Analysis of harmonics reduction method selection for transformer substation
Szymon Racewicz
Mateusz Rokicki
Abstract
The article presents an investigation of the harmonic level and its possible reduction methods for one of the Michelin factory transformer substation. The substation electrical network consists of two transformers (1.6 MVA and 2.0 MVA) supplying a production line composed of several electrical equipment based on DC and AC motors. In order to investigate the harmonics level and its influence on the substation operation the measurements of the current and the load factor of the powered machines as well as the coefficients THDu, THDi, Du and Di have been performed using the 3-phase energy quality analyzer Fluke 435II and the network parameter recorder PEL103. Basing on the measurements data the four harmonics reduction methods (passive filters, active filters, 12-pulse rectifier and the Active Front End system) have been proposed and studied. For this purpose the substation electrical network has been modelled using Emerson Harmonics Estymator software. Furthermore, in order to choose the optimal solution the financial analysis of the potential investments has been performed.
Keywords:
harmonics reduction, active filters, THD coefficientReferences
Z. Hanzelka, Jakość energii elektrycznej część 4 - Wyższe harmoniczne napięć i prądów, n.d. http://twelvee.com.pl/pdf/Hanzelka/cz_4_pelna.pdf (accessed May 27, 2019). Google Scholar
A.A. Girgis, J.W. Nims, J. Jacomino, J.G. Dalton, A. Bishop, Effect of Voltage Harmonics on the Operation of Solid-State Relays in Industrial Applications, IEEE Trans. Ind. Appl. 28 (1992) 1166–1173. doi:10.1109/28.158844. Google Scholar
H.E. Mazin, W. Xu, B. Huang, Determining the harmonic impacts of multiple harmonic-producing loads, IEEE Trans. Power Deliv. 26 (2011) 1187–1195. doi:10.1109/TPWRD.2010.2093544. Google Scholar
H. Hu, Y. Shao, L. Tang, J. Ma, Z. He, S. Gao, Overview of Harmonic and Resonance in Railway Electrification Systems, IEEE Trans. Ind. Appl. 54 (2018) 5227–5245. doi:10.1109/TIA.2018.2813967. Google Scholar
H. Sharma, M. Rylander, D. Dorr, Grid impacts due to increased penetration of newer harmonic sources, IEEE Trans. Ind. Appl. 52 (2016) 99–104. doi:10.1109/TIA.2015.2464175. Google Scholar
L. Motta, N. Faúndes, Active / passive harmonic filters: Applications, challenges & trends, in: Proc. Int. Conf. Harmon. Qual. Power, ICHQP, IEEE Computer Society, 2016: pp. 657–662. doi:10.1109/ICHQP.2016.7783319. Google Scholar
G. Vivek, M.D. Nair, M. Barai, Online reduction of fifth and seventh harmonics in single phase quasi square wave inverters, in: 12th IEEE Int. Conf. Electron. Energy, Environ. Commun. Comput. Control (E3-C3), INDICON 2015, Institute of Electrical and Electronics Engineers Inc., 2016. doi:10.1109/INDICON.2015.7443721. Google Scholar
J. Arrillaga, D.A. (David A.. Bradley, P.S. Bodger, Power system harmonics, John Wiley, 1985. https://books.google.pl/books/about/Power_system_harmonics.html?id=st1SAAAAMAAJ&redir_esc=y (accessed September 12, 2019). Google Scholar
J. Horska, S. Maslan, J. Streit, M. Sira, A validation of a THD measurement equipment with a 24-bit digitizer, in: CPEM Dig. (Conference Precis. Electromagn. Meas., Institute of Electrical and Electronics Engineers Inc., 2014: pp. 502–503. doi:10.1109/CPEM.2014.6898479. Google Scholar
D. Żabicki, Jakość energii elektrycznej według normy PN-EN 50160, Elektroinstalator. nr 6 (2017). Google Scholar
K.N. Sakthivel, S.K. Das, K.R. Kini, Importance of quality AC power distribution and understanding of EMC standards IEC 61000-3-2, IEC 61000-3-3 and IEC 61000-3-11, in: Proc. Int. Conf. Electromagn. Interf. Compat., Institute of Electrical and Electronics Engineers Inc., 2003: pp. 423–430. doi:10.1109/ICEMIC.2003.238094. Google Scholar
Z. Stein, M. Zielińska, ANALIZA HARMONICZNYCH W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA ŚREDNIEJ MOCY, Electr. Eng. (2016) 213–219. Google Scholar
S.K. Khadem, M. Basu, R. Kerrigan, B. Basu, Power quality analysis of energy efficient harmonic loads, in: Institute of Electrical and Electronics Engineers (IEEE), 2015: pp. 470–471. doi:10.1109/icce-berlin.2014.7034333. Google Scholar
C. Gupta, A. Varshney, N. Verma, S. Shukla, THD Analysis of Eleven Level Cascaded H-Bridge Multilevel Inverter with Different Types of Load Using in Drives Applications, in: Proc. - 2015 2nd IEEE Int. Conf. Adv. Comput. Commun. Eng. ICACCE 2015, Institute of Electrical and Electronics Engineers Inc., 2015: pp. 355–359. doi:10.1109/ICACCE.2015.61. Google Scholar
Rajeshwari, A. Bagwari, Voltage harmonic reduction using passive filter shunt passive-active filters for non-linear load, in: Proc. - 7th Int. Conf. Commun. Syst. Netw. Technol. CSNT 2017, Institute of Electrical and Electronics Engineers Inc., 2018: pp. 131–136. doi:10.1109/CSNT.2017.8418524. Google Scholar
S. Gadekar, N. Kulkarni, S. Mhetre, H.H. Kulkarni, Design and development of passive filter and comparative study of simulation results of passive and Active filter, in: Int. Conf. Energy Syst. Appl. ICESA 2015, Institute of Electrical and Electronics Engineers Inc., 2016: pp. 324–328. doi:10.1109/ICESA.2015.7503364. Google Scholar
A. Baitha, N. Gupta, A comparative analysis of passive filters for power quality improvement, in: Proc. IEEE Int. Conf. Technol. Adv. Power Energy, TAP Energy 2015, Institute of Electrical and Electronics Engineers Inc., 2015: pp. 327–332. doi:10.1109/TAPENERGY.2015.7229640. Google Scholar
S. Karve, Jakość energii. Harmoniczne – Filtry aktywne, (2016) 1–9. https://leonardo-energy.pl/wp-content/uploads/2016/05/EIM01210-Harmoniczne-filtry-aktywne.pdf (accessed September 25, 2019). Google Scholar
M. Izhar, C.M. Hadzer, M. Syafrudin, S. Taib, S. Idris, An analysis and design of a star delta transformer in series with active power filter for current harmonics reduction, in: Natl. Power Energy Conf. PECon 2004 - Proc., 2004: pp. 94–97. doi:10.1109/PECON.2004.1461623. Google Scholar
S. Yarahmadi, G.A. Markade, J. Soltani, Current harmonics reduction of non-linear load by using active power filter based on improved sliding mode control, in: PEDSTC 2013 - 4th Annu. Int. Power Electron. Drive Syst. Technol. Conf., 2013: pp. 524–528. doi:10.1109/PEDSTC.2013.6506763. Google Scholar
S. Kocman, V. Kolar, T. Trung Vo, Elimination of harmonics using multi-pulse rectifiers, in: ICHQP 2010 - 14th Int. Conf. Harmon. Qual. Power, 2010. doi:10.1109/ICHQP.2010.5625408. Google Scholar
J. Kim, J.S. Lai, X. Liu, Analysis of Harmonic Cancellation Performance of a Shunt Phase-Shift Transformer Rectifier, in: 2018 IEEE 4th South. Power Electron. Conf. SPEC 2018, Institute of Electrical and Electronics Engineers Inc., 2019. doi:10.1109/SPEC.2018.8635850. Google Scholar
J. Iwaszkiewicz, A. Muc, P. Mysiak, A 12-pulse rectifier using coupled reactors for supplying three-inverters, Renew. Energy Power Qual. J. 17 (2019) 589–592. doi:10.24084/repqj17.382. Google Scholar
P. Mysiak, A 24-pulse diode rectifier with coupled three-phase reactor, J. Chinese Inst. Eng. Trans. Chinese Inst. Eng. A/Chung-Kuo K. Ch’eng Hsuch K’an. 30 (2007) 1197–1212. doi:10.1080/02533839.2007.9671347. Google Scholar
N.M. Salgado-Herrera, O. Anaya-Lara, D. Campos-Gaona, A. Medina-Rios, R. Tapia-Sanchez, J.R. Rodriguez-Rodriguez, Active Front-End converter applied for the THD reduction in power systems, in: IEEE Power Energy Soc. Gen. Meet., IEEE Computer Society, 2018. doi:10.1109/PESGM.2018.8586414. Google Scholar
J. Rodríguez, J. Pontt, R. Huerta, P. Newman, 24-Pulse active front end rectifier with low switching frequency, in: PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., 2004: pp. 3517–3523. doi:10.1109/PESC.2004.1355097. Google Scholar
E. Espinosa, J. Espinoza, J. Rohten, R. Ramirez, M. Reyes, J. Munoz, P. Melin, An efficiency comparison between a 18 pulses diode rectifier and a multi-cell AFE rectifier operating with FCS - MPC, in: IECON Proc. (Industrial Electron. Conf., Institute of Electrical and Electronics Engineers Inc., 2014: pp. 1214–1220. doi:10.1109/IECON.2014.7048657. Google Scholar
Schneider Electric, AccuSine ® Power Correction System (PCS) Models: CE30 & CE54 Sizes: 50A, 100A, 300A Instruction Bulletin, n.d. Google Scholar