Analysis of selected mathematical models of high-cycle S-N characteristics

Przemysław Strzelecki



Janusz Sempruch



Tomasz Tomaszewski




Abstract

The paper presents two approaches of determining S-N fatigue characteristics. The first is a commonly used and well-documented approach based on the least squares method and staircase method for limited fatigue life and fatigue limit, accordingly. The other approach employs the maximum likelihood method. The analysis of the parameters obtained through both approaches exhibited minor differences. The analysis was performed for four steel construction materials, i.e. C45+C, 45, SUS630 and AISI 1045. It should be noted that the quantity of samples required in the second approach is significantly smaller than with the first approach, which translates into lower duration and costs of tests.


Keywords:

high-cycle fatigue, S-N curve, fatigue tests, number of specimen, steel strength


AVILES R., ALBIZURI J., RODRIGUE A., LOPEZ DE LACALLE L.N. 2013. Influence of low-plasticity ball burnishing on the high-cycle fatigue strength of medium carbon AISI 1045 steel. International Journal of Fatigue, 55: 230–244. http://doi.org/10.1016/j.ijfatigue.2013.06.024 (access: 5.09.2016).   Google Scholar

BANDARA C.S., SIRIWARDANE S.C., DISSANAYAKE U.I., DISSANAYAKE R. 2016. Full range S-N curves for fatigue life evaluation of steels using hardness measurements. International Journal of Fatigue, 82: 325–331. http://doi.org/10.1016/j.ijfatigue.2015.03.021 (access: 29.09.2016).   Google Scholar

CASTILLO E., FERNÁNDEZ-CANTELI A. 2009. A Unified Statistical Methodology for Modeling Fatigue Damage. Springer, Dordrecht. http://doi.org/10.1007/978-1-4020-9182-7 (access: 23.01.2016).   Google Scholar

COVA M., TOVO R. 2016. Fitting fatigue data with a bi-conditional model. Fatigue & Fracture of Engineering Materials & Structures, p. 1–17. http://doi.org/10.1111/ffe.12541 (access: 10.09.2016).   Google Scholar

GOGLIO L., ROSSETTO M. 2004. Comparison of fatigue data using the maximum likelihood method. Engineering Fracture Mechanics, 71(4–6): 725-736. http://doi.org/10.1016/S0013-7944(03)00009- 2 (access: 30.01.2015).   Google Scholar

HOBBACHER A.F. 2008. Recommendations for fatigue design of welded joints and components. IIW document IIW-1823-07. International Institute of Welding, Paris.   Google Scholar

HOBBACHER A.F. 2009. The new IIW recommendations for fatigue assessment of welded joints and components – A comprehensive code recently updated. International Journal of Fatigue, 31(1): 50–58. http://doi.org/10.1016/j.ijfatigue.2008.04.002 (access: 20.08.2015).   Google Scholar

ISO-1143. 2010. Metallic materials – Rotating bar bending fatigue testing. Geneva.   Google Scholar

ISO-12107. 2003. Metallic materials – fatigue testing – statistical planning and analysis of data. Geneva.   Google Scholar

KOCAK M., WEBSTER S., JANOSCH J.J., AINSWORTH R.A., KOERS R. 2006. FITNET Fitness-for-Service PROCEDURE – FINAL DRAFT MK7. Vol. I. FITNET FFS Procedure, European Fitness-forService Thematic Network – FITNET.   Google Scholar

KOCAŃDA S., SZALA J. 1997. Basis of calculation of fatigue. Wydawnictwo Naukowe PWN, Warszawa.   Google Scholar

KOHOUT J., VECHET S. 2001. A new function for fatigue curves characterization and its multiple merits. International Journal of Fatigue, 23(2): 175–183. http://doi.org/10.1016/S0142-1123(00)00082-7 (access: 04.10.2016).   Google Scholar

KOZAK J., GÓRSKI Z. 2011. Fatigue strength determination of ship structural joints. Polish Maritime Research, 18(2): 28-36. http://doi.org/10.2478/v10012-011-0009-8 (access: 20.08.2015).   Google Scholar

KUREK M., LAGODA T., KATZY D. 2014. Comparison of Fatigue Characteristics of some Selected Materials. Materials Testing, 56(2): 92–95. http://doi.org/10.3139/120.110529 (access: 30.06.2016).   Google Scholar

LEE Y.L., PAW J., HATHAWAY R.B., BARKEY M.E. 2005. Fatigue Testing and Analysis – Theory and Practice. Elsevier Butterworth-Heinemann, Burlington, Oxford.   Google Scholar

LING J., PAN J. 1997. An engineering method for reliability analyses of mechanical structures for long fatigue lives. Reliability Engineering & System Safety, 56:: 135–142. http://doi.org/10.1016/S0951- 8320(97)00012-4 (access: 22.01.2015)   Google Scholar

LORÉN S., LUNDSTRO¨M M. 2005. Modelling curved S-N curves. Fatigue and Fracture of Engineering Materials and Structures, 28: 437–443. http://doi.org/10.1111/j.1460-2695.2005.00876.x (access: 27.01.2015).   Google Scholar

MOHD S., BHUIYAN M.S., NIE D., OTSUKA Y., MUTOH Y. 2015. Fatigue strength scatter characteristics of JIS SUS630 stainless steel with duplex S-N curve. International Journal of Fatigue, 82: 371–378. http://doi.org/10.1016/j.ijfatigue.2015.08.006 (access: 28.06.2016).   Google Scholar

PASCUAL F.G., MEEKER W.Q. 1999. Estimating Fatigue Curves with the Random Fatigue-Limit Model. Technometrics, 41(4): 277–290. http://doi.org/10.2307/1271342 (access: 19.03.2015).   Google Scholar

PN-EN 14764. 2007. Rowery miejskie i wycieczkowe. Wymagania bezpieczeństwa i metody badań.   Google Scholar

PN-EN 1993-1-9. 2007. Eurokod 3: Designing steel structures. Part 1-9: Fatigue.   Google Scholar

PN-EN-3987. 2010. Aerospace series – Test methods for metallic materials – Constant amplitude force-controlled high cycle fatigue testing.   Google Scholar

PN-H-04325:1976. 1976. Badanie metali na zmęczenie – Pojęcia podstawowe i ogólne wytyczne przygotowania próbek oraz przeprowadzenia prób.   Google Scholar

R: A language and environment for statistical computing. 2015. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org/ (access:05.05.2015).   Google Scholar

Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data. 2006. ASTM E-739-91. DOI: 10.1520/E0739-10R15.   Google Scholar

STRZELECKI P., SEMPRUCH J. 2012. Experimental Verification of the Analytical Method for Estimated S-N Curve in Limited Fatigue Life. Materials Science Forum, 726: 11–16. http://doi.org/10.4028/www.scientific.net/MSF.726.11 (access:09.04.2015).   Google Scholar

STRZELECKI P., SEMPRUCH J. 2016. Experimental method to plot S-N curve with a small number of specimens. Polish Maritime Research (accepted for publication).   Google Scholar

STRZELECKI P., SEMPRUCH J., NOWICKI K. 2015. Comparing guidelines concerning construction of the S-N curve within limited fatigue life range. Polish Maritime Research, 22(3): 67–74.   Google Scholar

STRZELECKI P., SEMPRUCH J., TOMASZEWSKI T. 2016. Alternative Method for the Determination of a Full S-N Fatigue Profile. Solid State Phenomena, 250: 209–216. http://doi.org/10.4028/www.scientific.net/SSP.250.209 (access:30.06.2016).   Google Scholar

SZALA G., LIGAJ B. 2011. Dwuparametryczne charakterystyki zmęczeniowe stali konstrukcyjnych i ich eksperymentalna weryfikacja. Uniwersytet Technologiczno-Przyrodniczy im. J.J. Śniadeckich – Instytut Technologii Eksploatacji – PIB, Bydgoszcz.   Google Scholar

Wagons – Programme of tests to be carried out on wagons with steel underframe and body structure (suitable for being fitted with the automatic buffing and draw coupler) and on their cast steel frame bogies. 1996. 8 edition. ERRI B12 RP 17.   Google Scholar

Download


Published
2017-04-13

Cited by

Strzelecki, P., Sempruch, J., & Tomaszewski, T. (2017). Analysis of selected mathematical models of high-cycle S-N characteristics. Technical Sciences, 20(3), 227–240. https://doi.org/10.31648/ts.5424

Przemysław Strzelecki 

Janusz Sempruch 

Tomasz Tomaszewski 








-->