermochimica Acta, 652: 119–125.
SAHINGOZA R., EROLA M., GIBBS M.R.J. 2004. Observation of changing of magnetic properties and microstructure of metallic glass Fe78Si9B13 with annealing. Journal of Magnetism and Magnetic Materials, 271: 74–78.
SANTOS D.S., SANTOS D.R., BIASI R.S. 2002. Study of crystallization in the Fe86Cu1Zr7B6 amorphous alloy using FMR and DSC. Journal of Magnetism and Magnetic Materials, 242–245(2): 882–884.
WANG T., YANG X., LI Q. 2014. Effect of Cu and Nb additions on crystallization kinetics of Fe80P13C7 bulk metallic glasses. Thermochimica Acta, 579: 9–14.
Download


Published
2019-07-16

Cited by

Frączyk, A., Kuś, K., & Wojtkowiak, A. (2019). An analysis of non-isothermal primary crystallization kinetics of Fe95Si5 amorphous alloy. Technical Sciences, 22(3), 237–247. https://doi.org/10.31648/ts.4996

Adam Frączyk 
Department of Material and Machine Technology University of Warmia and Mazury in Olsztyn
http://orcid.org/0000-0002-3056-3141
Krzysztof Kuś 
Department of Material and Machine Technology University of Warmia and Mazury in Olsztyn
http://orcid.org/0000-0001-9811-5831
Adam Wojtkowiak 
Department of Material and Machine Technology University of Warmia and Mazury in Olsztyn



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.





-->