Shear behavior of steel or basalt fiber reinforced concrete beams without stirrup reinforcement
Julita Krassowska
Marta Kosior-Kazberuk
Abstract
The paper presents the results of a comprehensive investigation aimed at studying the shear behavior of basalt or steel fiber-reinforced concrete (BFRC or SFRC) beams, as well as analyzing the possibility of using basalt or steel fibers as a minimum shear reinforcement. Two-span reinforced concrete beams with the cross-section of 8×16 cm and length of 200 cm and diversified spacing of stirrups were tested. Steel stirrups or alternatively steel or basalt fibers were used as a shear reinforcement. Steel fiber content was 80 and 120 kg/m3and basalt fiber content was 2.5 and 5.0 kg/m3. The shear behavior and/or bending capacity of SFRC and BFRC beams were studied. The result indicated that fibers can be safely used as a minimum shear reinforcement.
Keywords:
shear capacity, basalt fibers, steel fibers, SFRC, BFRC, two-span beamsReferences
ABDULHADI M. 2014. A comparative Study of Basalt and Polypropylene fibres Reinforcement concrete on compressive and Tensile Behaviour. International Journal of Engineering Trends and Technology, 300: 2231–5381. Google Scholar
ACI 440.1R-06 Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. Google Scholar
AJDUKIEWICZ A., WALRAVEN J. 2014. Pre-norma konstrukcji betonowych. Tom 1. fib Model Code 2010. Polski Cement Sp. z o.o., Kraków, Google Scholar
AJDUKIEWICZ A., WALRAVEN J. 2014.. Pre-norma konstrukcji betonowych. Tom 2. fib Model Code 2010. Polski Cement Sp. z o.o., Kraków, Google Scholar
AYUB T., SHAFIQ N., NURUDDIN M.F. 2014. Mechanical Properties of High-Performance Concrete Reinforced with Basalt Fibers. Fourth International Symposium on Infrastructure Engineering in Developing Countries, IEDC 2013. Procedia Engineering, 77: 131–139. Google Scholar
DINH H.H. 2009. Shear Behavior of steel fiber reinforced concrete beams without stirrup reinforcement. Doctoral dissertation, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, Google Scholar
DINH H.H., PARRA-MONTESINOS G.J., WIGHT J.K. 2010. Shear Behavior of Steel Fiber-Reinforced Concrete Beams without Stirrup Reinforcement. ACI Structural Journal/September-October. Google Scholar
HIGH C., SELIEM H.M., EL-SAFTY A., RIZKALLA S.H. 2015. Use of basalt fibers for concrete structures. Construction and Building Materials, 96: 37–46. Google Scholar
HULIMKA J. 2009. Strefa podporowa żelbetowego stropu płaskiego o podwyższonej nośności na przebicie. Wydawnictwo Politechniki Śląskiej, Gliwice. Google Scholar
JASICZAK J., MIKOŁAJCZAK P. 2003. Technologia betonu modyfikowanego domieszkami i dodatkami. Oficyna Wydawnicza Politechniki Poznańskiej, Poznań. Google Scholar
JIANG CH., FAN K., WU F., CHEN D. 2014. Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Materials and Design, 58: 187–193. Google Scholar
KOSIOR-KAZBERUK M., KRASSOWSKA J. 2015. Fracture behavior of basalt and steel fiber reinforced concrete. Civil and Environmental Engineering, 6(2). Google Scholar
PN-EN 12390-13. 2014. Testing hardened concrete. Determination of secant modulus of elasticity in compression. Google Scholar
PN-EN 12390-3. 2011. Testing hardened concrete. Compressive strength of test specimens. Google Scholar
PN-EN 12390-5. 2011. Testing hardened concrete. Flexural strength of test specimens. Google Scholar
PN-EN 1992-1-1. 2008. Eurokod 2: Projektowanie konstrukcji z betonu. Część 1-1. Reguły ogólne i reguły dla budynków. PKN, Warszawa. Google Scholar
POGAN K. 2010. Wzmacnianie konstrukcji kompozytami FRP. Inżynier Budownictwa, http://www.inzynierbudownictwa.pl/technika,materialy–i–technologie,artykul,wzmacnianie–konstrukcji–kompozytami–frp,4178. Google Scholar
RAJ S., GOPINATH S., IYER N.R. 2013. Compressive behavior of Basalt Fiber Reinforced Composite. Proc. of the Intl. Conf. on Advances in Civil, Structural and Mechanical Engineering, CSM. Google Scholar