Design concept and parameters of a conical bar separator
Beata Jadwisieńczak
Zdzisław Kaliniewicz
Abstract
The process of adapting a screen separator to seeds of a given species and variety requires a corresponding set of replaceable screens. Screen replacement is a time-consuming process. Screens are often selected from the available size range, therefore, cleaning and separation processes are not always optimized. This study proposes a design concept of a new device for cleaning and separating seeds, which features a conical bar screen that rotates around its own axis. The screen has grooves whose width is smallest at the beginning of the screen and increases along the screen surface. Seeds can be sorted into various size fractions by changing the position of collecting buckets under the screen. The functional parameters of the separating device were designed based on a review of publications describing the size of the most popular agricultural seeds. The basic geometrical relationships in the proposed conical bar screen were described. The geometrical parameters of the screen were selected on the assumption that the radius at which bars are fixed to the screen can range from 200 mm to 400 mm and that bar diameter can range from 5 mm to 10 mm. Two variants of the device were proposed as a replacement for one universal separating screen. The first variant will be used to sort small seeds, including seeds of small-seeded legumes, seeds of major cereal species and medium-sized seeds with dimensions similar to cereal seeds, whereas the second variant will be applied to separate large seeds, including seeds of large-seeded legumes and plumper seeds from the medium-size fraction. The width of grooves at the beginning and end of the screen should equal 1 mm and 5 mm in the first variant and 2.5 mm and 13 mm in the second variant, respectively.
Keywords:
seeds, cleaning and separation, separator, geometrical relationshipsReferences
AKINYOSOYE S.T., ADETUMBI J.A., AMUSA O.D., OLOWOLAFE M.O., OLASOJI J.O. 2014. Effect of seed size on in vitro seed germination, seedling growth, embryogenic callus induction and plantlet regeneration from embryo of maize (Zea mays L.) seed. Nigerian Journal of Genetics, 28: 1–7. http://dx.doi.org/10.1016/j.nigjg.2015.06.001. Google Scholar
ALTUNTAS E., DEMIRTOLA H. 2007. Effect of moisture content on physical properties of some grain legume seeds. New Zealand Journal of Crop and Horticultural Science, 35(4): 423–433. http://dx.doi.org/10.1080/01140670709510210. Google Scholar
BABIĆ L.J., RADOJC¸ IN M., PAVKOV I., BABIĆ M., TURAN J., ZORANOVIĆ M., STANIS¸ IĆ S. 2013. Physical properties and compression loading behaviour of corn seed. International Agrophysics, 27: 119–126. http://dx.doi.org/10.2478/v10247-012-0076-9. Google Scholar
BOAC J.M., CASADA M.E., MAGHIRANG R.G., HARNER III J.P. 2010. Material and interaction properties of selected grains and oilseeds for modeling discrete particles. Transaction of ASABE, 53(4): 1201–1216. http://dx.doi.org/10.13031/2013.32577. Google Scholar
ÇALIŞIR S., MARAKOĞLU T., ÖĞÜT H., ÖZTÜRK Ö. 2005. Physical properties of rapeseed (Brassica napus oleifera L.). Journal of Food Engineering, 69: 61–66. http://dx.doi.org/10.1016/j.jfoodeng. 2004.07.010. Google Scholar
CHO G.T., LEE J., MOON J.K., YOON M.S., BAEK H.J., KANG J.H., KIM T.S., PAEK N.CH. 2008. Genetic diversity and population structure of Korean soybean landrace [Glycine max (L.) Merr.]. Journal of Crop Science and Biotechnology, 11(2): 83–90. http://dx.doi.org/10.3390/ijms17030370. Google Scholar
CHOSZCZ D., WIERZBICKI K. 1994. A study the separation of field bedstraw (Galium aparine) seeds from rape and mustard seeds with the use of their geometrical and aerodynamic properties. Acta Acad. Agricult. Tech. Olst. Aedif. Mech., 25: 61–69 (article in Polish with an abstract in English). Google Scholar
COŞKUN M.B., YALÇIN İ., ÖZARSLAN C. 2006. Physical properties of sweet corn seed (Zea mays saccharata Sturt.). Journal of Food Engineering, 74: 523–528. http://dx.doi.org/10.1016/j.jfoodeng. 2005.03.039. Google Scholar
GEODECKI M., GRUNDAS S. 2003. Characterization of geometrical features of single winter and spring wheat kernels. Acta Agrophysica, 2(3): 531–538 (article in Polish with an abstract in English). Google Scholar
GROCHOWICZ J. 1994. Maszyny do czyszczenia i sortowania. Wydawnictwo Akademii Rolniczej, Lublin. Google Scholar
GRZESIK M., JANAS R., GÓRNIK K., ROMANOWSKA-DUDA Z. 2012. Biological and physical methods of seed production and processing. Journal of Research and Applications in Agricultural Engineering, 57(3): 147–152 (article in Polish with an abstract in English). Google Scholar
HEBDA T., MICEK P. 2005. Dependences between geometrical features of cereal grain. Inżynieria Rolnicza, 6: 233–241 (article in Polish with an abstract in English). Google Scholar
HEBDA T., MICEK P. 2007. Geometric features of grain for selected corn varieties. Inżynieria Rolnicza, 5(93): 187–193 (article in Polish with an abstract in English). Google Scholar
JADWISIEŃCZAK B., JADWISIEŃCZAK K., KALINIEWICZ Z., PAWŁOWSKI K. 2016. Przesiewacz szczelinowy. Patent application No. P.418250 of 8.08.2016. Google Scholar
JOUKI M., EMAM-DJOMEH Z., KHAZAEI N. 2012. Physical properties of whole rye seed (secale cereal). International Journal of Food Engineering, 8(4): article 7. http://dx.doi.org/10.1515/1556-3758.2054. Google Scholar
KALINIEWICZ Z. 2013a. A theoretical analysis of cereal seed screening in a string sieve. Technical Sciences, 16(3): 234–247. Google Scholar
KALINIEWICZ Z. 2013b. String sieve: design concept and parameters. Technical Sciences, 16(2): 119–129. Google Scholar
KALINIEWICZ Z. 2015. Sito strunowe. Patent No. 218968, patent application of 24.10.2011, published in the WUP of 27.02.2015. Google Scholar
KALINIEWICZ Z., DOMAŃSKI J. 2013. A movable string sieve – analysis of seed screening. Technical Sciences, 16(4): 253–264. Google Scholar
KALINIEWICZ Z., MARKOWSKI P., ANDERS A., JADWISIEŃCZAK K. 2015. Frictional properties of selected seeds. Technical Sciences, 18(2): 85–101. Google Scholar
KALKAN F., KARA M. 2011. Handling, frictional and technological properties of wheat as affected by moisture content and cultivar. Powder Technology, 213: 116–122. http://dx.doi.org/10.1016/j.powtec.2011.07.015. Google Scholar
KARA M., SAYINCI B., ELKOCA E., ÖZTÜRK I., ÖZMEN T.B. 2013. Seed size and shape analysis of registered common bean (Phaseolus vulgaris L.) cultivars in Turkey using digital photography. Tarym Bilimleri Dergisi – Journal of Agricultural Sciences, 19: 219–234. Google Scholar
KIM Y.B., KIM S.L., LEE K.CH., CHANG K.J., KIM N.S., SHIN Y.B., PARK CH.H. 2002. Interspecific hybridization between Korean buckwheat landraces (Fagopyrum esculentum Moench) and selffertilizing buckwheat species (F. homotropicum Ohnishi). Fagopyrum, 19: 37–42. Google Scholar
KIM K.H., SHIN S.H., PARK S., PARK J.C., KANG C.S., PARK C.S. 2014. Relationship between pre-harvest sprouting and functional markers associated with grain weight, TaSUS2-2B, TaGW2-6A, and TaCWI-A1, in Korean wheat cultivars. SABRO Journal of Breeding and Genetics, 46(2): 319–328. Google Scholar
KRAM B.B., WOLIŃSKI J., WOLIŃSKA A. 2007. Comparative studies on geometric traits of nutlets with and without seed cover in Red corolla buckwheat. Acta Agrophysica, 9(3): 657–664 (article in Polish with an abstract in English). Google Scholar
LEMA M., SANTALLA M., RODIN˜ O A.P., DE RON A.M. 2005. Field performance of natural narrow-leafed lupin from the northwestern Spain. Euphytica, 144: 341–351. http://dx.doi.org/10.1007/s10681-005-8187-z. Google Scholar
MABILLE F., ABECASSIS J. 2003. Parametric modelling of wheat grain morphology: a new perspective. Journal of Cereal Science, 37: 43–53. http://dx.doi.org/10.1006/jcrs.2002.0474. Google Scholar
MAJEWSKA K., GUDACZEWSKI W., FORNAL Ł. 2000. Size of wheat grains and rheological properties of dough. Inżynieria Rolnicza, 5(16): 153–162 (article in Polish with an abstract in English). Google Scholar
MAŃKOWSKI S. 2004. Metoda rozdrabniania nasion łubinu i wydzielania cząstek okrywy nasiennej. Doctoral dissertation, Faculty of Technical Sciences, UWM in Olsztyn. Google Scholar
MIESZKALSKI L. 1991. Influence of moisture on the geometrical features of faba bean seeds and also variation of these features with given variety. Acta Acad. Agricult. Tech. Olst. Aedif. Mech., 22: 43–55 (article in Polish with an abstract in English). Google Scholar
MIESZKALSKI L., ŻUK Z., SZCZYGLAK P. 2015. Mathematical modeling of the shape of the seed of white mustard (Sinapis alba L.). Postępy Techniki Przetwórstwa Spożywczego, 1: 62–66 (article in Polish with an abstract in English). Google Scholar
MIRZABE A.H., KHAZAEI J., CHEGINI G.R. 2012. Physical properties and modeling for sunflower seeds. Agricultural Engineering International: The CIGR e-journal, 14(3): 190–202. Google Scholar
RAWA T., WIERZBICKI K., PIETKIEWICZ T. 1990. Potential effectiveness of rape seeds cleaning according to geometrical characteristics. Acta Acad. Agricult. Tech. Olst. Aedif. Mech., 20: 117–129 (article in Polish with an abstract in English). Google Scholar
RYBIŃSKI W., SZOT B. 2006. Estimation of genetic variability of yielding traits and physical properties of seeds of spring barley (Hordeum vulgare L.) mutants. International Agrophysics, 20(3): 219–227. Google Scholar
RYBIŃSKI W., SZOT B., RUSINEK R., BOCIANOWSKI J. 2009. Estimation of geometric and mechanical properties of seeds of Polish cultivars and lines representing selected species of pulse crops. International Agrophysics, 23: 257–267. Google Scholar
SULEIMAN R., XIE K., ROSENTRATER K. 2015. Physical and thermal properties of chia, kañiwa, triticale and farro as a function of moisture content. Agricultural and Biosystems Engineering Conference Proceedings and Presentations, Paper Number: 152189412. doi: 10.13031/aim.20152189412. Google Scholar
SUNDARAM P.K., SINGH A.K., KUMAR S. 2014. Studies on some engineering properties of faba bean seeds. Journal of AgriSearch, 1(1): 4–8. Google Scholar
SYKOROVÁ A., ŞÁRKA E., BUBNÍK Z., SCHEJBAL M., DOSTÁLEK P. 2009. Size distribution of barley kernels. Czech Journal of Food Science, 27: 249-258. Google Scholar
TARIGHI J., MAHMOUDI A., ALAVI N. 2011. Some mechanical and physical properties of corn seed (Var. DCC 370). African Journal of Agricultural Research, 6(16): 3691–3699. doi: 10.5897/AJAR10.521. Google Scholar
TASER O.F., ALTUNTAS T., OZGOZ E. 2005. Physical properties of Hungarian and common vetch seeds. Journal of Applied Sciences, 5(2): 323–326. http://dx.doi.org/10.3923/jas.2005.323.326. Google Scholar
TOMPOROWSKI A. 2012. Filling model for the working multi-disc biomass grain grinding unit. The Archive of Mechanical Engineering, LIX(2): 2155–174. http://dx.doi.org/10.2478/v10180-012-0008-z. Google Scholar
VARNAMKHASTI M.G., MOBLI H., JARAFI A., KEYHANI A.R., SOLTANABADI M.H., RAFIEE S., KHEIRALIPOUR K. 2008. Some physical properties of rough rice (Oryza sativa L.) grain. Journal of Cereal Science, 47: 496–501. http://dx.doi.org/10.1016/j.jcs.2007.05.014. Google Scholar
XU Y., LI H.N., LI G.J., WANG X., CHENG L.G., ZHANG Y.M. 2011. Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.). Theoretical and Applied Genetics, 122(3): 581–594. http://dx.doi.org/10.1007/s00122-010-1471-x. Google Scholar
YALÇIN Y., ÖZARSLAN C., AKBAŞ T. 2007. Physical properties of pea (Pisum sativum) seed. Journal of Food Engineering, 79: 731–735. http://dx.doi.org/10.1016/j.jfoodeng.2006.02.039. Google Scholar
ZDUŃCZYK Z., JUŚKIEWICZ J., FLIS M., AMAROWICZ R., KREFFT B. 1996. The chemical composition and nutritive value of low-alkaloid varieties of white lupin. 1. Seed, cotyledon and seed coat characteristics. Journal of Animal and Feed Sciences, 5: 63–72. Google Scholar
ZDYBEL A., GAWŁOWSKI S., LASKOWSKI J. 2009. Influence of moisture content on some physical properties of rye grains. Acta Agrophysica, 14(1): 243–255 (article in Polish with an abstract in English). Google Scholar