Pseudo-random number generator based on linear congruence and delayed Fibonacci method

Pseudo-random number generator based on linear congruence and delayed Fibonacci method

Radosław Cybulski

a:1:{s:5:"en_US";s:87:"Faculty of Mathematics and Computer Science, Univeristy of Warmia and Mazury in Olsztyn";}


Abstract

Pseudo-random number generation techniques are an essential tool to correctly test machine learning processes. The methodologies are many, but also the possibilities to combine them in a new way are plenty. Thus, there is a chance to create mechanisms potentially useful in new and better generators. In this paper, we present a new pseudo-random number generator based on a hybrid of two existing generators – a linear congruential method and a delayed Fibonacci technique. We demonstrate the implementation of the generator by checking its correctness and properties using chi-square, Kolmogorov and we apply the Monte Carlo Cross Validation method in classification context to test the performance of the generator in practice.


Keywords:

Linear congruential method, Delayed Fibonacci technique, Hybrid pseudo-random number generator


AHRENS J.H., DIETER U. 1988. Efficient table – free sampling methods for the exponential, Cauchy, and normal distributions. Communication of the ACM, 31(11): 1330-1337.   Google Scholar

BELL J.R. 1968. Algorithm 334: Normal random deviates. Communication of the ACM, 11(7): 498.   Google Scholar

BOX G.E.P., MULLER M.E. 1958. A note on the generation of random normal deviates. Annals of Mathematical Statistics, 29(2): 610-611.   Google Scholar

ICS-a. Donald Bren School of Information and Computer Sciences. University of California, Irvine. https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/australian/australian.dat.   Google Scholar

ICS-b. Donald Bren School of Information and Computer Sciences. University of California, Irvine. https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/heart/heart.dat.   Google Scholar

KINDERMAN A.J., MONAHAN J.F. 1977. Computer generation of random variables using the ratio of uniform deviates. ACM Transactions on Mathematical Software, 3(3): 257-260.   Google Scholar

KNOP R. 1969. Remark on Algorithm 334 [g5]: normal random deviates. McGill University, Montreal.   Google Scholar

Lagged Fibonacci Generator. Security and So Many Things, Asecuritysite. https://asecuritysite.com/encryption/fab.   Google Scholar

RUKHIN A., SOTO J., NECHVATAL J., SMID M., BARKER E., LEIGH S., LEVENSON M., VANGEL M., BANKS D., HECKERT A., DRAY J., VO S. 2001. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Special Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD.   Google Scholar

STALLINGS W. 2012. Kryptografia i bezpieczeństwo sieci komputerowych – matematyka szyfrów i techniki kryptologii. Helion, Gliwice.   Google Scholar

SULEWSKI P. 2019. Porównanie generatorów liczb pseudolosowych. Wiadomości Statystyczne, 7: 5-31.   Google Scholar

WIECZORKOWSKI R., ZIELINSKI R. 1997. Komputerowe generatory liczb losowych. Wydawnictwo Naukowo-Techniczne, Warszawa.   Google Scholar

WOJTATOWICZ T.W. 1998. Metody analizy danych doświadczalnych. Wydawnictwo Politechniki Łódzkiej, Łódź.   Google Scholar

Download


Published
2021-12-06

Cited by

Cybulski, R. (2021). Pseudo-random number generator based on linear congruence and delayed Fibonacci method: Pseudo-random number generator based on linear congruence and delayed Fibonacci method. Technical Sciences, 24(1), 331–349. https://doi.org/10.31648/ts.7238

Radosław Cybulski 
a:1:{s:5:"en_US";s:87:"Faculty of Mathematics and Computer Science, Univeristy of Warmia and Mazury in Olsztyn";}



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.





-->